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Abstract: In this paper were presented the main directions of genetic algorithms. There is a large class 

of interesting problems that have not yet been developed fast algorithms. Many of these problems are 

problems which occur frequently optimized in applications. Genetic algorithms are part of Heuristic 

algorithms, applying them successfully if problems do not admit polynomial-time algorithms. Genetic 

algorithms, as the name suggests, are inspired from nature, specifically of the way through genetic 

recombination improves a species. 
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1 Introduction 
Giving is a problem poorly optimized is always 

possible to find an efficient algorithm whose solution 

is almost optimal [2], [3], [9], [11]. For some stupid 

problems we can use optimized algorithms 

probabilistic. These algorithms do not guarantee 

optimal value, but the elections random enough 

weaknesses of errors can be made so that we can 

overcome them. There are many practical problems 

for such optimized algorithms for a high quality 

became available. In general, any abstract process to 

be accomplished can be thought of as a problem-

solving, which, in turn, may be perceived as a search 

space with potential solutions. How are we looking 

for the best solutions, we can look at this task as a 

process optimized. For small spaces, classical 

methods are sufficient executive, large spaces for 

special techniques of artificial intelligence should be 

taken into account.  

     Genetic algorithms are among these techniques, 

they are stochastic algorithms whose search methods 

molds some natural phenomena [1]. The idea behind 

genetic algorithms is to do what nature does. Some 

fundamental principles of genetics are borrowed and 

used artificially to build search algorithms that are 

robust and require minimum information about the 

problem. Genetic algorithms were made using the 

process of adaptation. They operate, in particular, 

with binary strings and use a recombination operator 

and a mutation. Mutation by changing a (gene) from 

a chromosome, and by crossing change genetic 

material between two parents, if parents are 

represented by strings of five bits, for example (0, 0, 

0, 0, 0) and (1, 1, 1, 1, 1), crossing two vectors can 

result in descendants (0, 0, 1, 1, 1) and (1, 1, 0, 0, 0) 

(this is an example of such called cross-point with a 

notch).  

     The fitness of an individual is assigned in 

proportion to the value function corresponding to the 

individual criteria, individuals are selected for the 

next generation on the basis of their fitness. We 

stated previously that genetic algorithms work with 

strings of bits representing the parameters and not 

the parameters them selves. After created a new 

series (a new solution) through the genetic operators 

must evaluate it. In most cases, the fitness is just the 

criterion function for that solution. If our objective is 

to minimize the criterion, then we say that a solution 

is better than another, if the fitness of the two is 

greater [4], [5]. 

 

 

2 Structure of a Genetic Algorithm  

In 1990 Koza proposed such a evolution system, 

genetic programming, to search for the best 

computer program to solve a particular problem. The 

program structure development is shown in Fig.1a. 

     Steps to be taken in such an algorithm can be 

described as Fig.1b [7]. The idea of genetic 

algorithms is to represent possible solutions of the 

problem in the form of chromosomes, and work at 

each step with a fixed number of chromosomes that 
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form a population. In the above algorithm, P is a 

population of chromosomes representing the 

problem solution found in step respectively, and P' is 

an intermediate population, generated from P by 

specific genetic methods (cross between 

chromosome mutations and spontaneous). Thus, 

attempts to improve the population of chromosomes 

within the time available, the meaning of closeness 

as much as the optimal solution. 

 

a) 
 

b) 

Fig.1:Structure of a genetic algorithm after [8] and [15] 
 

Generation 0 is chosen completely randomly, and the 

remaining operations and use them to generate 

random numbers. Consequently, the result of 

execution of such algorithm will also depend on 

chance, and, moreover, will be run at each other.  

     To better explain how the algorithm works, we 

choose a concrete problem, namely, "Determination 

of a maximum function f(x) on interval [a, b]".  

This problem has the advantage that allows us to 

evaluate whether the algorithm easily leads us to the 

solution or not, although there is a significant 

example for using genetic algorithms [10]. Clearly, 

for the best results, you should consider as many 

values for the variable x in the interval [a, b]. I noted 

with no number of such values. All values that we 

choose will be quantified in the form of 

chromosomes. Chromosome is a sequence of k 

binary positions, each position being a gene. 

Therefore we have no chromosome with k genes 

each.  

First step is to choose randomly the NR 

chromosome, generating one sequence of random 

gene k (values of 0 or 1). To convert a chromosome 

into a real variable in [a, b], a division of the field in 

the 2
k
 intervals and assigned to chromosome 

a↔ 00...000 and b↔ 111...111 chromosome, the 

rest being distributed proportionally. 

      To obtain the solution to first consider the 

chromosome as NR: c1,c2 …,cNR. To assess the 

population of chromosomes, will calculate the 

following values:  

     - First, objective function )( ii cfv = , thereby 

convert each chromosome into a real value, namely 

the function whose maximum ill want point in the 

chromosome but ci;  

     - Calculate the amount the objective function 
 

∑
=

=
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i
ivS

1

;   (1) 

 

     - For each chromosome we calculate the 

probability of selection    
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S

v
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i ...2,1; ∈= ;    (2) 

 

     - For each chromosome is calculated cumulative 

probability of selection  
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=
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1
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the observation series q1,q2…qNR will be increasing, 

the last value being 1.  

As ci+1  but contains a value for which to obtain a 

higher value for the objective function, both with 

difference between qi+1 and  qi  will be higher. Thus, 

row cumulative probability selection is a division of 

the interval [0.1].  

To create an intermediate population of 

chromosomes, select NR uniform random numbers in 

the interval (0, 1]. If a number is located in the (qi, 

qi+1], but then chromosome ci+1 is selected. It can be 

seen that the probability that a chromosome is 

selected to be much higher as the (qi, qi+1] is greater. 

I showed in the previous paragraph as the length of 

this interval is much higher as the objective function 

for the chromosome is larger. Consequently, there is 

a greater probability that a chromosome “best” to be 

selected, but does not warrant its selection. In 

addition, a chromosome can be selected several 

times in the intermediate population [14].  

P=InitPopulation();  

While not exhausted during the 

execution  

{  

  Rate(P);  

    P'=SelectParents(P);  

    Recombine(P');  

    Mutations(P');  

    P=P'; 

} 

Show(P); 

 

procedure evolutionsry algorithm 

t←0  

Creation P(t) 

Asseement P(t) 

   While not subjet to termination 

        t←t+1 

       selection P(t) from P(t+1) 

        change P(t) 

       assessment P(t) 

   end while 

end procedure 
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    The next step is mating between chromosomal 

populations of intermediate. Here is a problem, 

namely how to choose chromosome pairing. First, if 

you choose none, there is the possibility to obtain a 

solution better than the present, and if you choose all 

too much risk destroying the entire population of 

chromosomes, so that after pairing time resulting 

population may be better or worst.   

In the below read from a computer keyboard, and for 

each chromosome generate a random number in the 

interval (0, 1]. If the number is smaller than pc, that 

will be subjected to chromosome pairing time. An 

acceptable value for pc is 0.1 (10% of chromosome 

pairing time will be subjected).  

     Technical crosses is the following:  

     - Cross first chromosome selected for mating with 

the second, third fourth etc (if selected for mating to 

an odd number of chromosomes, is the last drop);  

     - The crossing is in exchange between the two 

genes at chromosome, where t is chosen randomly in 

(0, k).  

     After crossing two chromosomes are obtained us:  

     - The first new chromosome will contain the first 

gene of the first t chromosome old and last k-t genes 

of the second chromosome old; 

     - The second new chromosome will contain 

the first gene t of the second chromosome old 

and the last k - t genes of the first chromosome. 
Finally, the intermediate population of chromosome 

is subjected to simple mutations. For this, we read 

from the keyboard probability of occurrence of 

mutations simple ps, which should have a small value 

(close to 0). For each gene of each chromosome is 

randomly choose a number between (0,1], and 

particularly if the number is less than ps, gene 

content change of 0 or 1 in reverse. Following these 

operations, to obtain a new population of 

chromosomes and returned to the stage of assessing 

the population.  

The algorithm runs in limited time available, which 

is read as a parameter from the keyboard. Note huge 

similarity between genetic algorithms and everyday 

life.  

     Although chromosomal values have higher 

chances to reach a new population, there is the 

possibility that some of them to lose. Important 

chromosome is not so, but the population of 

chromosomes. It must evolve.  

     Following implementation of a program for 

different functions, the following results are obtained 

using parameters NR=5000, k=30, pc=10%, ps=1%, 

t=1 seconds (time is not relevant, it strongly depends 

on the speed system was available). 

 
 

Tab. 1: The results by applying the algorithm. 
Function Inter

- val 

(xmax,ymax) 

obtained 

(xmax,ymax) 

analytical 
Err-

or 
 

xx −3
 

(0,1) 0.57

73 

0.38

49 

0.5774 0.3849 <10-4 

xsin  
(0,1.6

) 

1.57

018 

1 1.5707 1 <10-4 

x

xln
 

(1,3) 2.71
814 

0.36
7879 

2.7182
8 

0.3678
79 

<10-4 

 

We illustrate the working of genetic algorithms using 

a simple problem: designing a box of cans. We 

consider a cubic box of canned food, with only two 

parameters: the diameter d and height h (obviously, 

can be considered and other parameters such as 

thickness, material properties, shape, but just enough 

are the two parameters to illustrate with genetic 

algorithms). To believe that this box of canned food 

should have a volume of at least 300 ml and the 

project objective is to minimize the cost of materials 

used in the manufacture of cans.  

    We formulate our problem as follows: 
 











π+

π
= dh

d
chdf

2
),(

2

,  (4) 

 

to minimize the function where c is preserved 

material cost per cm
2
, and the expression in brackets 

is the area preserved. Function f is called and the 

criterion function (or objective function). Have met 

and provided that the box is at least 300 ml and we 

will make it so: 
 

.300
4

),(
2

≥
π

=
d

hdg                       (5) 

 

The parameters d and h can vary between certain 

limits. The first step in using a genetic algorithm is 

to establish a codification of the problem. Binary 

encoding is the most common techniques of coding, 

it is easy to handle and gives robustness problem. 

Binary representation can encode almost any 

situation, and operators do not include knowledge of 

the field problem. It's why a genetic algorithm can be 

applied to very different problems. If binary 

encoding, each value is mean by a string of specified 

length which contains the values 0 and 1. In some 

situations it is necessary to use encoding "natural" 

problem, instead of binary representation. An 

example would be the natural coding actual coding, 

which uses real numbers for representation. To use 

genetic algorithms to find optimal values for 

parameters d and h, which satisfies the condition in 

the form and function g to minimize the function f, 
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we will first need to represent the binary strings in 

the parameters (we use therefore a binary encoding 

of the problem).  

Genetic algorithms require not only values the whole 

of a given interval, in general, we can choose any 

real value or by changing the length binary string. 
    
 

3 Genetic Operators  

We further describe using genetic operators, usually 

in a genetic algorithm. 

     Selection. An important role in a genetic 

algorithm is occupied by the selection operator. The 

operator decides wich of the population individuals 

will participate in forming the next population. The 

purpose of selection is to provide more reproductive 

opportunities to the most performant of the 

individuals in a given population. Through selection 

we aim to maximize individual performance.we will 

briefly present the most important selection 

mechanisms in the following  

       a) Proportional selection. In proportional 

selection case, the likelihood of selecting an 

individual depends on the performance thereof. 

Suppose you have a lot of chromosomes x1,x2,…,xn. 

For each chromosome we calculate xi performance to 

f(xi). Should be provided that f(xi)≥0. The 

performance sum for all chromosomes of the 

population will be the total performance and we will 

note it with F.  

       b) Selection based ordering. This selection is to 

calculate (for each generation) the fitness function 

values and to arrange the individuals in a descending 

order of these values. It will assign each i individual  

a  selection probability pi that depends on its rank in 

series. Probabilities now depend only on the 

chromosome position. The most promising 

individual has probability is 1. 

     c) Selection through contest. Selection through 

competition or selection lists are based on direct 

comparison of two chromosomes and selecting the 

best performing. The operations involved are: 

• are chosen at random two chromosomes;  

• calculating performance chromosome selected;  

• best performing chromosome is selected (copied in 

the population over which interim apply genetic 

operators).  

       Other mechanisms for selecting another type of 

selection is elitist selection. In this case, every 

generation we keep the most promising or the most 

promising individuals. Another idea would be that 

every generation, to be replaced only a small part of 

the population. 

     The reproduction operator. Operator reproductive 

role is to maintain the promising solutions of the 

population and to eliminate the less promising, 

keeping constant the population size. This is done as 

follows: 

• identifying promising solutions of the population;  

• to create multiple copies of promising solutions;  

• be deleted less promising solutions of the 

population so that multiple copies of promising 

solutions can be placed in the population.  

There are several ways to do this. The most common 

methods are proportional selection, the tournament 

selection and selection by order.it is easily seen  that 

the promising solutions have more than one copy in 

the intermediate population. 

     The crossing operator. The meeting is applied on 

individuals in the population between. In our 

example, will be applied to the binary representation 

of the six elements that we have people in between. 

The cross acts in the following way: they are two 

randomly chosen individuals from intermediate 

population (which is also called and cross the pool) 

and some portions of the two individuals are 

interchangeability.  

     The operator mimics natural interchromosome 

crossing. It is used by operators of cross type (2,2), 

ie, two parents give birth to two descendants. 

Crosses made an exchange of information between 

the two parents. Descendants produced by crossing 

will have characteristics of both parents. Given the 

importance of crossing were proposed several 

models of interbreeding. We enumerate here some of 

those used when binary coding. 

     Crossing point with a cleft. R be the length of 

chromosomes. A notch point is an integer k∈{1,2,..., 

r-1}. The number k indicates the position of the 

chromosome sequence where chromosomal breaks 

that are produced segments to recombine with other 

segments from other chromosomes. We consider two 

chromosomes:  
 

            x=x1x2...xk xk+1...xr   and   y=y1y2...ykyk+1...yr. 
 

Following recombinations change chromosomes 

between the two sequences in the right notch point k 

chromosomes will be:  
 

  x'= x1x2 ... xk yk+1 ... yr  and  y'= y1y2 ... yk xk+1… xr.  

 

For example, if you have a possible representation of 

the two chromosomes: 
 

 
 

descendants will be: 
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     Cross with more notch points. If more notch 

points, the segments are obtained by combining the 

rule again. We consider two crossing notch points. 

This type of crossing is done according to schedule 

below. Of chromosomes: 
 

 
will give two descendants of the type: 

 

 
 

In the case of three notch points, descendants will 

form: 

 
 

Returning to our example, we consider the crossing 

with a single gash point. For example, the crossing 

of two solutions represented by the box that has the 

fitness 23, h =8 d =10 and the box with the  fitness 

26, h=14 and d=6, will give two descendants who 

will have the fitness 22, h=10 and d=6, respectively 

the fitness 38, h=12 and d=10 model below:     
 

 
Fig. 2: Explanation of the application with a single 

crossing point cut. 
 

It should be noted that the crossing not randomly 

generates descendants. Although it is unlikely that 

the cross between two solutions of the population to 

generate “sons” solutions most promising than the 

parent solutions, however, it shortly becomes clear 

that the chance to create more promising solutions is 

higher than in random search. From crosses with a 

single notch point of a pair of binary strings, it can 

only create two different pair strings who will have 

in its composition combining bits from both parents; 

son solutions being created are, probably, strings at 

least as promising. Therefore, not every meeting can 

create solutions as promising, but will not be less 

promising than their parents. If a less promising 

solution was obtained, then it will not appear when 

the next reproduction operator will be applyed and 

thus it will have a short life. If a more promising 

solution is created, then it is likely that she  has more 

copies when the following reproductive operator 

implementation. To keep such a string selection 

promising  During the reproduction operator 

application, not all strings of the population are used 

to cross. The crossing operator is primarily 

responsible for the search aspect of genetic 

algorithms, while the mutation operator is used for 

other purposes. The mutation is the second operator 

in the genetic order of importance and its use. The 

effect of this operator is the change of a single 

position from chromosome. By mutation other 

individuals are introduced in the population who 

could not be obtained through other mechanisms.  

     The mutation operator is acting on bytes whatever 

of their position in chromosome. every bit of the 

chromosome may suffer a mutation. In a 

chromosome may exist, in conclusion, more 

positions that undergo mutation. The Mutation is a 

probabilistic operator (ie does not apply safely). We 

consider an n population of individuals 

(chromosomes), each having length r. Each bit has 

the same probability pm to suffer the mutation. There 

are several variants of the mutation operator. One of 

them would be the mutation into the strong form. In 

this case it proceeds as follows: it generates a 

random number q in the [0, 1) interval. If q<pm, then  

the respective position mutation runs changing 

position 0 in 1 or 1 In 0. Otherwise, the position does 

not change. Returning to our example, if we apply 

the mutation operator to an obtained solution  in the 

process of cross-breeding,to the solution that has 

fitness 22, we get a solution that will have  fitness 

16. 
 

 

 
Fig. 3: Explanation of the application of the operator to 

move. 
 

The solution obtained is more promising than the 

original solution. In consequence, the reproduction 

operator selects the most promising rows, cross 

operator combines two strings substring from the 

promising form to the most promising substring and 

mutation operator changing strings locally, also to 

improve the solution. 
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4 Evolutionary Strategies    
Evolutionary strategies have been developed as a 

method for solving optimization problems  

parameters. First evolutionary strategy was based on 

a population consisting of a single guy. It is also 

used a single operator in the process of evolution: 

mutation. This is in line with the biological concept 

that small changes occur more frequently than big 

changes. Ussualy this strategy that a parent gives 

birth though mutation to a  single descendant is 

known as evolutionary strategy 1+1. The way that 

this algorithm practically applys is simple: a solution 

is generated randomly on the search domain  and 

mutations are made to it. The best of parent and 

descendants is chosen. The mutation operator is 

applied repeatedly until a solution is reached.  

      Another type of  strategy is the strategy (µ+λ): µ 

parents produce λ descendants. New population 

(temporary) of (µ+λ) individuals is reduced again - 

through a selection process - to µ individuals. On the 

other hand, in the strategy (µ, λ), µ individuals 

produce λ descendants (λ>µ) and through the 

selection process a new population of µ individuals 

is choosen only from the crowd of λ descendants. 

Thus, the life of each individual is limited to one 

generation. 

 

4.1 Evolutionary Programming 
Original evolutionary programming techniques have 

been developed by Lawrence Fogel [6]. He sought a 

development of artificial intelligence in the sense of 

developing the ability to predict changes in an 

Environment. 
Environment was described as a sequence of 

symbols and evolving algorithm supposed to obtain a 

new product, namely a new symbol. The symbol will 

maximize the final function who will  measure the 

accuracy of predictions. 

For example, we can consider a series of events 

marked a1, a2, ..., an, an algorithm will determine the 

next symbol (1 year), based on known symbols a1, a2 

,..., year. 

The idea behind evolutionary programming is to 

develop an algorithm. As in evolutionary strategies, 

in evolutionary programming technique descendants 

are created first and then the individuals are selected 

for the next generation. Each parent produces a 

single descendant, so intermediate population size 

doubles (as in evolutionary strategy (n, n), where n is 

the size of the population). The descendant is created 

by a random mutation of the parent (it is possible to 

apply more than one mutation to an individual). A 

number of individuals (the most promising) equal to 

the size of the population are retained for the new 

generation. In the original version this process is 

repeated to obtain a new symbol which is available. 

Once obtained a new symbol, it is added to the list of 

symbols known and the whole process is repeated. 

Recently, evolutionary programming techniques 

have been used for solving numerical problems of 

optimization and many other purposes. 

 

4.2 Genetic Programming  
Another interesting approach was discovered 

relatively recently by John Koza [8]. Koza suggests 

that the desired program will evolve himself during a 

process of evolution. In other words, instead of 

solving a problem and instead of building a 

progressive program to solve the problem, we try to 

find a source code to solve. Koza developed a new 

methodology which provides a way to make this 

search. By example,we want to obtain a program 

Pascal or C++ to solve the problem of the 

Hamiltonian road  or exit from a maze. So, we are 

not interested to get a solution to a set of some data, 

but rather, we are interested to get a source to 

generate a correct solution for any given entry. In 

other words, we are interested to get as result a 

similar program to  which that  we could have writen 

if we knew to solve the problem.  

      In terms of evolutionary the approach to such 

problems is generating a lot (population) random 

source codes, which are then selected based on 

function and fitness evolved through specific genetic 

operators. Most importantly we must assign a 

function of quality (fitness function)to each 

generated program. The fitness function should 

reflect the performance of the program of which it is 

attached. Usually the attaching of a fitness function 

is made running the program and measuring the 

solution quality in relationti with the solution which 

is known to be optimal.  

     A program will have a higher quality if its 

generated solution will be similar to the correct 

solution.It is not bad if  an optimum solution Is not 

known previously, because we want to achieve 

solutions with a fitness as a high as it can be (or as 

small as it can be).  

     The evolution of the source program is done 

through specific genetic operators. For example, a 

recombination operator can mean the merging of 

sequences from a source code with sequences from 

another source code. A mutation operator could 

mean the insertion of new instructions in the source 

code, deleting of instructions, processing 

instructions. Obviously, after aplying those genetic 

operators a source code is generated that contains 

syntax errors. Also, useless source code sequences 

are generated. In what follows this will solve a 
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problem using genetic algorithms. It is considered M 

a lot of n and a number S. To determine of lot set M 

which has the sum of the number closer to S. 

Determination of lot amount of time a problem is 

NP-complete. This means that it is not known 

whether or not there is an algorithm of polynomial 

complexity to solve this problem. Until now, the 

algorithms used have exponential complexity, and 

some cases have pseudo-polinomial complexity. For 

example, we can reasonably solve this problem if the 

input data satisfy the following conditions: they are 

no more than 100 natural numbers, the amount not 

exceeding 500 numbers (more precisely, the number 

of numbers and their sum must not exceed the 

maximum allowable size for the allocation a matrix 

(we assume that it is statically allocated). If these 

conditions should be fulfilled, we could easily solve 

this problem using dynamic programming, using an 

algorithm of complexity O(n•S). However, if the 

numbers would not be whole but real, or their sum 

would be greater than 500, or differences between 

them would be so great. Then the algorithm by 

dynamic programming can not be used. I have listed 

here only cases, but can be imagined and other 

difficulties. For these reasons we will solve this 

problem using a genetic algorithm. We need to find a 

representation of the solution and also a function of 

fitness. How we represent our solution is given even 

stated the problem: it requires a lot of  M whit n 

elements. So, a solution of the problem is a lot. We 

encode a lot by a string of length n which contains 

only values 0 and 1. If an item will have value k is 1, 

then lot will include the Mk (the k-th element of M 

crowd), and if position k is 0, then the item does not 

belong of lot [13]. The calculation of the fitness 

(quality) of a solution (of lot) is simple. Calculate 

sum of lot and fitness will be the difference (in 

absolute value) of the amount obtained and the 

number of S. Under these conditions the fitness will 

be minimized, because we want to determine an 

amount for which of lot elements is as close time 

value of S. The proposed genetic algorithm for 

solving this problem has been described above. We 

will use the tournament selection to obtain 

intermediate population. Genetic operators used are 

specific binary coding (turning a single point of 

scission, with mutation probability pm=0.1).  

     Allocation of fitness. I have stated previously that 

genetic algorithms work with strings of bits 

representing the parameters and not the parameters 

them selves [12]. After he created a new series (a 

new solution) by genetic operators should evaluate 

it. In most cases, the fitness is just the criterion 

function for the solution. If our goal is to minimize 

the criterion, then we say that a solution is better 

than another, if the fitness of the two is greater. 

     In another example of the problem, it is proposed 

to minimize one of the five features proposed by Ken 

DeJong in 1975, F1 (area):   
     

           ( ) ∑=
=

3

1

3

i
ixxf , [ ]12.5;12.5−∈ix .              (6) 

 

The global minimum in f(0,0,0)=0. After all 

calculations were performed for 100 generations, the 

results will be displayed [15]: 
 

 
 

Also, during the evaluation can be seen in real time 

as parameters vary elected (Fig. 4). It is noted that as 

chromosomal approaching optimal, tend to behave 

like, because they are influenced by its predecessors. 

They say that they evolve to the optimum. To avoid 

congestion on the graphics will set a maximum value 

of 3. 
      

 
a) 

 
b) 

 
c) 

GA running 

GA terminated 

Fitness function value: 

      2.4109846667385811E-4 

Optimization terminated: 

average change in the fitness value 

less then options. 
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d) 

Fig. 4: Variation of parameters considered example.  

  

In another situation will be considered continuous 

function: 
 

( ) ( ) xxxxf sincos1sin 2 ++−= , x [ ]0;2π−∈ .   (7) 

 
               Fig. 5: Figure objective function. 

 

Function is the convex portions, and algorithms 

based on minimizing the search interval can not be 

applied on this definition, they offer a local optimum 

according to the boot. Choose the number of 

variables to 1. 

Since the method is random, a result was obtained in 

the form [15]: 
 

 
 

 

and is very accurate. 
 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 6: Variation of parameters considered example. 
 

You specified that the boot was the default, i.e. [0.1]. 

The algorithm was able to "jump" and yet to find the 

global optimum with very high precision. If the 

change of uncertainty, as defined at the top to obtain 

a result as close to the global optimum. With such 

precision appropriate, we are interested to minimize 

the time needed to run the calculation algorithm.  

 

The number of operations is strongly influenced by 

the number of chromosomes.  Also be altered and the 

stop criterion. The solution was thus obtained in this 

case in only 38 generations, more quickly. 

Furthermore, it can proceed with a hybrid approach 

in solving the minimization of: running the genetic 

algorithm to obtain an approximate (around global 

optimum) and then apply an algorithm Deterministic. 

GA running 

GA terminated 

Fitness function value :  

-2.3191745361054976 

Optimization terminated: average 

change in the fitness value less 

then options.  
GA running 

GA terminated 

Fitness function value:  

-2.3294869995075116 
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a) 

 
b) 

Fig. 7: Variation of parameters considered example. 

 

Function is considered: 
 

f(x,y)=x
2
+y

2
+22cos(x)sin(y),     x,y [ ]ππ−∈ ; .    (8) 

 

What is more local minimum and only one global? 
 

                      f(0,-1.4396) = -19.7385  
 

illustrated by the graph in Fig.8. 

 

 
Fig. 8: Graph objective function. 

 

In general, any abstract task to be performed, could 

be seen as solving a problem, which in turn, can be 

seen as a search in the potential solutions. As always, 

seek the best solution, we can look at this process as 

one of optimization. For small spaces, classical 

methods are comprehensive enough, for large spaces 

can be used special techniques of artificial 

intelligence. 

     The best known techniques of the evolutionary 

computation class are the genetic algorithms, 

evolutionary strategies, genetic programming and 

evolutionary programming. There are other hybrid 

systems incorporating various properties of the 

above paradigms, moreover, the structure of any 

evolutionary computation algorithm is largely the 

same [4]. 
 

 

5 Conclusions 
Practical applications of these algorithms are 

numerous. They are used in more unexpected areas 

such as designing airplane wings or the design shape 

orbital stations. To solve a genetic problem, must 

take account of some recommendation.  

     To resolve a problem with genetic algorithms 

must be converted first into an optimization problem, 

ie to minimize or to maximize the value (the shortest 

hamiltonian chain, the largest component internally 

stable, etc.). 

      Genetic algorithms are Heuristic algorithms, ie 

the solution they found is not always best, but is in a 

neighborhood of the optimal solution. So if you have 

a choice between a polynomial algorithm that solves 

the problem and secure a genetic algorithm would be 

preferable to use the polynomial algorithm.  

      Genetic algorithms, typically have polynomial 

complexity. Therefore they are very often used to 

solve difficult problems (NP-complete). The results 

are very close to those obtained by certain 

algorithms, but have run thousands of hours.  

      If the issue is complex using a genetic algorithm 

and not an evolutionary strategy. Mutation is usually 

a weak search operator, so if it is used only, there is 

great opportunity to achieve local solutions and not 

global. 
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