

Artifacts Recovery and Understanding Using High Level Models

NADIM ASIF, FAISAL SHAHZAD, NAJIA SAHER, RAFAQUET KAZAMI, WASEEM NAZAR

The Islamia University of Bahawalpur
Dept. of Computer Science

Bahawalpur
PAKISTAN

 nasif@softresearch.org, faisalsd@gmail.com, najia_saher@hotmail.com,rafaquetkazmi@gmail.com,
waseem@uol.edu.pk

Abstract:- The systems are required to understand and present at higher levels of abstractions to perform
changes or re-engineer to meet the current requirements. The software systems drift away from the existing
implemented source code and the documentations due to the changes. The high level models are used for the
purpose of recovering the artifacts and understanding the system to perform the maintenance activities. This
paper presents an approach to develop the high level models from the existing source code and documents.

Key Words:- Design Recovery, Re-Engineering, Reverse Engineering, , Program Understanding, Software
Maintenance

1. Introduction
The software systems are evolved and changes are
performed in the systems to meet the current and
future requirements of the users. The software
engineers perform different maintenance activities by
extracting the different types of artifacts at different
levels of details. The artifacts exist at
implementation, structural, functional and domain
abstraction levels. The changes are performed in the
software systems and the existing documents are
drifted away form the implementation and fail to
represent the current implementation of the system.
The reverse engineering techniques help to represent
the software systems at higher levels of abstraction
than code to recover the desired artifacts, understand
and comprehend the source code and elaborate the
functionality of the software systems to plan, design
and execute the different types of maintenance
activities. The software engineers also draw the
sketches and diagrams in different formats to
represent the systems at higher levels of abstraction
for understanding and representing software systems
for maintenance activities. The high level models
represent the higher level of abstraction of a system
in a particular domain. These high level models
provide a hint to explore, search, understand the
code, functionality and behavior of software systems
for maintenance tasks at hand [1,2,3,4,5,6].

2. Background

An entity define/comprehend a concept and is used
to represent higher abstraction level of components
or modules, data sources and processes in a domain,
which are used in the high level models to represent
the software systems. The directed arcs are used to
represent the relationships and flow of information
among the components/modules, data sources and
processes. The sub-entities represent the lower levels
of abstractions as compared to an entity. For example
account is an entity in a banking domain and
personal account, corporate account are examples of
sub-entities represent the specific types of accounts.
 For example, a high level model formed for the
Unravel system (used to measure the quality of the
code) is presented in Figure 1. The high level model
of Unravel developed iteratively in the study and
identified three main component of a system. The
system performs functions with the help of these
three main components: a source code analysis
component, a link component, and an interactive
slicing component.
 The analysis component collects from source files
(with a .c extension) and included header files
(usually with a .h extension) the information
necessary for the computation of program slices. The
information is translated into a representation
independent source language called language
independent format (LIF). The analyzer is designed
like a compiler with a scanner to break the source
code into tokens that are recognized by a parser, but
instead of generating object code, it produces LIF
code. The analyzer also produces a tally of objects (
.T file) such as procedures and variables, and a file to

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Nadim Asif, Faisal Shahzad, Najia Saher,
Rafaquet Kazami, Waseem Nazar

ISSN: 1790-0832 1830 Issue 11, Volume 6, November 2009

list global objects (.H file) declared in each included
header file.
 The link component operates in two parts. The
first part, map identifies for each program in the

current directory its constituent files and then saves
this information in a file named SYSTEM. The
second part of the link component, slink, uses the
SYSTEM file to merge data-flow information from
the .LIF, .T and .H files created from separate source
files into a single .LINK file and a single .K file.
Under user control, the interactive component
extracts and displays program slices and keeps a
record of user activities in a .LOG file.

2. Identification of Entities
The high-level models are developed using the
domain knowledge, personal experience, application
users, available maintenance personnel’s, existing
source code and available documents (specifications,
designs, manuals). The software engineers in the first
step identify the entities using the available
information and then associate them through arcs and
label the arcs to mark the flow of specific
information from one entity to another entity. For
example the engineer initially identify the entities
parser, token, tag and scanner to develop the high
level model of Mozilla HTML parser through his
experience and knowledge about the domain. The
software engineer maps these entities to the source

code and the documents to associate the entities and
sub-entities with them to develop the high level
models iteratively.

3. Existing Source Code
The available source code exist in many forms; may
be written in multi-languages or have different
dialects and scripts, can not be compiled or have
errors and complete code is not available. The
software engineers debug the source code and find
the relationships and functionality and associate
them with relevant entities to develop the high level
models. It is a time consuming and laborious task
and even in the case of large systems become very
difficult and expensive. The developers and the
software maintenance personnel record the
functionality and changes performed in the system in
the form of comments in the source code. The
engineer in the second step extracts the history facts
(comments - which are buried in the source code)
from the available source code which represents the
system truly. The history facts help to identify the
main and sub-entities of the system, and the
functionality of the system it performs. The figure 2
depicts the REAM tool used to extract the history
facts from the HTML parser source code.

Analyzer

Scanner &

Parser

Slicer and

Interface

Map &

Linker

.LIF Files

.H /.T Files

SYSTEM &
.LINK &
.K Files

.c

.LOG
Files

Source Files

Figure 1 High Level Model of Unravel

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Nadim Asif, Faisal Shahzad, Najia Saher,
Rafaquet Kazami, Waseem Nazar

ISSN: 1790-0832 1831 Issue 11, Volume 6, November 2009

4. Available Documents
The available documents exist in many formats and
have specific objectives to represent the systems.
These documents (e.g. specifications, design
documents and manuals) are also drifted away from
the existing implementation (than actual available
source code) and do not represent the system. The
entities are also mapped to the documents (if
electronically available) to identify more descriptions
about their functionalities in the system. This step
also helps to build the knowledge about the entities
of the system in more details and their relationships
among them.

5. Mapping
The mapping step associates the entities with the
available source code and documents through
mapping iteratively. The mapping is performed using
the regular expressions. It allows the engineer to
define the mapping patterns of its own choice
required by the tasks to map to the multi-language,

different dialects/scripts, having errors or incomplete
source code. Initially the identified entities found in
the first and second step are mapped to the source
code. The identified sub-entities are further
associated with the lower level entities through
mapping, which constitutes the sub-entities of a
particular domain.
 Let S represents the available source code, which
exist in many forms. The software source code is
composed of components Cn (or modules) and
components consists of functions which are
represented by fm . The D represents the
available documents, which provide the specific
details about the system.
 Let En represents a set of entities in a particular
domain En = { E1, E2, E3………Em), which are
implemented by using a multi-language, different
dialects/script in different periods of time Tn (
development and maintenance) to perform certain
functions.
 The available source code is organized in the form

**
 This the ITagHandler deque deallocator, needed by the
 CTagHandlerRegister
 ***/
 This funtor will be called for each item in the TagHandler que to
 check for a Tag name, and setting the current TagHandler when it is reached

***/**
**
 This a an object that will keep track of TagHandlers in
 the DTD. Uses a factory pattern
/*

 The CTagHandlerRegister for a CNavDTD.
 This is where special taghanders for our tags can be managed and called from
 Note: This can also be attached to some object so it can be refcounted
 and destroyed if you want this to go away when not imbedded.
**
******/CTagHandlerRegister gTagHandlerRegister;
**
 And now for the main class -- CNavDTD...
 **
 * This method gets called as part of our COM-like interfaces.
 * Its purpose is to create an interface to parser object
 * of some type.

 Figure 2 Extracted History facts from the HTML parser source code

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Nadim Asif, Faisal Shahzad, Najia Saher,
Rafaquet Kazami, Waseem Nazar

ISSN: 1790-0832 1832 Issue 11, Volume 6, November 2009

of different types of directories and files physically.
Let Ap is a set of physical association of source code
files. The Ac is a set of conceptual association of
source code and A is a super set of Ap and Ac. The
associations among physical and conceptual
associations are represented by conceptual view (Vc),
physical view (Vp) and relational view (Vr). The Vs =
{Vc, Vp, Vr} represents the set of software views.

Conceptual Views (Vc): Association of entity with
different components/modules, classes, routines /
functions to represent the certain functionality.

Physical View (Vp): Association of entity with
source codes organized in different files and
directories. The file name, file types (identified
usually through file extensions) and directory name
represent the nature of the source code it contains.

Relational View (Vr): Relationships among different
artifacts like components, functions and variable.
The figure 3 depict the map of CToken and sPasrer
entities to the HTML parser files. The CToken
entity relationship with the other artifacts in the
source code is shown in figure 4.

6. Source Code Model
The source code model is extracted by mapping the
entity to the source code, which represent the domain
information of this entity implemented in the source
code to perform some functions. The source code
model also represents the entity associations to the
components/modules, sub-components, classes,
functions and variables, which represent the low-
level implementation details of the source code. In
figure 4, the numbers represent the line number of
that particular file where the mapped artifact exists.
The mapping associates the CToken entity with all
the classes and functions of the HTML parser source

code. The result of this mapping is a source code
model which represents the relationship of CToken
entity with other artifacts (Classes and function).
 The source code model also associates the entities
with the directories (in which relevant codes are
organized) and the files.

7. Naive Bayesian Classifier
The Naive Bayesian classifiers are statistical
classifiers. They can predict entity relationships
probabilities, such as the probability that a given
code sample represents the particular entity.
Let X be a code whose entity E, which represent the
code is unknown.
Let H be some hypothesis such that X belong to a
specific entity E.
For high level model, we determine P(H|X), the
probability that the hypothesis H holds given
observed code X.
 Suppose that X code is a search routine and every
time it divides the data into two portions using the
pivot for search, and that H is the hypothesis that X
is a binary search. Then P(H | X) reflects our
confidence that X is a binary search given that we
have seen the X code and it search the data. The P(H)

is the prior probability. In this example, this is the
probability that any given code is a binary search,
regardless of how the code (data sample) looks.
 The posterior probability, P(H | X) is based on
more information (such as background knowledge,
available documents, experience) than prior
probability, P(H) is independent of code X (data
Sample). Similarly, P(X | H) is the posterior
probability of code X condition on H. It is
probability that X is a search code that we know that
it is true X is a binary search code. P(X) is the prior
probability of X. Using this example; it is the

Map To Files

\sCToken\s C:\TestedData\Mozilla8\HTMLParser *.*

\sParser\s C:\TestedData\Mozilla8\HTMLParser *.h

 . . .

 . . .

Figure 3 Mapping Entities to HTML Parser Code

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Nadim Asif, Faisal Shahzad, Najia Saher,
Rafaquet Kazami, Waseem Nazar

ISSN: 1790-0832 1833 Issue 11, Volume 6, November 2009

probability that a code sample from a set of codes
(files) is a binary search code.
The P(X), P(H) and P(H | X) will be estimated from
a given code, available documents, experience and
knowledge about the application and domain. The
Bayes theorem provide a useful way to calculate the
posterior probability P(H | X) from P(X | H), P(X)
and P(H), Bayes theorem is
P(H|X) = P(X | H) P(H) … Eq (1)
 P(X)
Then Bayes Theorem is used in the Bayesian
classifier.

1. Code is represented by X = (x1, x2 , x3 ……. xn)

2. Suppose that there are m entities (E1, E2, E3
…………Em). Given an unknown code X (i.e. having
no entity name). Then classifier will predict that X
belong to the entity having posterior probability,
condition on X that is, the naïve Bayesian classifier
assign an unknown sample code X to the entity Ei if

and only if

 P(Ei | X) > P(Ej | X) for 1≤ j ≤ m, j ≠ i

 Thus we maximize P(Ei | X). The entity Ei for
which P(Ei | X) is maximize is called the maximum
posterior hypothesis . By Bayes theorem Eq(1).

P(Ei|X) = P(X|Ei)P(Ei) …….Eq (2)
 P(X)
3. As P(X) is constant for all entities, only P(X | Ei)
P(Ei) need be maximized. If the entities prior
probabilities are not known, then it is commonly
assumed that the entities are equally likely, that is
P(E1) = P(E2) = P(E3) …….. = P(Em), and we would
therefore maximize P(X|Ei), otherwise maximize
P(X|Ei) P(Ei). The entity prior probabilities may be
estimated by P(Ei) = Si / S , where Si is the number of
code sample of entity Ei and S is the total number of
code samples.

Figure 4 Result of Mapped CToken Entity

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Nadim Asif, Faisal Shahzad, Najia Saher,
Rafaquet Kazami, Waseem Nazar

ISSN: 1790-0832 1834 Issue 11, Volume 6, November 2009

4. Given data set with many attributes, it would be
extremely computational expensive to compute P(X |
Ei). In order to reduce computational in evaluating
P(X| Ei), the naive assumption of entity conditional
independence is made. This presumes that the values
of attributes are conditionally independent of one
another, given the entity of the sample, that is, there
are no dependent relationships among the attributes.
Thus,
 n

 P(X|Ei) = П P(xk| Ei) …………….. Eq (3)
 K=1

The probabilities P(x1| Ei), P(x2| Ei), P(x3| Ei),
……….. P(xn| Ei) can be estimated from the code
samples, where
a) If Ak is categorical, then P(xk| Ei) = Sik / S
where Sik is the number of code samples of Entity Ei
having the value xk for Ak and si is the number of
code samples belonging to Ei.
b) If Ak is continuous-valued, then the attribute
is typically assumed to have a Gaussian distribution
so that

-(xk - σEi)

2

P(X|Ei)=g(xk, µEi, σEi)= 1 e 2σ2
Ei

 √2π σEi
 …. Eq(4)
Where g (xk, µEi, σEi) is the Gaussian (normal)
density function for attribute Ak, while µEi and σEi

are the mean and standard deviation, respectively,
given the value attributes Ak for code samples of
entity Ei.

5. In order to identify an entity for an unknown code
sample X, P(X | Ei) P(Ei) is evaluated for each entity
Ei. Code sample X is then assigned to the entity Ei if
and only if
P(X | Ei) P(Ei) > P(X | Ej) P(Ej) for 1≤ j ≤ m, j ≠ i
In other words, it is assigned to the entity Ei for
which P(X | Ei) P(Ei) is maximum.

8. DRT for High Level Models

A Design Recovery Tool (DRT) is used to recover
the high level models and the tool has the set of
attributes: flexibility, extensibility and scalability
[7,8,9,10].
Flexibility: The subject system's implementation
plays an important role in the recovery of high level
models. Many issues exists, which are related to the
source code; the language dialect or variant, the
robustness of extraction (lexically or parsing)
mechanism used (e.g., whether or not it support

implementation extractions, syntactically incorrect
constructs, or incomplete code fragments), and
whether or not mixed-mode source code is
supported. For example, C & C++ programs may be
written in different dialects, the programs may use
the C, C++, Java and different types of scripts to
perform the required functions, and COBOL
programs may includes database preprocessor
directives.
 The tools should be flexible enough to support the
various activities to recover the high level models
tasks. The tasks require different types of system
artifacts (i.e. Use Cases, Classes, functions) to
abstract at higher levels of abstraction to perform
tasks. The artifacts construct and levels at which
need to abstract varies from task to task. Most of the
tools produce documents/information, which is not
relevant to the task. The tools need to support the
user specifying the required artifacts, mapping the
artifacts, extracting, abstracting and presenting the
artifacts in using the available domain information,
user experience and knowledge, and adapt the
tailored process for available tasks.
Artifacts specifications: The different types of
system artifacts are required for different tasks in
different domain. The users are required to customize
the required system artifacts for the task at different
levels to perform the tasks. It is not possible for the
tool developers to make it available every kind of
artifacts according to the user specific required task.
The solution exists in it that the tools should allow
the user to specify the artifacts construct for
extraction and abstraction of the system artifacts.
Mappings: The user task specific artifacts mapped to
the source code or documents for extraction and
abstraction purpose. The mapping limits the
extraction process scope by improving the extraction
performance; specifying the required artifacts
constructs.
Extract & Abstract: The recovery of high level
models activities requires extraction and abstraction
of the system artifacts according to the task at
different levels of abstractions. In practice, it is
difficult to find at what level the extract and abstract
of artifacts need to perform for the available task.
Presentation: The extracted and abstracted artifacts
need to be presented in a particular or required
format. In the case of large systems, the numbers of
artifacts are in big numbers and have different types
of relationships, and variety of constructs makes it
difficult to present the system artifacts. DRT extract,
abstract and present the artifacts in different formats
at different levels, which are very much relevant to
the task at hand.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Nadim Asif, Faisal Shahzad, Najia Saher,
Rafaquet Kazami, Waseem Nazar

ISSN: 1790-0832 1835 Issue 11, Volume 6, November 2009

Extensibility: The tool for the high level model
recovery requires that users can extend the systems
functionality by adding different tools and scripts in
extraction and abstraction components. The user
scripts and code extensions for analysis in the
recovery process improve the extraction, abstraction
and presentation of system artifacts at different levels
of abstractions.
Scalable: The DRT tool can be applied to large
systems and different types of source code
(languages) and dialects, and provide the extraction,
abstraction and presentation of the system artifacts
for the required task. For example, not all software
artifacts need to be stored and some artifacts may be

ignored. Coarse-grained artifacts can be extracted,
partial systems can be incrementally investigated,
and irrelevant parts can be ignored to obtain
manageable artifacts.
 In practice, the source code exists in different
forms; have different languages code, dialects or
variants and different scripts, incomplete, cannot be
compiled. The tools are required to provide the
support for the extraction and abstraction of source
codes at different levels in the recovery process. The
tools also support the user in specifying the required
artifacts for extraction and abstraction purpose at
different levels of abstraction, instead of extracting
all the system artifacts for a required task.

 Figure 5 Unravel function calls view using the DRT tool

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Nadim Asif, Faisal Shahzad, Najia Saher,
Rafaquet Kazami, Waseem Nazar

ISSN: 1790-0832 1836 Issue 11, Volume 6, November 2009

 For extraction and abstraction purpose, tool helps
to define the user inputs specification language
(pattern, action, and analysis definitions) and
mapping entities for extraction and abstraction
purpose. For example, initial specification defined by
the user was “<Types> class <ClassName>” to
extract the class names from the source code. The
words in angle brackets means the abstracted types,
i.e. Types represent the type of the class that can be
public, private or protected.
Pattern: The user specifies the information to extract
from the system artifacts as patterns. Each pattern
uses regular expressions to describe the artifact
construct that may be found within the system
artifacts. For example, the engineer used the above
defined class specification to design the regular

expression pattern "(class)\s*\w+\s*" to extract the
name of all the classes from the source code as
depicted in figure 6.
Action: A user may attach the action to the pattern to
be executed when a pattern is matched in the source
code. The action code performs operations such as
controlling the matching of the constructs in the
source code to particular patterns. Specifically, a user
may reject matches to a particular pattern by
invoking the regular expression within the action.

This control is used to reject matches when patterns
are too general.
Analysis: In certain cases, the desired artifact cannot
be extracted directly during the scanning of the
source code. The required artifact can be extracted at
the conclusion of extraction from multiple types of
information extracted from the system artifacts. A
user defines the desired extraction pattern in an
analysis section of the specification and further
extraction is performed on the intermediate results
produced from previous extraction. The tool also
processes the abstract information and passes this
information as input to the extractor and abstractor
components for further processing. It helps to define,
store, retrieve and compile the abstract regular
expressions and mappings for use in the extraction

and abstraction process.
 The Abstract Regular Expression Pattern (AREP)
represents the regular expressions of high-level
concepts or artifacts. The user designs the abstract
regular expressions pattern by using the regular
expressions and uses the reserve words to name the
abstract regular expressions. The abstract regular
expression patterns allow the user to define the
complex patterns required by the recovery tasks for
different languages and dialects using the pattern
specification.

 Figure 6. Pattern is applied to extract the Mozilla HTML parser classes

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Nadim Asif, Faisal Shahzad, Najia Saher,
Rafaquet Kazami, Waseem Nazar

ISSN: 1790-0832 1837 Issue 11, Volume 6, November 2009

 Some of the examples of abstract regular
expression patterns are presented which are designed
to extract the artifacts from source code for recovery
of high level models. The regular expressions are
used as patterns to design and abstract the complex
patterns to represent the different artifacts of interest.
More Abstract regular expression patterns can be
designed using these patterns. For example, in the
given below Types abstract regular expression
pattern, the word “Types” is a name of the pattern
and it is separated by special character ‘ –’ from the
regular expression, which represent the types used in
the source code.

Ansi -s|\w|\d|/|"|!|\(|\)|\\|@|#|\$|%|&|*|\^|:|;|'|\, |\.|\?|\+|-
|\=|~|`|\||\[|\]|<|>|_|{|}

Vartypes- char||int|void|float|static|double|long|short|

Types-public|private|protected

Arg-\s|\w|\d |_|,|+|-|/

Args-(Arg)*

Stm-\s+|\w+|\d|/|"|!|\(|\)|\\|@|#|\$|%|&|*|\^|:
|_|;|'|\,|\.|\?|\+|-|\=|~|`|\||\[|\]|<|>

Stms-(Stm)*

Structs-(struct\s*\w*\s*\{(Arg)*\s*\})

Enum-(enum\s*\w*\s*\{Stms\}\s*(Arg)*\s*;)

IncludeFiles-#\s*include(.*)[<|"""](.*)[>|"""]

Define-#\s*define\s*(Arg)*

CfunDef-(((\w+)\s+|(\w+))(\((\w+)*\)\s*(Arg)*\{))

CFunCalls-(((Types)|(\w+))\s*(\w+)\s*\(\s*(Arg)*
\s*\) \s*;))

Class-((class)\s*(\w)+\s*\{)

IndependentClass-(class)\s*(\w)+\s*\{

Deriveclass-((class)\s*(\w)+\s*:\s*(Arg)*\s*\{)

Bothclasses-(Class | Deriveclass)

 The tool first read the user defined mapping
specifications, and then map the mapping entities to
the specified source code to abstract the system. The
tool allows the user to use the regular expressions

and define the abstract regular expressions at higher
levels in the mapping to easily define the map
entities for a particular task and details.
 The tool also provides the integration mechanism
through different components; a user can also extend
the functionality by adding scripts and tools for
extraction and abstraction purpose in the recovery
process. The tool is applicable to large and different
types of systems. It also supports the different
recovery types (i.e. partial) of processes. For
example, it can be applied to extract only particular
artifacts from the subject system and irrelevant
details can be ignored, or can be applied
incrementally for investigation purpose for high level
models recovery.

9. Conclusion
The software maintenance activities use the high
level models to plan, design and execute
maintenance tasks. The paper presents an approach
to develop the high level model using the available
documents, source code, experience and knowledge
about the domain and application. The entities of the
high level model associate the physical (files and
directories) and conceptual associations to the source
code. The physical and conceptual associations are
represented by conceptual view, physical view and
relational view, which help to represent the system at
higher levels of abstraction. The Naive Bayesian
classifiers is used to predict the entity association
with the source code using information extracted
from the source code and documents, experience and
knowledge about the domain.

References

[1] Murphy, G., Notkin, D., and Sullivan, K.,

Software Reflexion Models: Bridging the Gap
between Design and Implementation. IEEE

Transaction on Software Engineering. Vol. 27.
No 4: April, 2002, pp. 364-380.

[2] Nadim Asif, M. Dixon, J. Finlay and G.
Coxhead, Recover the Design Artifacts.
Proceedings of International Conference of

Information and Knowledge Engineering

(IKE02), 24th –27th June, 2002 Las Vegas,
Nevada, USA, CSREA Press, pp. 656-662.

[3] Nadim Asif, Reverse Engineering
Methodology to Recover the Design Artifacts:
A Case Study. Proceedings of International

Conference of Software Engineering Research

and Practice (SERP03), 23rd-26th June, 2003,
Las Vegas, USA,CSREA Press, pp.932-938.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Nadim Asif, Faisal Shahzad, Najia Saher,
Rafaquet Kazami, Waseem Nazar

ISSN: 1790-0832 1838 Issue 11, Volume 6, November 2009

[4] Nadim Asif, Muthu Ramachandran, Recover
the Use Case Models. Proceedings of

International Conference of Software

Engineering Research and Practice (SERP05),
27th -30th June, 2005, Las Vegas, USA,CSREA
Press.

[5] Nadim Asif, Software Reverse Engineering,
SoftResearch Press, 2006. (ISBN : 969-9062-
00-2).

[6] Nadim Asif, Artifacts Recovery at Different
levels of Abstraction. Information Technology

Journal, 7(1), 2008, pp. 1-15.
[7] Nadim Asif, Faisal Shahzad, Najia Saher,

Rafaquet Kazami,Waseem Nazar. A Case
Study of Clustering the Source Code.

Computer and Simulation in Modern Science,
WSEAS Press USA. 2009. ISSN: 1790-2769.
ISBN: 978-960-474-117-5.

[8] Nadim Asif, Recovery of Artifacts.
International Journal of Software Engineering,
Vol. 2, No. 1, pp. 11-16, 2008.

[9] Ghulam Rasool, Nadim Asif, Software
Architecture Recovery. International Journal

of Computer, Information, and Systems

Science, and Engineering. Vol.1, No. 3, 2007.
[10] Ghulam Rasool and Nadim Asif, Design

Recovery Tool. International Journal of

Software Engineering, Vol. 1, No. 1, pp 67-72,
2007.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Nadim Asif, Faisal Shahzad, Najia Saher,
Rafaquet Kazami, Waseem Nazar

ISSN: 1790-0832 1839 Issue 11, Volume 6, November 2009

