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Abstract: - In this paper, Support Vector Machines (SVMs) are applied in predicting electrical energy 
consumption in the atmospheric distillation of oil refining at a particular oil refinery.  During cross-validation 
process of the SVM training Particle Swarm Optimization (PSO) algorithm was utilized in selection of free 
SVM kernel parameters. Incorporation of PSO into SVM training process has greatly enhanced the quality of 
prediction. Furthermore, various (different) kernel functions were used and optimized in the process of 
forming the SVM models. 
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1 Introduction 
High quality prediction of consumption of fuels, 
including both electrical energy and fossil fuels 
(heating oil, natural and refined gas and steam) in 
the first phase of oil refining (atmospheric 
distillation) is vital for control and optimization of 
the oil refining process. Energy and fuel 
consumption are quantities of utmost importance, 
since they affect overall cost of the entire oil 
refining process, and consequently, the definite 
prices of all refined oil products. Fuel consumption 
analysis and predictions are therefore vital for 
production and an interesting field of research. In 
terms of prediction methods, Support Vector 
Machines (SVM) are attractive as relatively new, yet 
effective technique in modeling of complex 
functional correlations. Therefore, utilization of 
SVMs in estimating and predicting the consumption 
of various types of fuels for industrial systems is a 
promising approach, as stipulated by the present 
paper as well as by other authors [1]. 
     The present paper advocates utilization of 
regression SVM model [2] with PSO algorithm 
incorporated in cross-validation phase of training. 
Support Vector Machines implement the principle of 
structural risk minimization in place of empirical 
risk minimization, which gives them excellent 
generalization ability in the situation of small 

training sample [3]. In addition, SVMs can change a 
nonlinear learning problem into a linear one, in 
order to reduce the algorithm complexity by using 
the kernel function idea (the “kernel trick”). At 
present, SVMs have been utilized in solving 
nonlinear regression estimation problems in 
financial time series forecasting [4], reliability 
prediction [5], power load forecasting [6] and many 
different problems[7, 8]. However, SVMs have 
rarely been applied to forecast fuel consumption in 
oil refining, though, it is the opinion of the authors, 
the technique has great potential in this area. A short 
account of SVM regression is given in section 2. 
     The main disadvantage of SVM is the necessity 
to set a number of parameters in advance. Standard 
procedure, known as cross-validation, is to make 
several consecutive trials with different parameter 
sets and then choose the set giving the best 
performance. In the present paper, the cross-
validation procedure is conducted by PSO 
algorithm. The idea to use global optimization 
procedure in cross-validation process is not entirely 
new. Successful applications of genetic algorithm 
(GA) have previously been reported in literature [6]. 
PSO is novel optimization procedure, known for its 
efficiency, well adopted for solving non-convex, 
multimodal optimization problems. PSO is 
introduced in section 3. Application of PSO to cross-
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validation process is addressed in section 4. Results 
obtained in this study clearly demonstrate 
effectiveness of PSO-based cross-validation. In 
particular, prediction offset presented in the previous 
studies [10] was completely suppressed in the 
current one. 
     SVM models developed in the present paper 
were trained on a one year data-base consisting of 1) 
daily refining of oil, 2) daily usage of industrial 
units (in percents), 3) type of oil being refined, 4) 
the daily consumption of fuels (both electric energy 
and fossil fuels) and 5) climate conditions (season). 
The data concerns particular facility for atmospheric 
oil distillation, that we named facility A. This 
facility was selected based on analysis of the 
production process of the refinery and the fact that 
this facility uses a considerable fraction of the 
overall fuel consumed in the oil refining process. 
Results and conclusions are presented in section 5 
and 6 respectively. 
 
 

2   Support Vector Machines 
The supervised learning algorithm attempts to learn 
the input-output relationship (dependency or 
function) f(x) by using a training data set {X = [xi , 
yi ], i = 1, . . . , n} consisting of n pairs (x1 , y1), (x2 , 
y2), . . . (xn, yn), where the inputs x are m-
dimensional vectors and the labels (or system 
responses) y are discrete (e.g.,Boolean) for 
classification problem and continuous values for 
regression tasks. Support Vector Machines (SVMs) 
and Artificial Neural Network (ANN) are two of the 
most popular techniques in this area [7, 8, 9, 11]. 
     The learning task in regression is to find the 
underlying function between some m-dimensional 
input vectors x  and scalar outputs y. The regression 
problems can also be found in many disciplines, 
including time-series analysis, control system, 
navigation and interest rates analysis in finance. 
There are two phases when applying supervised 
learning algorithms for problem-solving as shown in 
Figure 1. The first phase is the so-called learning 
phase where the learning algorithms design a 
mathematical model of a dependency, function or 
mapping (in an regression) or classifiers (in a 
classification i.e., pattern recognition) based on the 
training data given. 
     The second phase is the test and/or application 
phase. In this phase, the models developed by the 
learning algorithms are used to predict the outputs  y  
of the data which are unseen by the learning 
algorithms in the learning phase. Before an actual 
application, the test phase is always carried out for 

checking the accuracy of the models developed in 
the first phase. 

 

 
Fig 1. Two Phases of Supervised Learning 

Algorithms 
 
 
2.1 Support Vector Regression 
The general regression learning problem is set as 
follows: the learning machine is given n training 
data pairs from which it attempts to learn the input- 
output relationship ( )xfy = . A training data set 

( ){ }niyxX ii ,...,1,, == consists of n training pairs. 

The inputs x are m- dimensional vectors, while the 
target outputs y are real valued scalars. We introduce 
all the relevant and necessary concepts of SVM 
regression starting with a linear regression 
hyperplane ( )bwxfy ,,ˆ =  given as 
 

                      ( ) bxwbwxfy T +== ,,ˆ                (1)  
 
where  ŷ  is predicted output, x  is input pattern, w  

is weight vector and b is bias [12, 13]. Both weight 
and bias are set during the training process.  
     The most important difference of SVM with 
respect to classical regression techniques is the use 
of a novel loss (error) function [2] – Vapnik’s linear 
loss function with ε-insensitivity zone, defined as 

               

              
( )

( )( )ε
ε

−−=

=−=

wxfy

wxfyfyxE

,,0max

,),,(
                (2) 

 
     Thus, the loss is equal to zero if the difference 
between the predicted ( )wxf ,  and the measured 
value y is less than ε. In contrast, if the difference is 
larger than ε, this difference is used as the error. In 
other words, Vapnik’s error (loss) function (2) 
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defines a “ε tube” as shown in Fig 3. If the predicted 
value is within the tube, the loss is zero; for all other 
predicted points outside the tube, the loss equals the 
magnitude of the difference between the predicted 
value and the radius ε of the tube.  
     The two classic error functions are: a square 
error, i.e., L2 norm (y − f)2, as well as an absolute 
error, i.e., L1 norm, least modulus |y − f| introduced 
by Rudjer Boskovic in 18th century [12]. The latter 
error function is related to Huber’s error function. 
An application of Huber’s error function results in a 
robust regression. It is the most reliable technique if 
nothing specific is known about the model of a 
noise. We do not present Huber’s loss function here 
in analytic form. Instead, we show it by a dashed 
curve in Figure 2.a. In addition, Figure 2. shows 
typical shapes of all mentioned error (loss) functions 
above. 

 

 
Fig 2. Loss (Error) functions 

 
It can be shown [14] that generalization ability of 
the SVM depends on the magnitude of the weight 

vector: the smaller the magnitude w   the greater 

the generalization ability of the SVM becomes.  
Therefore, linear regression hyperplane is 
constructed by minimizing 
 

               ( )∑
=

−+=
n

i

wxfyCwR
1

2
,

2

1
ε

          (3) 

 
where C is a positive constant (regularization 
parameter) [14]. 
     From (2) and Fig 1 it follows that for all training 
patterns one can define positive quantities known as 
slack variables 
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     Notice that at least one of these quantities is 
equal to zero for each training pattern. For patterns 
inside the tube, both of them are zero. Thus, the 
minimization of the risk  R above equals the 
minimization of 
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under constraints 
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                          *
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                                 0,0 * ≥≥ ii ξξ                       (8) 

 

 
Fig 3. The parameters used in (1-D) Support Vector 
regression. Filed data are support vectors 
 
     The first term in (5) is weight decay, which is 
used to regularize weight size and penalize large 
weights. The second term is the empirical error(risk) 
which is scaled by ε- insensitive loss function(2). 
Parameter C is the regularization constant determing 
the compromise between the empirical error and the 
regularized term. Both C and ε need to be chosen 
empirically. 
     By introducing Lagrange multipliers and kernel 
function, the optimal regression function (1) is 
obtained in the following explicit form: 
 

∑
=

+−=
n

i

ii bKf
1

* )()()( x,xx iαα                     (9) 

 

where iα and *
iα  are the Lagrange multipliers 

satisfying iα
*
iα =0, iα ≥ 0, *

iα ≥ 0. Based on 

Karush- Kuhn- Tucker(KKT) condition only a 

certain number of coefficients )( *
ii αα − are non- 
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zero. The data pairs corresponding to these non- 
zero coefficients are named support vectors. 

)( x,x iK is the symmetric kernel function(a 
symmetric function is a kernel if it fulfills Mercer’s 
theorem[14]) used to avoid the computation of the 
nonlinear mapping.  
     SVM is a kernel-based algorithm. A kernel is a 
function that transforms the input data to a high-
dimensional space where the problem is solved. 
Kernel functions can be linear or nonlinear. 
     We generated and simulated the processes of 
SVMs with the use of LIBSVM software[15] - 
library of functions needed for creating models of 
support vector machines - which also includes the 
implementation of libraries of functions for 
resolution of regression problems. In order to do this 
it is required to prepare the data to be adequate for 
training of the SVM models and then modify it back 
in the form recognizable for the LIBSVM software. 
 
 

3   PSO Algorithm 
Particle Swarm Optimization (PSO) algorithm has 
been introduced for the first time by Kennedy and 
Eberhart [16] as a new population based 
optimization technique inspired by animal social 
behavior. The algorithm investigates solution space 
using a set of vectors, usually referred to as 
“particles”. Each particle is a potential solution, and 
the entire set is referred to as the “population”, or 
sometimes as the “swarm”. A particle is described 
by its position (x) and speed (v), and is able to 
memorize the position with the highest fitness value 
it has achieved so far (p), the so called personal best 
position. 
     Initially, the swarm is randomly dispersed within 
the search space, and random velocity is assigned to 
each particle. Particles interact by sharing 
information. Although different patterns of 
interactions have been investigated in literature, we 
focus our efforts to the so-called “star topology”, 
also known as the “gBest PSO model” [17]. In this 
setting, the swarm as a whole memorizes the best 
position achieved so far by any of its particles (g), 
the so called global best position. At each step a 
particle caries over a portion of its previous speed, 
and is, in addition, simultaneously accelerated 
towards its personal best position and the best 
position found by any other particle in the swarm. 
Therefore, each particle explores the search space 
according to its current state (represented by the 
current position and current velocity) and its own 
memory (represented by personal best position), but 
also according to the collective knowledge of the 

entire swarm (represented by the global best 
position). 
     Dynamics of each particle is, therefore, 
determined by the following set of equations 
 
[ ] [ ] [ ] [ ] [ ]( )

[ ] [ ] [ ]( )kxkgkrgcg

kxkpkrpcpkvwkv

−⋅⋅+

+−⋅⋅+−⋅= 1
  (10) 

 
                        [ ] [ ] [ ]kvkxkx +=+1                   (11) 
 
     Positive parameter w, the “inertia weight”, was 
introduced by Shi and Eberhart [18] in an attempt to 
control diversity of the swarm during the 
optimization process. It is generally true, in 
population-based optimization methods, that high 
diversity is necessary in early stages of the search in 
order to fully investigate the search space and 
reduce possibility of being trapped in local 
optimum. On the other hand, in later stages, 
algorithm should focus on fine-tuning good 
solutions already found, so reduced diversity is 
desirable. Shi and Eberhart found that considerable 
improvements in performance of the original PSO 
are achieved by linear decreasing inertia over the 
generations from 0.9 to 0.4. Positive coefficients cp 
and cg are usually called the “acceleration factors” 
[17]. Random values rp and rg are mutually 
independent and uniformly distributed in range [0, 
1]. Factor cp is sometimes referred to as the 
“cognitive” parameter, while cg is referred to as 
“social” parameter [17]. Due to original work of 
Kennedy and Eberhart, it is common choice to set 
both acceleration factors equal to 2. However, it is 
known that relatively high cognitive component 
enhances exploration, while relatively high social 
component forces particles to cluster.  
     Acknowledging this fact, Ratnaweera et al. 
suggested [19] that time-varying acceleration 
coefficients may further improve performance of the 
optimizer. They reported improvements for most of 
the benchmarks when decreasing cp form 2.5 to 0.5, 
and simultaneously increasing cg from 0.5 to 2.5. 
This variant of the PSO algorithm, known as the 
Time-Varying Acceleration Coefficients PSO 
(TVAC-PSO) is utilized in this paper. It allows each 
particle within the swarm to investigate the search 
space freely in the early stages of the search. This is 
due to the fact that each particle is affected more by 
its personal than by the global knowledge at the first 
few iterations. Later, the effect of the global 
knowledge prevails, and the swarm as a whole 
focuses on fine-tuning a number of good solution 
found previously. At the very end, the entire swarm 
converges to a very small region of the search space. 
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It has been shown that TVAC-PSO performs very 
well in a number of cases. 

4   PSO - Based Cross Validation 
The selection of SVM parameters, namely C, ε and 
parameters of kernel function, is important for the 
forecasting accuracy. Selecting appropriate values of 
these parameters is crucial in gaining excellent 
forecasting performance. In this paper, we chose 
Radial Basis Function for a kernel function and it 
was necessary to select its widths. 
      However, it is not known beforehand what 
values of the parameters are appropriate. Therefore, 
PSO is used to optimize parameters in the proposed 
SVM model. The schematic diagram of PSO-based 
cross-validation is presented in Fig 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

 
 

Fig 4. Schematic diagram of PSO- based cross 
validation 
 
 

5 Results 

 
5.1  PSO vs. Classical Cross- Validation 

(RBF Kernel Function) 
In following examples, output is the amount of 
electrical energy consumed (in kW), while the 
inputs are: the amount of refined oil (in tons), the 
type of oil, plant utilization (in %), consumption of 
other fuels (heating oil, natural and refined gas and 
steam), as well as critical events such are plant shut-
down and restart. 
     Kernel function for both examples is Radial 
Basis Function(RBF) 

            )exp(),(
2

jiji xxxxK −−= γ               (12) 

 

 
Fig 5. Test-set prediction results with classical 
cross-validation (LIBSVM implementation). The 

ordinate depicts kW of power consumed. 

 
 

 
Fig 6. Relative test-set prediction errors (in %) with 
classical cross-validation (LIBSVM implementation) 

as a function of plant utilization (in %). 

 
 

 
Fig 7. Test-set prediction results with PSO-based 
cross-validation. The ordinate depicts kW of power 

consumed. 
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Fig 8. Relative test-set prediction errors (in %) with 
PSO-based cross-validation as a function of plant 

utilization (in %). 

 
Fig 5. and Fig 7. depict true and predicted power 
consumption using classical and PSO-based cross-
validation, respectively.  It is clear that, when 
applying classical cross-validation there is a 
problem with offset, as well as with peaks occurring 
during critical events. These errors were also 
reported in previous studies [10]. PSO-based SVM 
regression proposed in the current paper is not prone 
to such errors. Relative errors presented in Fig 6 and 
Fig 8 only confirm the effectiveness of our method. 
However, conclusions presented in [10] concerning 
the importance of sufficient plant utilization for high 
quality prediction remain. 
 
5.2 Different Kernel Functions 
The kernel function as well as parameters selection 
is a very important problem in the research of 
support vector machine. 
     Many kernel mapping functions can be used – 
probably an infinite number. But a few kernel 
functions have been found to work well in for a 
wide variety of applications. The default and 
recommended kernel function is the Radial Basis 
Function (RBF) we used in 5.1. 
 
5.2.1  Linear Kernel Function 

In following examples, output is the amount of 
electrical energy consumed (in kW), while the 
inputs are: the amount of refined oil (in tons), the 
type of oil, plant utilization (in %), consumption of 
other fuels (heating oil, natural and refined gas and 
steam), as well as critical events such are plant shut-
down and restart. 
Kernel function is linear 
 

                           j

T

iji xxxxK =),(                            (13) 
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Fig 9. Test-set prediction results with PSO-based 
cross-validation and Linear kernel function. The 

ordinate depicts kW of power consumed. 
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Fig 10. Relative test-set prediction errors (in %) 
with PSO-based cross-validation(Linear kernel 

function) as a function of plant utilization (in %). 

 
5.2.2 Polynomial Kernel Function 

In following example, output is the amount of 
electrical energy consumed (in kW), while the 
inputs are: the amount of refined oil (in tons), the 
type of oil, plant utilization (in %), consumption of 
other fuels (heating oil, natural and refined gas and 
steam), as well as critical events such are plant shut-
down and restart. 
     Kernel function is polynomial 
 

                           d

j

T

iji rxxxxK )()( += γ                (14) 
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Fig 11. Test-set prediction results with PSO-based 
cross-validation and Polynomial kernel function. 

The ordinate depicts kW of power consumed. 
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Fig 12. Relative test-set prediction errors (in %) 
with PSO-based cross-validation(Polynomial kernel 

function) as a function of plant utilization (in %). 
 
 

5.2.3 Sigmoid Kernel Function 

In this example, output is the amount of electrical 
energy consumed (in kW), while the inputs are: the 
amount of refined oil (in tons), the type of oil, plant 
utilization (in %), consumption of other fuels 
(heating oil, natural and refined gas and steam), as 
well as critical events such are plant shut-down and 
restart. 
     Kernel function is sigmoid 
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Fig 13. Test-set prediction results with PSO-based 
cross-validation and Sigmoid kernel function. The 

ordinate depicts kW of power consumed 
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Fig 14. Relative test-set prediction errors (in %) 
with PSO-based cross-validation (Sigmoid kernel 

function) as a function of plant utilization (in %). 

5.3 Standard Refinery Fuel 
Commonly, the consumption of fuels in oil refining 
processes is expressed in tons of Standard Refinery 
Fuel [20,21]. 
     Standard Refinery Fuel (SRF) is a reference fuel 
whose lower heating value is 9673 kcal/kg. 
     Formulas for conversion of consumption of 
different fuels in tones of SRF are shown in Table 1. 
 
Table 1. Different fuels in tones of Standard 

Refinery Fuel 

Fuel Energy value Tones of SRF 

Heating oil 40500 MJ/kg 1 

Natural gas 39000 MJ/kg 0.9629 

Refined gas 48000 MJ/kg 1.1851 

Steam 2382   MJ/kg 0.0588 

 
     In following examples, output is the amount of 
electrical energy consumed (in kW), while the 
inputs are: the amount of refined oil (in tons), the 
type of oil, plant utilization (in %), sum of 
consumptions of all other fuels (heating oil, natural 
and refined gas and steam) expressed in tons of 
SRF, as well as critical events such are plant shut-
down and restart. 
 
 
5.3.1 Kernel function is Radial Basis Function 

 

 
Fig 15. Test-set prediction results with PSO-based 
cross-validation and  fuel consumptions expressed 

in tons of SRF(RBF Kernel). The ordinate depicts 

kW of power consumed. 

 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Milena R. Petkovic, Milan R. Rapaic, Boris B. Jakovljevic

ISSN: 1790-0832 1767 Issue 11, Volume 6, November 2009



 
Fig 16. Relative test-set prediction errors (in %) 
with PSO-based cross-validation (RBF kernel) and 

fuel consumptions expressed in tons of SRF as a 

function of plant utilization (in %).  

 
     Fig. 15 and Fig. 16  show that the modeling of 
input parameters of fuel consumption over SRF 
additionally enhances the quality of prediction of 
energy consumption in oil refining processes. 
 
5.3.2 Different Kernel Functions 

For different kernel function we give relative test-set 
prediction errors (in %) with PSO-based cross-
validation and fuel consumptions expressed in tons 
of SRF as a function of plant utilization. 
 
1) SVM with Linear Kernel Function 
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Fig 17. Relative test-set prediction errors (in %) 
with PSO-based cross-validation(Linear kernel) and 

fuel consumptions expressed in tons of SRF as a 

function of plant utilization (in %). 

 
2) SVM with Polynomial Kernel Function 
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Fig 18. Relative test-set prediction errors (in %) 
with PSO-based cross-validation (Polynomial 

kernel) and fuel consumptions expressed in tons of 

SRF as a function of plant utilization (in %). 

 
3) SVM with Sigmoid Kernel Function 
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Fig 19. Relative test-set prediction errors (in %) 
with PSO-based cross-validation (Sigmoid kernel) 

and fuel consumptions expressed in tons of SRF as a 

function of plant utilization (in %). 
 
 

5.4 Accuracy of SVM models 
Validation of the models was required to test the 
accuracy of the methods as well as to enable 
comparison between them. In this study, each data 
set was divided into training set for model 
development and test set for external prediction. 
     The construction of the test set was accomplished 
by insisting that members of the test set be 
representative of all members of the training set in 
terms of the ranges of experimental values. Initially, 
all the predictive model underwent a leave-one-out 
(LOO) procedure.  
Mean Absolute Percentage Error (MAPE) is a 
method for measuring the accuracy of a forecast by 
summing the absolute percentage error. It’s 
commonly used in quantitative forecasting methods 
because it produces a measure of relative overall fit. 
 

        MAPE= ∑
=

−n

i i

ii

y

yy

n 1

^

1
,  i=1,…,n                (16) 

 

where iy are actual values, 
^

iy are predicted values 

and n is number of data points. 
     In the Table 2 we show Mean Absolute 
Percentage Error (MAPE) for all SVM models that 
we simulated. 
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Table 2. Mean Absolute Percentage Error for 

different SVM models 

   Kernel 
     Parameters 
     Selection 
     Algorithm 

MAPE 

   Linear Cross-validation 14,5247 

Polynomial Cross-validation 28,6505 

     RBF Cross-validation 25,7000 

   Sigmoid Cross-validation 30,7587 

   Linear             PSO 9,4693 

Polynomial             PSO 10,7361 

    RBF            PSO 2,70611 

   Sigmoid            PSO 8,8362 

   Linear 
            PSO 
 +SRF inputs modeling 

16,1513 

Polynomial 
            PSO 
+SRF inputs modeling 

16.4626 

    RBF 
           PSO 
+SRF inputs modeling 

1,4646 

   Sigmoid 
           PSO 
+SRF inputs modeling 

14,2482 

 
 

6   Conclusion 
This paper is dedicated to the problem of predicting 
the energy consumption in oil refining process using 
SVM regression with cross-validation based on PSO 
algorithm. We used the SVM method in which the 
parameters were determined by the PSO algorithm, 
a new method for solving this type of problems. The 
results of this paper clearly demonstrate the 
effectiveness of the proposed procedure in 
comparison to the classical cross-validation. 
     Several number of different kernel functions 
were used. It has been shown that PSO based 
parameter selection outperforms classical cross-
validation in all of the considered cases. Especially 
good results were obtained with radial basis function 
kernel. 
     Prediction based standard refinery fuel was also 
demonstrated with different kernel function. In this 
case, also, the parameters of kernel functions were 
selected using PSO based procedure. The obtained 
results demonstrate, once again, the effectiveness of 
PSO based cross-validation strategy. 
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