
Applications of Genetic Algorithms

MARIUS-CONSTANTIN POPESCU
1
 LILIANA POPESCU

2
 NIKOS MASTORAKIS

3

1
Faculty of Electromechanical and Environmental Engineering, University of Craiova

Decebal Bv, No.107, 200440, Craiova
2
“Elena Cuza” College of Craiova

ROMANIA
3
Technical University of Sofia

BULGARIA

 mrpopescu@em.ucv.ro lpopi2001@yahoo.com mastor@wses.org

Abstract: In this paper were presented the main directions of genetic algorithms. There is a large class

of interesting problems that have not yet been developed fast algorithms. Many of these problems are

problems which occur frequently optimized in applications. Genetic algorithms are part of Heuristic

algorithms, applying them successfully if problems do not admit polynomial-time algorithms. Genetic

algorithms, as the name suggests, are inspired from nature, specifically of the way through genetic

recombination improves a species.

Key-Words: Genetic operators, Genetic programming, Objective function.

1 Introduction
Giving is a problem poorly optimized is always

possible to find an efficient algorithm whose solution

is almost optimal [2], [3], [9], [11]. For some stupid

problems we can use optimized algorithms

probabilistic. These algorithms do not guarantee

optimal value, but the elections random enough

weaknesses of errors can be made so that we can

overcome them. There are many practical problems

for such optimized algorithms for a high quality

became available. In general, any abstract process to

be accomplished can be thought of as a problem-

solving, which, in turn, may be perceived as a search

space with potential solutions. How are we looking

for the best solutions, we can look at this task as a

process optimized. For small spaces, classical

methods are sufficient executive, large spaces for

special techniques of artificial intelligence should be

taken into account.

 Genetic algorithms are among these techniques,

they are stochastic algorithms whose search methods

molds some natural phenomena [1]. The idea behind

genetic algorithms is to do what nature does. Some

fundamental principles of genetics are borrowed and

used artificially to build search algorithms that are

robust and require minimum information about the

problem. Genetic algorithms were made using the

process of adaptation. They operate, in particular,

with binary strings and use a recombination operator

and a mutation. Mutation by changing a (gene) from

a chromosome, and by crossing change genetic

material between two parents, if parents are

represented by strings of five bits, for example (0, 0,

0, 0, 0) and (1, 1, 1, 1, 1), crossing two vectors can

result in descendants (0, 0, 1, 1, 1) and (1, 1, 0, 0, 0)

(this is an example of such called cross-point with a

notch).

 The fitness of an individual is assigned in

proportion to the value function corresponding to the

individual criteria, individuals are selected for the

next generation on the basis of their fitness. We

stated previously that genetic algorithms work with

strings of bits representing the parameters and not

the parameters them selves. After created a new

series (a new solution) through the genetic operators

must evaluate it. In most cases, the fitness is just the

criterion function for that solution. If our objective is

to minimize the criterion, then we say that a solution

is better than another, if the fitness of the two is

greater [4], [5].

2 Structure of a Genetic Algorithm

In 1990 Koza proposed such a evolution system,

genetic programming, to search for the best

computer program to solve a particular problem. The

program structure development is shown in Fig.1a.

 Steps to be taken in such an algorithm can be

described as Fig.1b [7]. The idea of genetic

algorithms is to represent possible solutions of the

problem in the form of chromosomes, and work at

each step with a fixed number of chromosomes that

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Marius-Constantin Popescu, Liliana Popescu, Nikos Mastorakis

ISSN: 1790-0832 1782 Issue 11, Volume 6, November 2009

form a population. In the above algorithm, P is a

population of chromosomes representing the

problem solution found in step respectively, and P' is

an intermediate population, generated from P by

specific genetic methods (cross between

chromosome mutations and spontaneous). Thus,

attempts to improve the population of chromosomes

within the time available, the meaning of closeness

as much as the optimal solution.

a)

b)

Fig.1:Structure of a genetic algorithm after [8] and [15]

Generation 0 is chosen completely randomly, and the

remaining operations and use them to generate

random numbers. Consequently, the result of

execution of such algorithm will also depend on

chance, and, moreover, will be run at each other.

 To better explain how the algorithm works, we

choose a concrete problem, namely, "Determination

of a maximum function f(x) on interval [a, b]".

This problem has the advantage that allows us to

evaluate whether the algorithm easily leads us to the

solution or not, although there is a significant

example for using genetic algorithms [10]. Clearly,

for the best results, you should consider as many

values for the variable x in the interval [a, b]. I noted

with no number of such values. All values that we

choose will be quantified in the form of

chromosomes. Chromosome is a sequence of k

binary positions, each position being a gene.

Therefore we have no chromosome with k genes

each.

First step is to choose randomly the NR

chromosome, generating one sequence of random

gene k (values of 0 or 1). To convert a chromosome

into a real variable in [a, b], a division of the field in

the 2
k
 intervals and assigned to chromosome

a↔ 00...000 and b↔ 111...111 chromosome, the

rest being distributed proportionally.

 To obtain the solution to first consider the

chromosome as NR: c1,c2 …,cNR. To assess the

population of chromosomes, will calculate the

following values:

 - First, objective function)(ii cfv = , thereby

convert each chromosome into a real value, namely

the function whose maximum ill want point in the

chromosome but ci;

 - Calculate the amount the objective function

∑
=

=
NR

i
ivS

1

; (1)

 - For each chromosome we calculate the

probability of selection

{ }NRi
S

v
p i

i ...2,1; ∈= ; (2)

 - For each chromosome is calculated cumulative

probability of selection

∑
=

=
j

i
ij pq

1

; (3)

the observation series q1,q2…qNR will be increasing,

the last value being 1.

As ci+1 but contains a value for which to obtain a

higher value for the objective function, both with

difference between qi+1 and qi will be higher. Thus,

row cumulative probability selection is a division of

the interval [0.1].

To create an intermediate population of

chromosomes, select NR uniform random numbers in

the interval (0, 1]. If a number is located in the (qi,

qi+1], but then chromosome ci+1 is selected. It can be

seen that the probability that a chromosome is

selected to be much higher as the (qi, qi+1] is greater.

I showed in the previous paragraph as the length of

this interval is much higher as the objective function

for the chromosome is larger. Consequently, there is

a greater probability that a chromosome “best” to be

selected, but does not warrant its selection. In

addition, a chromosome can be selected several

times in the intermediate population [14].

P=InitPopulation();

While not exhausted during the

execution

{

 Rate(P);

 P'=SelectParents(P);

 Recombine(P');

 Mutations(P');

 P=P';

}

Show(P);

procedure evolutionsry algorithm

t←0

Creation P(t)

Asseement P(t)

 While not subjet to termination

 t←t+1

 selection P(t) from P(t+1)

 change P(t)

 assessment P(t)

 end while

end procedure

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Marius-Constantin Popescu, Liliana Popescu, Nikos Mastorakis

ISSN: 1790-0832 1783 Issue 11, Volume 6, November 2009

 The next step is mating between chromosomal

populations of intermediate. Here is a problem,

namely how to choose chromosome pairing. First, if

you choose none, there is the possibility to obtain a

solution better than the present, and if you choose all

too much risk destroying the entire population of

chromosomes, so that after pairing time resulting

population may be better or worst.

In the below read from a computer keyboard, and for

each chromosome generate a random number in the

interval (0, 1]. If the number is smaller than pc, that

will be subjected to chromosome pairing time. An

acceptable value for pc is 0.1 (10% of chromosome

pairing time will be subjected).

 Technical crosses is the following:

 - Cross first chromosome selected for mating with

the second, third fourth etc (if selected for mating to

an odd number of chromosomes, is the last drop);

 - The crossing is in exchange between the two

genes at chromosome, where t is chosen randomly in

(0, k).

 After crossing two chromosomes are obtained us:

 - The first new chromosome will contain the first

gene of the first t chromosome old and last k-t genes

of the second chromosome old;

 - The second new chromosome will contain

the first gene t of the second chromosome old

and the last k - t genes of the first chromosome.
Finally, the intermediate population of chromosome

is subjected to simple mutations. For this, we read

from the keyboard probability of occurrence of

mutations simple ps, which should have a small value

(close to 0). For each gene of each chromosome is

randomly choose a number between (0,1], and

particularly if the number is less than ps, gene

content change of 0 or 1 in reverse. Following these

operations, to obtain a new population of

chromosomes and returned to the stage of assessing

the population.

The algorithm runs in limited time available, which

is read as a parameter from the keyboard. Note huge

similarity between genetic algorithms and everyday

life.

 Although chromosomal values have higher

chances to reach a new population, there is the

possibility that some of them to lose. Important

chromosome is not so, but the population of

chromosomes. It must evolve.

 Following implementation of a program for

different functions, the following results are obtained

using parameters NR=5000, k=30, pc=10%, ps=1%,

t=1 seconds (time is not relevant, it strongly depends

on the speed system was available).

Tab. 1: The results by applying the algorithm.
Function Inter

- val

(xmax,ymax)

obtained

(xmax,ymax)

analytical
Err-

or

xx −3

(0,1) 0.57

73

0.38

49

0.5774 0.3849 <10-4

xsin
(0,1.6

)

1.57

018

1 1.5707 1 <10-4

x

xln

(1,3) 2.71
814

0.36
7879

2.7182
8

0.3678
79

<10-4

We illustrate the working of genetic algorithms using

a simple problem: designing a box of cans. We

consider a cubic box of canned food, with only two

parameters: the diameter d and height h (obviously,

can be considered and other parameters such as

thickness, material properties, shape, but just enough

are the two parameters to illustrate with genetic

algorithms). To believe that this box of canned food

should have a volume of at least 300 ml and the

project objective is to minimize the cost of materials

used in the manufacture of cans.

 We formulate our problem as follows:











π+

π
= dh

d
chdf

2
),(

2

, (4)

to minimize the function where c is preserved

material cost per cm
2
, and the expression in brackets

is the area preserved. Function f is called and the

criterion function (or objective function). Have met

and provided that the box is at least 300 ml and we

will make it so:

.300
4

),(
2

≥
π

=
d

hdg (5)

The parameters d and h can vary between certain

limits. The first step in using a genetic algorithm is

to establish a codification of the problem. Binary

encoding is the most common techniques of coding,

it is easy to handle and gives robustness problem.

Binary representation can encode almost any

situation, and operators do not include knowledge of

the field problem. It's why a genetic algorithm can be

applied to very different problems. If binary

encoding, each value is mean by a string of specified

length which contains the values 0 and 1. In some

situations it is necessary to use encoding "natural"

problem, instead of binary representation. An

example would be the natural coding actual coding,

which uses real numbers for representation. To use

genetic algorithms to find optimal values for

parameters d and h, which satisfies the condition in

the form and function g to minimize the function f,

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Marius-Constantin Popescu, Liliana Popescu, Nikos Mastorakis

ISSN: 1790-0832 1784 Issue 11, Volume 6, November 2009

we will first need to represent the binary strings in

the parameters (we use therefore a binary encoding

of the problem).

Genetic algorithms require not only values the whole

of a given interval, in general, we can choose any

real value or by changing the length binary string.

3 Genetic Operators

We further describe using genetic operators, usually

in a genetic algorithm.

 Selection. An important role in a genetic

algorithm is occupied by the selection operator. The

operator decides wich of the population individuals

will participate in forming the next population. The

purpose of selection is to provide more reproductive

opportunities to the most performant of the

individuals in a given population. Through selection

we aim to maximize individual performance.we will

briefly present the most important selection

mechanisms in the following

 a) Proportional selection. In proportional

selection case, the likelihood of selecting an

individual depends on the performance thereof.

Suppose you have a lot of chromosomes x1,x2,…,xn.

For each chromosome we calculate xi performance to

f(xi). Should be provided that f(xi)≥0. The

performance sum for all chromosomes of the

population will be the total performance and we will

note it with F.

 b) Selection based ordering. This selection is to

calculate (for each generation) the fitness function

values and to arrange the individuals in a descending

order of these values. It will assign each i individual

a selection probability pi that depends on its rank in

series. Probabilities now depend only on the

chromosome position. The most promising

individual has probability is 1.

 c) Selection through contest. Selection through

competition or selection lists are based on direct

comparison of two chromosomes and selecting the

best performing. The operations involved are:

• are chosen at random two chromosomes;

• calculating performance chromosome selected;

• best performing chromosome is selected (copied in

the population over which interim apply genetic

operators).

 Other mechanisms for selecting another type of

selection is elitist selection. In this case, every

generation we keep the most promising or the most

promising individuals. Another idea would be that

every generation, to be replaced only a small part of

the population.

 The reproduction operator. Operator reproductive

role is to maintain the promising solutions of the

population and to eliminate the less promising,

keeping constant the population size. This is done as

follows:

• identifying promising solutions of the population;

• to create multiple copies of promising solutions;

• be deleted less promising solutions of the

population so that multiple copies of promising

solutions can be placed in the population.

There are several ways to do this. The most common

methods are proportional selection, the tournament

selection and selection by order.it is easily seen that

the promising solutions have more than one copy in

the intermediate population.

 The crossing operator. The meeting is applied on

individuals in the population between. In our

example, will be applied to the binary representation

of the six elements that we have people in between.

The cross acts in the following way: they are two

randomly chosen individuals from intermediate

population (which is also called and cross the pool)

and some portions of the two individuals are

interchangeability.

 The operator mimics natural interchromosome

crossing. It is used by operators of cross type (2,2),

ie, two parents give birth to two descendants.

Crosses made an exchange of information between

the two parents. Descendants produced by crossing

will have characteristics of both parents. Given the

importance of crossing were proposed several

models of interbreeding. We enumerate here some of

those used when binary coding.

 Crossing point with a cleft. R be the length of

chromosomes. A notch point is an integer k∈{1,2,...,

r-1}. The number k indicates the position of the

chromosome sequence where chromosomal breaks

that are produced segments to recombine with other

segments from other chromosomes. We consider two

chromosomes:

 x=x1x2...xk xk+1...xr and y=y1y2...ykyk+1...yr.

Following recombinations change chromosomes

between the two sequences in the right notch point k

chromosomes will be:

 x'= x1x2 ... xk yk+1 ... yr and y'= y1y2 ... yk xk+1… xr.

For example, if you have a possible representation of

the two chromosomes:

descendants will be:

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Marius-Constantin Popescu, Liliana Popescu, Nikos Mastorakis

ISSN: 1790-0832 1785 Issue 11, Volume 6, November 2009

 Cross with more notch points. If more notch

points, the segments are obtained by combining the

rule again. We consider two crossing notch points.

This type of crossing is done according to schedule

below. Of chromosomes:

will give two descendants of the type:

In the case of three notch points, descendants will

form:

Returning to our example, we consider the crossing

with a single gash point. For example, the crossing

of two solutions represented by the box that has the

fitness 23, h =8 d =10 and the box with the fitness

26, h=14 and d=6, will give two descendants who

will have the fitness 22, h=10 and d=6, respectively

the fitness 38, h=12 and d=10 model below:

Fig. 2: Explanation of the application with a single

crossing point cut.

It should be noted that the crossing not randomly

generates descendants. Although it is unlikely that

the cross between two solutions of the population to

generate “sons” solutions most promising than the

parent solutions, however, it shortly becomes clear

that the chance to create more promising solutions is

higher than in random search. From crosses with a

single notch point of a pair of binary strings, it can

only create two different pair strings who will have

in its composition combining bits from both parents;

son solutions being created are, probably, strings at

least as promising. Therefore, not every meeting can

create solutions as promising, but will not be less

promising than their parents. If a less promising

solution was obtained, then it will not appear when

the next reproduction operator will be applyed and

thus it will have a short life. If a more promising

solution is created, then it is likely that she has more

copies when the following reproductive operator

implementation. To keep such a string selection

promising During the reproduction operator

application, not all strings of the population are used

to cross. The crossing operator is primarily

responsible for the search aspect of genetic

algorithms, while the mutation operator is used for

other purposes. The mutation is the second operator

in the genetic order of importance and its use. The

effect of this operator is the change of a single

position from chromosome. By mutation other

individuals are introduced in the population who

could not be obtained through other mechanisms.

 The mutation operator is acting on bytes whatever

of their position in chromosome. every bit of the

chromosome may suffer a mutation. In a

chromosome may exist, in conclusion, more

positions that undergo mutation. The Mutation is a

probabilistic operator (ie does not apply safely). We

consider an n population of individuals

(chromosomes), each having length r. Each bit has

the same probability pm to suffer the mutation. There

are several variants of the mutation operator. One of

them would be the mutation into the strong form. In

this case it proceeds as follows: it generates a

random number q in the [0, 1) interval. If q<pm, then

the respective position mutation runs changing

position 0 in 1 or 1 In 0. Otherwise, the position does

not change. Returning to our example, if we apply

the mutation operator to an obtained solution in the

process of cross-breeding,to the solution that has

fitness 22, we get a solution that will have fitness

16.

Fig. 3: Explanation of the application of the operator to

move.

The solution obtained is more promising than the

original solution. In consequence, the reproduction

operator selects the most promising rows, cross

operator combines two strings substring from the

promising form to the most promising substring and

mutation operator changing strings locally, also to

improve the solution.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Marius-Constantin Popescu, Liliana Popescu, Nikos Mastorakis

ISSN: 1790-0832 1786 Issue 11, Volume 6, November 2009

4 Evolutionary Strategies
Evolutionary strategies have been developed as a

method for solving optimization problems

parameters. First evolutionary strategy was based on

a population consisting of a single guy. It is also

used a single operator in the process of evolution:

mutation. This is in line with the biological concept

that small changes occur more frequently than big

changes. Ussualy this strategy that a parent gives

birth though mutation to a single descendant is

known as evolutionary strategy 1+1. The way that

this algorithm practically applys is simple: a solution

is generated randomly on the search domain and

mutations are made to it. The best of parent and

descendants is chosen. The mutation operator is

applied repeatedly until a solution is reached.

 Another type of strategy is the strategy (µ+λ): µ

parents produce λ descendants. New population

(temporary) of (µ+λ) individuals is reduced again -

through a selection process - to µ individuals. On the

other hand, in the strategy (µ, λ), µ individuals

produce λ descendants (λ>µ) and through the

selection process a new population of µ individuals

is choosen only from the crowd of λ descendants.

Thus, the life of each individual is limited to one

generation.

4.1 Evolutionary Programming
Original evolutionary programming techniques have

been developed by Lawrence Fogel [6]. He sought a

development of artificial intelligence in the sense of

developing the ability to predict changes in an

Environment.
Environment was described as a sequence of

symbols and evolving algorithm supposed to obtain a

new product, namely a new symbol. The symbol will

maximize the final function who will measure the

accuracy of predictions.

For example, we can consider a series of events

marked a1, a2, ..., an, an algorithm will determine the

next symbol (1 year), based on known symbols a1, a2

,..., year.

The idea behind evolutionary programming is to

develop an algorithm. As in evolutionary strategies,

in evolutionary programming technique descendants

are created first and then the individuals are selected

for the next generation. Each parent produces a

single descendant, so intermediate population size

doubles (as in evolutionary strategy (n, n), where n is

the size of the population). The descendant is created

by a random mutation of the parent (it is possible to

apply more than one mutation to an individual). A

number of individuals (the most promising) equal to

the size of the population are retained for the new

generation. In the original version this process is

repeated to obtain a new symbol which is available.

Once obtained a new symbol, it is added to the list of

symbols known and the whole process is repeated.

Recently, evolutionary programming techniques

have been used for solving numerical problems of

optimization and many other purposes.

4.2 Genetic Programming
Another interesting approach was discovered

relatively recently by John Koza [8]. Koza suggests

that the desired program will evolve himself during a

process of evolution. In other words, instead of

solving a problem and instead of building a

progressive program to solve the problem, we try to

find a source code to solve. Koza developed a new

methodology which provides a way to make this

search. By example,we want to obtain a program

Pascal or C++ to solve the problem of the

Hamiltonian road or exit from a maze. So, we are

not interested to get a solution to a set of some data,

but rather, we are interested to get a source to

generate a correct solution for any given entry. In

other words, we are interested to get as result a

similar program to which that we could have writen

if we knew to solve the problem.

 In terms of evolutionary the approach to such

problems is generating a lot (population) random

source codes, which are then selected based on

function and fitness evolved through specific genetic

operators. Most importantly we must assign a

function of quality (fitness function)to each

generated program. The fitness function should

reflect the performance of the program of which it is

attached. Usually the attaching of a fitness function

is made running the program and measuring the

solution quality in relationti with the solution which

is known to be optimal.

 A program will have a higher quality if its

generated solution will be similar to the correct

solution.It is not bad if an optimum solution Is not

known previously, because we want to achieve

solutions with a fitness as a high as it can be (or as

small as it can be).

 The evolution of the source program is done

through specific genetic operators. For example, a

recombination operator can mean the merging of

sequences from a source code with sequences from

another source code. A mutation operator could

mean the insertion of new instructions in the source

code, deleting of instructions, processing

instructions. Obviously, after aplying those genetic

operators a source code is generated that contains

syntax errors. Also, useless source code sequences

are generated. In what follows this will solve a

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Marius-Constantin Popescu, Liliana Popescu, Nikos Mastorakis

ISSN: 1790-0832 1787 Issue 11, Volume 6, November 2009

problem using genetic algorithms. It is considered M

a lot of n and a number S. To determine of lot set M

which has the sum of the number closer to S.

Determination of lot amount of time a problem is

NP-complete. This means that it is not known

whether or not there is an algorithm of polynomial

complexity to solve this problem. Until now, the

algorithms used have exponential complexity, and

some cases have pseudo-polinomial complexity. For

example, we can reasonably solve this problem if the

input data satisfy the following conditions: they are

no more than 100 natural numbers, the amount not

exceeding 500 numbers (more precisely, the number

of numbers and their sum must not exceed the

maximum allowable size for the allocation a matrix

(we assume that it is statically allocated). If these

conditions should be fulfilled, we could easily solve

this problem using dynamic programming, using an

algorithm of complexity O(n•S). However, if the

numbers would not be whole but real, or their sum

would be greater than 500, or differences between

them would be so great. Then the algorithm by

dynamic programming can not be used. I have listed

here only cases, but can be imagined and other

difficulties. For these reasons we will solve this

problem using a genetic algorithm. We need to find a

representation of the solution and also a function of

fitness. How we represent our solution is given even

stated the problem: it requires a lot of M whit n

elements. So, a solution of the problem is a lot. We

encode a lot by a string of length n which contains

only values 0 and 1. If an item will have value k is 1,

then lot will include the Mk (the k-th element of M

crowd), and if position k is 0, then the item does not

belong of lot [13]. The calculation of the fitness

(quality) of a solution (of lot) is simple. Calculate

sum of lot and fitness will be the difference (in

absolute value) of the amount obtained and the

number of S. Under these conditions the fitness will

be minimized, because we want to determine an

amount for which of lot elements is as close time

value of S. The proposed genetic algorithm for

solving this problem has been described above. We

will use the tournament selection to obtain

intermediate population. Genetic operators used are

specific binary coding (turning a single point of

scission, with mutation probability pm=0.1).

 Allocation of fitness. I have stated previously that

genetic algorithms work with strings of bits

representing the parameters and not the parameters

them selves [12]. After he created a new series (a

new solution) by genetic operators should evaluate

it. In most cases, the fitness is just the criterion

function for the solution. If our goal is to minimize

the criterion, then we say that a solution is better

than another, if the fitness of the two is greater.

 In another example of the problem, it is proposed

to minimize one of the five features proposed by Ken

DeJong in 1975, F1 (area):

 () ∑=
=

3

1

3

i
ixxf , []12.5;12.5−∈ix . (6)

The global minimum in f(0,0,0)=0. After all

calculations were performed for 100 generations, the

results will be displayed [15]:

Also, during the evaluation can be seen in real time

as parameters vary elected (Fig. 4). It is noted that as

chromosomal approaching optimal, tend to behave

like, because they are influenced by its predecessors.

They say that they evolve to the optimum. To avoid

congestion on the graphics will set a maximum value

of 3.

a)

b)

c)

GA running

GA terminated

Fitness function value:

 2.4109846667385811E-4

Optimization terminated:

average change in the fitness value

less then options.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Marius-Constantin Popescu, Liliana Popescu, Nikos Mastorakis

ISSN: 1790-0832 1788 Issue 11, Volume 6, November 2009

d)

Fig. 4: Variation of parameters considered example.

In another situation will be considered continuous

function:

() () xxxxf sincos1sin 2 ++−= , x []0;2π−∈ . (7)

 Fig. 5: Figure objective function.

Function is the convex portions, and algorithms

based on minimizing the search interval can not be

applied on this definition, they offer a local optimum

according to the boot. Choose the number of

variables to 1.

Since the method is random, a result was obtained in

the form [15]:

and is very accurate.

a)

b)

c)

d)

Fig. 6: Variation of parameters considered example.

You specified that the boot was the default, i.e. [0.1].

The algorithm was able to "jump" and yet to find the

global optimum with very high precision. If the

change of uncertainty, as defined at the top to obtain

a result as close to the global optimum. With such

precision appropriate, we are interested to minimize

the time needed to run the calculation algorithm.

The number of operations is strongly influenced by

the number of chromosomes. Also be altered and the

stop criterion. The solution was thus obtained in this

case in only 38 generations, more quickly.

Furthermore, it can proceed with a hybrid approach

in solving the minimization of: running the genetic

algorithm to obtain an approximate (around global

optimum) and then apply an algorithm Deterministic.

GA running

GA terminated

Fitness function value :

-2.3191745361054976

Optimization terminated: average

change in the fitness value less

then options.
GA running

GA terminated

Fitness function value:

-2.3294869995075116

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Marius-Constantin Popescu, Liliana Popescu, Nikos Mastorakis

ISSN: 1790-0832 1789 Issue 11, Volume 6, November 2009

a)

b)

Fig. 7: Variation of parameters considered example.

Function is considered:

f(x,y)=x
2
+y

2
+22cos(x)sin(y), x,y []ππ−∈ ; . (8)

What is more local minimum and only one global?

 f(0,-1.4396) = -19.7385

illustrated by the graph in Fig.8.

Fig. 8: Graph objective function.

In general, any abstract task to be performed, could

be seen as solving a problem, which in turn, can be

seen as a search in the potential solutions. As always,

seek the best solution, we can look at this process as

one of optimization. For small spaces, classical

methods are comprehensive enough, for large spaces

can be used special techniques of artificial

intelligence.

 The best known techniques of the evolutionary

computation class are the genetic algorithms,

evolutionary strategies, genetic programming and

evolutionary programming. There are other hybrid

systems incorporating various properties of the

above paradigms, moreover, the structure of any

evolutionary computation algorithm is largely the

same [4].

5 Conclusions
Practical applications of these algorithms are

numerous. They are used in more unexpected areas

such as designing airplane wings or the design shape

orbital stations. To solve a genetic problem, must

take account of some recommendation.

 To resolve a problem with genetic algorithms

must be converted first into an optimization problem,

ie to minimize or to maximize the value (the shortest

hamiltonian chain, the largest component internally

stable, etc.).

 Genetic algorithms are Heuristic algorithms, ie

the solution they found is not always best, but is in a

neighborhood of the optimal solution. So if you have

a choice between a polynomial algorithm that solves

the problem and secure a genetic algorithm would be

preferable to use the polynomial algorithm.

 Genetic algorithms, typically have polynomial

complexity. Therefore they are very often used to

solve difficult problems (NP-complete). The results

are very close to those obtained by certain

algorithms, but have run thousands of hours.

 If the issue is complex using a genetic algorithm

and not an evolutionary strategy. Mutation is usually

a weak search operator, so if it is used only, there is

great opportunity to achieve local solutions and not

global.

References
[1] Beasley D., Bull D.R., Martin R.R., An Overview

of Genetic Algorithms, Part 1, Foundations,

University Computing, Vol.15, No.4, pp.170-181,

1993.

[2] Boteanu N., Popescu M.C., Optimal Control by

Energetic Criterion of Driving Systems, Proceedings

of the 10
th
 WSEAS International Conference on

Mathematical and Computational Methods in

Science and Engineering (MACMESE'08), pp.45-51,

Bucharest, Romania, 7-9 november 2008.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Marius-Constantin Popescu, Liliana Popescu, Nikos Mastorakis

ISSN: 1790-0832 1790 Issue 11, Volume 6, November 2009

[3] Bulucea C.A., Popescu M.C., Bulucea C.A.,

Manolea Gh., Patrascu A., Interest and Difficulty in

Continuous Analysis of Water Quality, Proceedings

of the 4
th
 IASME/WSEAS International Conference

on Energy & Environment, pp.220-225, Cambridge,

22-23 february 2009.

[4] Drighiciu M., Petrisor A, Popescu M.C., A Petri

Nets approach for hybrid systems modelling,

International Journal of Circuits, Systems and Signal

Processing, Issue 2, Vol.3, pp.55-64, 2009.

[5] Dumitrescu D., Algoritmi genetici şi strategii

evolutive: AplicaŃii în inteligenŃa artificială şi în

domenii conexe, Editura Albastră, Cluj-Napoca,

2000.

[6] Garey M.R., Johnson D.S., Computers and

Intractability: A Guide to NP-completeness, W.H.

Freeman and Company, New York, 1978.

[7] Goldberg D.E., Genetic Algorithms in Search,

Optimization and Machine Learning, Addison -

Wesley, Reading, MA,1989.

[8] Koza J.R., Genetic Programming, MIT Press,

Cambridge, MA, 1992.

[9] Mastorakis N., Bulucea C.A., Manolea Gh.,

Popescu M.C., Perescu-Popescu L., Model for

Predictive Control of Temperature in Oil-filled

Transformers, Proceedings of the 11
th
 WSEAS

International Conference on Automatic Control,

Modelling and Simulation, pp.157-165, Istanbul,

May - June 2009.

[10] Oltean M., Proiectarea şi implementarea

algoritmilor, Computer Libris Agora, Cluj-Napoca,

2000.

[11] Popescu, M.C., Balas, V.E., Popescu, L.

Heating Monitored and Optimal Control of Electric

Drives, 3
rd

 International Workshop on Soft

Computing Applications, Proceedings IEEE, Library

of Congres 2009907136, pp.149-155, Szeged-

Hungary-Arad-Romania, July - August 2009.

[12] Popescu M.C., Olaru O, Mastorakis N.

Equilibrium Dynamic Systems Integration,

Proceedings of the 10
th
 WSEAS Int. Conf. on

Automation & Information, pp.424-430, March

2009.

[13] Popescu M.C., Onisifor O., Mastorakis N.,

Equilibrium Dynamic Systems Intelligence, WSEAS

Transactions on Information Science and

Applications, Issue 5, Vol.6, pp.725-735, May 2009.

[14] Popescu M.C., Balas V., Olaru O., Mastorakis

N., The Backpropagation Algorithm Functions for

the Multilayer Perceptron, Proceedings of the 11
th

WSEAS International Conference on Sustainability

in Science Engineering, pp.28-31, Timisoara, May

2009.

[15] Popescu M.C., Perescu-Popescu L., Solving

Applications by Use of Genetic Algorithms,

Proceedings of the 11
th
 International Conference on

Mathematical Methods and Computational

Techniques in Electrical Engineering, Published by

WSEAS Press, pp.208-214, Vouliagmeni Beach,

Greece, September 2009.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Marius-Constantin Popescu, Liliana Popescu, Nikos Mastorakis

ISSN: 1790-0832 1791 Issue 11, Volume 6, November 2009

