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Abstract: A new approach in the discrete optimization (partitioning and covering) problems is presented
based on the expert knowledge presentations. An a priori uncertain information on the alternatives is given
by some probability distribution and an a priori certain information on the knowledge competitions is given
by some weights. A new criterion is introduced for a minimal fuzzy covering or partitioning problem which
is a minimal value of average misbelief in possible alternatives. A bicriterial problem is obtained using
the new criterion and the criterion of minimization of average price of the covering or partitioning. The
proposed approach is illustrated by an example for the partitioning problem.
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1 Introduction

Optimization and decision-making problems are tra-
ditionally handled by either the deterministic or the
probabilistic approach. The former provides an ap-
proximate solution, completely ignoring uncertainty,
while the latter assumes that any uncertainty can be
represented as a probability distribution. Of course,
both approaches only partially capture reality uncer-
tainty that indeed exists but not in the form of known

probability distributions.
The existing literature clearly supports the notion

of using the fuzzy set theory and soft-computing tech-
niques to further expand the human capability in mak-
ing optimal decisions involving non-probabilistic un-
certainty [3], [4], [9], [14]–[20], [23]–[37], [40]–[44].

In the Preface of the Journal of Fuzzy Optimiza-
tion and Decision Making (vol. I, 2002, pp. 11–12)
Professor L. A. Zadeh had said: “My 1970 paper with
R.E. Bellman, ‘Decision-Making in a Fuzzy Environ-
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ment’ was intended to suggest a framework based on
the theory of fuzzy sets for dealing with imprecision
and partial truth in optimization and decision analy-
sis. In the intervening years, a voluminous literature
on applications of fuzzy logic to decision analysis has
come into existence.”

In particular, when constructing decision-making
systems [3], [9], [14]–[25], [29]–[36], [42]–[44]. the
use of fuzzy set theory is rather effective, since in-
formation fuzziness is a typical property of any sys-
tem of this kind. Frequently, the main material for
the construction of such systems is expert knowledge
and representations. The use of such systems contain-
ing subjective, fuzzy uncertainty [11] leads to natural
generalizations of the above-mentioned problems in
the form of fuzzy optimization problems.

Fuzzy programming problems has been discussed
widely in literature [3], [9], [14], [19], [20], [24],
[25], [28], [31], [32], [33], [35], [36], [38] and ap-
plied in such various disciplines as operations re-
search, economic management, business administra-
tion, engineering and so on. Liu B. (Liu, [19] 2002)
presents a brief review on fuzzy programming models,
and classifies them into three broad classes: expected
value models, chance-constrained programming and
chance-dependent programming.

Our further study belongs to the first class, where
we used the instrument of fuzzy statistics and fuzzy
set theory for our investigation.

In this paper we continue the investigation of
a discrete fuzzy optimization problem, presented in
i.e. a minimal set covering and partitioning problems
with expert data. The obtained bicriterial optimization
problem is a specific compromised approach between
expert and objective methods of optimization.

2 Preliminary Concepts

2.1 Classical set covering problem

Partitioning, covering and packing problems serve as
a mathematical model for many theoretical and ap-
plied problems such as the coloring of graphs, con-
struction of perfect codes and minimal disjunctive
normal forms, drawing up of block-diagrams, infor-
mation search, drawing up of traffic schedules, ad-
ministrative division into zones and so on [2], [7], [8],
[12].

Let us introduce some basic notions [2], [12].
Suppose that we are given the finite set R =
{r1, . . . , rm} and the family of its subsets S =
{S1, . . . , Sn}. Let S′ = {Sj1 , . . . , Sjp}, 1 ≤ p ≤ n,
be some subfamily of the family S. If each element
ri is contained in at most (at least) one of the sets
Sj belong to S′, then S′ is called a packing (cover-
ing) of the set R. A covering which is simultaneously
a packing is called a partitioning of the set R. Let
A = ‖aij‖m×n be an incidence matrix of elements R
and subsets Sj : aij = 1 if ri ∈ Sj , and aij = 0 if
ri 6∈ Sj . Each subfamily S′ of the family S is given
by means of the characteristic vector which has the
component xj = 1 if the subset Sj is contained in S′,
and xj = 0 otherwise. If to each Sj ∈ S we assign
a (positive) price cj , then partitioning, covering and
packing problems take the form

1) min
Ax=e

(c, x); 2) min
Ax≥e

(c, x); 3) max
Ax≤e

(c, x);

here c = (c1, . . . , cn) is the price vector, x =
(x1, . . . , xn) is the vector with components 0 and 1,
and e is the vector consisting of 1’s. Note that in many
interesting problems cj = 1, j = 1, . . . , n (such is, for
instance, the problem on finding a minimal dominat-
ing set in the graph), but this does not simplify the
solution process of these problems.

2.2 On the most typical value (MTV) of a
compatibility function with respect to a
probabilistic or fuzzy measure

If data are represented in intervals, their distribution
is obscure, they overlap and are described or obtained
by an individual expert (insufficient expert data), then
they are considered to be of combined nature. In that
case, along with probabilistic-statistical uncertainty,
there arises the so-called possibilistic uncertainty pro-
duced by an individual (expert) and demanding the
application of fuzzy analysis methods. In such situa-
tions only probabilistic-possibilistic analysis can pro-
vide satisfactory results by using the fuzzy methods to
be discussed below.

In describing such data functionally, in many real
situations the property of additivity remains unre-
vealed for a measurable representation of a set and this
creates an additional restriction. Hence, to study sub-
jective insufficient expert data it is frequently better to
use monotone estimators instead of additive ones.
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We introduce the definition of a fuzzy measure
(Sugeno, [39]) adapted to the case of a finite referen-
tial.

Definition 1 LetX = {x1, x2, . . . , xn} be a finite set
and g a set function

g : P(X)→ [0, 1],

where P is the power set of X . We will say g is a
fuzzy measure on X if it satisfies:

(i) g(∅) = 0; g(X) = 1.
(ii) ∀A,B ⊆ X , if A ⊆ B, then g(A) ≤ g(B).

A fuzzy measure is a normalized and monotone
set function. it can be considered as as extension of
the probability concept, where additivity is replaced
by the weaker condition of monotonicity.

Let us, for example, consider three typical symp-
toms x1, x2 ,x3, which indicate some illness y. Let an
expert (physician) provide objective-subjective data
using his/her wide experience and medical records of
patients (another expert would certainly provide dif-
ferent data).

Assume that we have the following information:
80% of patients with illness y exhibit the symptoms
x1 and x2, 20% of them have the symptoms x1 and
x3. This information can be written using the mono-
tone instead of the additive, measure g defined on the
subsets of the set X = {x1, x2, x3} (Table 1).

Table 1: Distribution table showing the dual measures
g and g∗

A ⊆ X g g∗

{x1} 0 1
{x2} 0 0.8
{x3} 0 0.2
{x1, x2} 0.8 1
{x1, x3} 0.2 1
{x2, x3} 0 1
{x1, x2, x3} 0 1

g∗ is called the dual measure of g defined by
g∗(A) = 1 − g(A). Note that g∗ contains the same
information as g but is written in a different way.

Non-additive but monotone measures were first
used in fuzzy analysis in the 80s by M. Sugeno [39].

The fuzzy integral is a functional which assigns
some number or a compatibility value to each fuzzy
subset when the fuzzy measure is already fixed. As
known [39], the concept of a fuzzy integral makes
it possible to condense information provided by a
compatibility function and a fuzzy measure. Hav-
ing the fuzzy measure determined, we can estimate
a fuzzy subset by the most typical compatibility value
(MTV ). The MTV is essentially different in con-
tent and significance from a probabilistic average even
when a probabilistic measure is used instead of a
fuzzy measure. The pre-image of the MTV with re-
spect to a compatibility function distinguishes from
the universe the most typical representative values of
the considered fuzzy subset.

As already known, fuzzy averages differ both in
form and content from probabilistic-statistical aver-
ages and other numerical characteristics such as mode
and median. Nevertheless, in some cases “nonfuzzy”
(objective) and “fuzzy” (subjective) averages coincide
[34], [39]. For a given set of fuzzy subsets with com-
patibility function values from the interval [0; 1], the
fuzzy average determines the most typical representa-
tive compatibility value ME – Monotone Expectation.

The following fuzzy integral (based on the Cho-
quet operator [6]) is the monotone expectation, which
was defined by Bolaǹos et.al. [5]:

2.2.1 Fuzzy measure and a monotone expectation

Definition 2 ([5]) Let g be a fuzzy measure onX and
h : X → R+

0 a non-negative function. The monotone
expectation of h with respect to g is

Eg(h) =
∫ +∞

0
g(Hα) dα,

where Hα = {x ∈ X | h(x) ≥ α}.

The monotone expectation always exists and it is
finite for each g and h. It is obvious that Eg(·) is a
generalization of the mathematical expectation: that
is what it becomes when the used fuzzy measure is a
probability measure, that is,

EP (h) =
∫
X
h dP,

where P denotes a probability measure, EP – mathe-
matical expectation.
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Some of the most important properties of the
monotone expectation are see in [24]-[31], [39], [44].

Since the monotone expectation is a generaliza-
tion of the mathematical expectation, it can be ques-
tioned whether the former possesses some weaker
property in relation to additivity than the latter. The
following proposition gives an expression of the
monotone expectation that permits us to analyse that
question.

Proposition 1 ([5]) If the values of a non-negative
function h are ordered as

h(x1) ≤ h(x2) ≤ · · · ≤ h(xn),

then the monotone expectation of h with respect to a
fuzzy measure g can be written as

Eg(h) =
n∑
i=1

h(xi)(g(Ai)− g(Ai+1)),

where Ai = {xi, xi+1, . . . , xn}, i = 1, . . . , n,
g(An+1) = 0.

Thus, the monotone expectation is an additive
functional for functions ordered equally.

We can also notice thatEg(h) is an average of the
h function values weighted by

pi = g(Ai)− g(Ai+1), i = 1, . . . , n, pn = g(An).

As
n∑
i=1

pi = g(A1) = g(X) = 1 and pi ≥ 0,

i = 1, . . . , n,

the values pi can be interpreted as the values of a
probability function. Then Eg(h) is equivalent to the
mathematical expectation of h with respect to that
probability distribution.

The values pi depend on the fuzzy measure g and
the sets Ai, which depend on h only in the order de-
termined by its values. So we can say:

Proposition 2 The monotone expectation of a non-
negative function h with respect to a fuzzy measure g
coincides with the mathematical expectation of hwith
respect to a probability that depends only on g and the
ordering of the values of h.

2.2.2 Fussy measure and the fuzzy expected value
(FEV)

In this section, we discuss the main estimators of
fuzzy statistics: the fuzzy expected value (FEV) of
the population. The FEV determines MTV for a com-
patibility function.

Let h be a compatibility function of some fuzzy
subset of X , h : X → [0, 1] be an F -measurable
function.

Definition 3 ([16]) The FEV of the compatibility
function h with respect to the fuzzy measure g is
Sugeno’s integral over X:

FEV (h) =6
∫
X

h ◦ g(·) ≡ sup
α∈[0,1]

{α ∧ g(Hα)} ,

where ∧ denotes a minimum of two arguments.

It clearly follows that the FEV somehow “aver-
ages” the values of the compatibility function h not in
the sense of a statistical average but by cutting subsets
of the α level, whose values of a fuzzy measure g are
either sufficiently “high” or sufficiently “low”.

Thus the FEV gives a concrete value of the com-
patibility function h, this value being the most typical
characteristic of all possible values with respect to the
fuzzy measure g, obtained by cutting off the “upper”
and “lower” strips on the graph of g(Hα).

Thus the information carried by h and g gets con-
densed in the FEV which is the most typical value of
all compatibility values.

Consider the situation where X =
{x1, x2, . . . , xn} is a finite set.

Proposition 3 ([39]) If the values of a compatibility
function h are ordered as

h(x1) ≤ h(x2) ≤ · · · ≤ h(xn),

then the FEV of h with respect to a fuzzy measure g
can be written as

FEV = max
i
{h(xi) ∧ g(Ai)} = min

i
{h(xi) ∨ g(Ai)} ,

where Ai = {xi, xi+1, . . . , xn}, i = 1, . . . , n, and
where ∨ is a maximum of two arguments.
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3 Aggregation by the monotone ex-
pectation in the set Covering and
Partitioning Problems

Our further consideration concerns minimal fuzzy
covering and partitioning problems. Let S̃ =
{S̃1, S̃2, . . . , S̃n} be some family of fuzzy subsets on
R. Denote the compatibility level µ

S̃j
(ri) ≡ bij for

ri ∈ R, j = 1, 2, . . . , n. In constructing S̃j , we
use certain subjective expert estimates: µ

S̃j
(ri) > 0

means that element ri will be covered by a fuzzy set
S̃j with some positive level, even if this level is small.

Definition 4 Any subfamily S̃′ = {S̃jk} ⊂ S̃, k =
1, . . . , p, 1 ≤ p ≤ n, of fuzzy subsets is called a fuzzy
covering (fuzzy partitioning) of the setR if for each ri
there exists (there exists only one) fuzzy subset S̃jk ⊂
S̃′ such that µ

S̃jk
(ri) > α, where 0 ≤ α < 1 is called

the minimal compatibility level, by which an element
ri is covered by a fuzzy set S̃jk .

So we have defined the values of elements of an
incidence matrix:

aik = 1 if µ
S̃jk

(ri) > α and aik = 0 otherwise.

It is clear that if α = 0, then we receive a classical
case.

If to each S̃j ∈ S̃ we assign a (positive) price cj ,
then the fuzzy covering (fuzzy partitioning)problem is
formulated as follows: find a fuzzy covering (fuzzy
partitioning) S̃′ of the set R having the least price
with the least misbelief in subjective data. Thus un-
der an optimal fuzzy covering (fuzzy partitioning) we
understand a covering (partitioning)defined by means
of two criteria: 1) minimization of a covering (par-
titioning) average price with probability uncertainty
produced by a priori probability distribution on prices;
2) minimization of average misbelief in fuzzy uncer-
tainty produced by the assumption of fuzzy covering
(fuzzy partitioning). We obtain a bicriterion discrete
optimization problem. Note that if under S̃ we un-
derstand the classical covering (partitioning), then this
problem can be reduced to the well known covering
(partitioning) problem [7].

Suppose we are given some fuzzy set on R+
0 with

the definition: “a large ratio” := (L−R) with a nonde-
creasing compatibility function µL−R : R+

0 → [0, 1].
Analogously [23], we introduce the notation of

positive and negative discriminations:

pij =
1

n− 1

n∑
k=1
k 6=j

µL−R

( bij
bik

)
,

nij =
1

n− 1

n∑
k=1
k 6=j

µL−R

(bik
bij

)
,

{
i = 1, . . . ,m,
j = 1, . . . , n,

(1)

where a heuristic explanation of the positive (pij) and
the negative (nij) discrimination measure is that pij
represents the accumulated belief that the element S̃j
is more indicative (in the sense of covering or parti-
tioning) of an element ri than anyone of the remain-
ing elements rl (l = 1, . . . ,m, l 6= i), while nij
represents the belief that an element S̃j is more in-
dicative of not an element ri, but of other elements
rl (l = 1, . . . ,m, l 6= i) with respect to belief cov-
ering (partitioning) levels bij of the fuzzy subsets S̃j ,
j = 1, . . . , n.

Suppose we are given some weights’ distribution(
r1 r1 . . . rm
w1 w2 . . . wm

)
,
M∑
i=1

wj = 1, on the set R,

which indicates an a priori information about the pref-
erences on choice of elements ri.

Let two fuzzy sets be given on [0; 1]: one de-
fined as “large” with some nondecreasing compatibil-
ity functions µlarge : [0; 1] → [0; 1], and the other
defined as “small” with some nonincreasing compati-
bility functions µsmall : [0; 1] → [0; 1]. We introduce
the following values

πj =
m∑
i=1

pijwi, vj =
m∑
i=1

nijwi, (2)

j = 1, . . . , n,

where πj and vj are called weighted average posi-
tive and the negative discrimination measures of the
covering (partitioning), respectively, for elements S̃j ,
j = 1, . . . , n.
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Now, on the set {S̃1, . . . , S̃n} we construct a mis-
belief distribution of a covering (partitioning), where
both the positive and the negative discrimination mea-
sure (πj , vj) are taken into account;

δj = νµsmall(πj) + (1− ν)µlarge(vj), (3)

j = 1, . . . , n,

where ν, 0 < ν < 1, is a weighted parameter which
indicates preference of positive or negative discrimi-
nations.

The information content of δj is as follows: a cov-
ering (partitioning) level of misbelief in “the accep-
tance” of an element S̃j .

Let S̃′ = {S̃jk}, k = 1, 2, . . . , p; 1 ≤ p ≤ n,
be some fuzzy covering (partitioning). It can be char-
acterized by the binary vector x

S̃′ = (x1, . . . , xn),
where

xi =


1, if the fuzzy subset S̃i is

contained in S̃′,
0, otherwise.

Let us consider the misbelief distribution on x
S̃′

S̃ ′ ⇔
(
x1, . . . , xn
δ1, . . . , δn

)
.

We say that the values xj are chosen with some
a priori information and we can consider some proba-
bility distribution on x

S̃′ :

P
S̃′ =

(
x1, . . . , xn

p1, . . . , pn

)
.

Thus for each fuzzy covering (partitioning) S̃ ′
we have constructed the fuzzy misbelief distribution
(δ1, . . . , δn) on x

S̃′ and the probability distribution
P
S̃′ . Applying the method of fuzzy statistics which

was presented in Subsection 2.2.1 [5], [34], [37], [30],
[39], we define a fuzzy average value of S̃ ′ as a mono-
tone expectation [6] [34], (which here coincides with
mathematical expectation)

Ep(S̃ ′)
def
≡
∫ 1

0
P
S̃ ′(µS̃ ′ ≥ α)dα =

=
n∑
j=1

xj δjpj . (4)

Note that the value Ep(S̃ ′) is an average measure of
misbelief in a fuzzy covering (partitioning). Minimiz-
ing the average misbelief in the fuzzy covering (parti-
tioning) S̃ ′, we obtain the criterion

n∑
j=1

xj δj
′ → min, (5)

where δ′ = (δ1p1, . . . , δnpn).
Finally, the minimal fuzzy covering problem (par-

titioning) is reduced to a bicriterial problem of the
type (minsum-minsum) [12] for an ordinary covering
(partitioning) with the target functions

f1 =
n∑
j=1

c′j xj → min

(minimization of an average price)

(c′j = cjpj),

f2 =
n∑
j=1

δj
′ xj → min

(minimization of an average misbelief).

(6)

If X is the set of all Boolean vectors satisfying
the conditions of the fuzzy covering problem, then by
considering the scalar optimization problem

λf1 + (1− λ)f2 → min, (7)

(x1, . . . , xn) ∈ X, λ ∈ (0, 1),

where

X = {x
S̃′ ∈ {0, 1}

n | S̃′ ⊂ S̃, S̃′ is the covering} ≡
≡ {x̄ ∈ {0, 1}n | Ax̄ ≥ ē}

and λ is a weighted parameter, we can find, in the
general case, some Pareto optima [12].

An aggregation by the FEV in Minimal Fuzzy
Covering Problem is the problem of our future inves-
tigation.

4 Example: Application in the Opti-
mal Choice of Candidates

As an application let us consider an example based on
the problem from [7] called the problem of a choice
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of translators. Suppose some company needs to
hire translators from Polish, French, German, Greek,
Italian, Spanish, Russian, Chinese, Portuguese and
Japanese into English and there are sixteen applicants
A, B, C, D, . . . , P. It is assumed that each candidate
knows only some subset from the above-mentioned
set of languages and demands the definite salary. We
introduce, in the problem, a new element of estima-
tion of their knowledge of languages and admit that
they should be examined in the above-mentioned lan-
guages. The results of examinations (which usually
includes expert valuations) are normalized and repre-
sented in the form of numbers bij which determine
the level of knowledge of the j-th candidate with re-
spect to the i-th language. Information on the candi-
dates, estimates of language knowledge and salaries
demanded by the candidates are represented in the
form of Table 2, where numbers aij are given in the
upper part of each cell, and numbers bij in the lower
part (aij = 1 if µ

S̃j
(ri) = bij > α = 0, 5 and aij = 0

otherwise; that means that the minimal compatibility
level or determined minimal level of language knowl-
edge competitions is equal to 0,5).

Table 2: Data base of language knowledge and demanded salaries of the candidates A, B, C, D, . . . , P

To construct a target function which guarantees
minimal misbelief, we introduce the following con-
crete compatibility functions (any other choice of ac-
ceptable functions does not influence the final deci-
sions [10]):

µL−R(x) : =
x

x+ 2
,

µlarge(x) : = x, 0 ≤ x ≤ 1,
µsmall(x) : = 1− x, 0 ≤ x ≤ 1.

Positive and negative discrimination measures (1)
and their average values are calculated. On the set
{x1, . . . , xn} the uniform probability distribution was
taken in the role of a priori information measure, be-
cause we did not have any initial information about the
candidates. The parameter ν is equal to 0,5. The uni-
form weights wi = 1

n were taken in the role of a priori
information measure, because there was no preference
for any language.
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Finally, a fuzzy distribution of misbelief for the
candidates is written in the form

δ1 = 0, 484, δ2 = 0, 550, δ3 = 0, 452,

δ4 = 0, 483, δ5 = 0, 448, δ6 = 0, 483,

δ7 = 0, 549, δ8 = 0, 548, δ9 = 0, 548,

δ10 = 0, 548, δ11 = 0, 549, δ12 = 0, 483,

δ13 = 0, 483, δ14 = 0, 416, δ15 = 0, 482,

δ16 = 0, 484.

After passing to dimensionless values of target
functions we obtain

f1 = 0, 620x1 + 0, 200x2 + 0, 700x3+

+ 0, 800x4 + 0, 800x5 + 0, 900x6+

+ 0, 180x7 + 0, 320x8 + 0, 160x9+

+ 0, 220x10 + 0, 240x11 + 0, 700x12+

+ 0, 900x13 + 0, 920x14 + 0, 500x15+

+ 0, 680x16,

f2 = 0, 269x1 + 0, 306x2 + 0, 251x3+

+ 0, 268x4 + 0, 249x5 + 0, 269x6+

+ 0, 305x7 + 0, 305x8 + 0, 305x9+

+ 0, 305x10 + 0, 305x11 + 0, 269x12+

+ 0, 268x13 + 0, 231x14 + 0, 268x15+

+ 0, 269x16.

Note that for f1 an optimal solution is the can-
didates B, G, I, J, K should be hired, and for f2 the
candidates M, N. For λ = 0, 5, by scalarized lin-
ear convolution, criterion (7) (if both criteria are as-
sumed equivalent) gives the solution M, N. To solve
the scalar problem on a minimal covering we use an
algorithm of search tree type from [7].

During the research a software has been devel-
oped. The software consists of two basic modules: the
first module is responsible for reducing minimal fuzzy
covering to classical covering problem and the sec-
ond module is responsible for solving classical cover-
ing problem using both exact (search tree type algo-
rithm [7]) and approximate (greedy algorithm) meth-
ods. The software is in the processes of development
and is considered to be the basis for decision making
support systems software.

5 Conclusion

We apply the methods of fuzzy statistics [23], [34],
[30] to the considered discrete optimization problems
with fuzzy data. In an appropriate manner we intro-
duce the definitions of positive and negative discrim-
inations of expert knowledge of optimization prob-
lem parameters, i.e. parameters of possible solutions
and alternatives (candidates). We thereby determine
a fuzzy distribution of misbelief on the set of alter-
natives. As a result we obtain a bicriterial discrete
optimization problem which is solved by the method
of linear convolution of criteria. The scalar problem
is solved by the search tree algorithm from [7]. The
obtained bicriterial optimization problem is a specific
compromised approach between the expert (fuzzy)
and the objective (probabilistic) method of optimiza-
tion of decision-making, where both the minimization
of average misbelief in alternatives and the minimiza-
tion of an average price for alternatives are taken into
account. The constructed approach (minimal fuzzy
covering or partitioning) to the solution of the discrete
optimization problem with data of combined (expert-
objective) nature can be regarded as more trustworthy
from the standpoint of application than the classical
optimization methods.
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