
Improved Mining of Software Complexity Data on Evolutionary

Filtered Training Sets

VILI PODGORELEC

Institute of Informatics, FERI

University of Maribor

Smetanova ulica 17, SI-2000 Maribor

SLOVENIA

vili.podgorelec@uni-mb.si http://lisa.uni-mb.si/vili/

Abstract: - With the evolution of information technology and software systems, software reliability has become

one of the most important topics of software engineering. As the dependency of society on software systems

increase, so increases also the importance of efficient software fault prediction. In this paper we present a new

approach to improving the classification of faulty software modules. The proposed approach is based on

filtering training sets with the introduction of data outliers identification and removal method. The method uses

an ensemble of evolutionary induced decision trees to identify the outliers. We argue that a classifier trained by

a filtered dataset captures a more general knowledge model and should therefore perform better also on unseen

cases. The proposed method is applied on a real-world software reliability analysis dataset and the obtained

results are discussed.

Key-Words: - data mining, classification, evolutionary decision trees, filtering training sets, software fault

prediction, search-based software engineering

1 Introduction
The early and accurate identification of potentially

dangerous (faulty) software modules is of vital

importance for better software reliability. Reliability

is one of the most important aspects of software

systems of any kind (information systems,

embedded systems, etc.). The size and complexity

of software is growing dramatically during last

decades. The demand for highly complex software

systems is increasing more rapidly than the ability to

design, implement and maintain them.

When the requirements for and dependencies of

computers increase, the possibility of crises from

failures also increases. The impact of these failures

ranges from inconvenience to economic damages to

loss of lives – therefore it is clear that software

reliability is becoming a major concern not only for

software engineers and computer scientists, but also

for the society as a whole. Therefore, the

employment of an efficient fault predictive

technique to foresee dangerous software modules is

essential.

With the creation of large empirical databases of

software projects, as a result of stimulated research

on estimation models, metrics and methods for

measuring and improving processes and products,

intelligent mining of these datasets can largely add

to the improvement of software reliability [1]. In

order to help the software engineers in predicting

the faulty software modules, computerized data

mining and decision support tools can be used

which are able to help software engineers to process

a huge amount of data available from previous

software projects and suggest the probable

prediction based on the values of several important

attributes. Black-box classification methods (neural

networks for example) are not very appropriate for

this kind of task, because the software experts want

to evaluate and validate the decision making process

induced by those tools, before there is enough trust

to use the tools in practice.

On the other hand, the evaluation of the induced

classification rules produced by the computerized

tools by a software expert can be an important

source of new knowledge on the associations of the

available attributes and new ―laws‖ of software

reliability engineering. In order to achieve this goal,

the classification process should be easily

understandable, interpretable and straightforward.

One of the most popular and proven-useful

approach are decision trees. However, it has been

shown that decision trees are a weak classifier,

prone to produce very different solutions based on

an even small change in input (training) data.

Therefore, inaccuracies and noise in training data

can easily lead to an inaccurate result.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Vili Podgorelec

ISSN: 1790-0832 1751 Issue 11, Volume 6, November 2009

The idea that we present in this paper is to

construct an outlier prediction method that filters

out so-called data outliers, i.e. data items that fall

outside the boundaries that enclose most other data

items in the data set [1, 2]. When a filtered dataset is

used to train a classifier (a decision tree) it should

produce a better and more reliable classification

result. Furthermore, as a consequence of increased

homogeneity of the data, the results should be more

general and thus simpler, less complex and easier to

apply in general. Similar method has already been

applied to data mining in medicine with some

success [3].

1.1 The aim and scope of the paper
The main objective of this paper is to investigate

whether it is possible to improve the classification

performance of several machine learning algorithms

when the outliers are filtered out of the training set.

For the outlier prediction method a set of

evolutionary induced decision trees is used. The

proposed approach is applied to a software

engineering problem of predicting potentially

dangerous (containing errors and faults) software

modules. The data mining results (both quantitative

classification results and qualitative assessment of

induced models) of different machine learning

algorithms are presented and discussed.

2 Filtering the dataset by outlier

prediction method
The basic idea of outlier prediction is to define a

criterion or criteria, upon which for each data case

from a dataset can be determined whether it belongs

to the majority of the cases or not. If the specific

data case regarding the defined criteria does not

belong to the majority, then it is called an outlier

(regarding specific criteria). How the criteria are

defined determines the outlier prediction method. In

general, defining outlier criteria is not trivial,

whereas the identification of outliers based on these

criteria is.

In our previous work we presented how to use

evolutionary algorithm for the induction of decision

trees [4, 5, 6]. One of the greatest advantage of

evolutionary construction of decision trees, beside

the proven efficiency in classifying, is the ability to

produce several comparably accurate classifiers for

the same dataset. Having this in mind, it is possible

to get a decision for the same data case based on

different classifiers (using different attributes and/or

different relations).

Our proposition for the prediction of outliers is

the following: if a single (known) data case is

classified differently by different accurate

classifiers, it potentially contains contradictory

information (Figure 1). Although this contradiction

is not necessarily an error in data, a usual decision

tree classifier is not able to correctly construct a

general model based on such data. Therefore, our

proposition is that the general knowledge model

built by a decision tree (or some other induction

method in that matter) would be more efficient

when a classifier would be trained without such

misleading data.

class 1

class 2

1 2

3

4

5

8

6

7

n

data set

classifiers

Fig 1. When a single data record is classified

differently by different classifiers, it potentially

contains contradictory information.

In our method, we first define an approach to the

identification of outliers. For this purpose the

algorithm for the construction of decision trees

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Vili Podgorelec

ISSN: 1790-0832 1752 Issue 11, Volume 6, November 2009

genTrees is used (described in the next section).

With genTrees a set of classifiers (decision trees)

are induced. For each training object (data case from

the training set) classification cci(x) is calculated for

all decision classes (Eq. 1) – the resulting value

represents the number of classifiers that classified

object x with the decision class i. Then classification

confusion score CCS(x) is calculated for each

training object x (Eq. 2) – the result represents the

confusion score of a set of classifiers when

classifying object x; if all DTs give the same

classification, then the result is 0; higher numbers

represent less homogeneous objects for

classification – possible outliers. The higher is the

number CCS(x), more probably lies the object x

outside the majority area. Based on the CCS (Eq. 2)

it is determined which objects should be filtered out

from the dataset for the classification process. For

this purpose a tolerance threshold tt is defined for a

dataset; if CCS(x)>tt then object x is filtered out.

)_...1(,;

;0

),(;1
)(

_

1

classesnumii

otherwise

ixDTclass
xcc

DTsnum

j

j

i
 (1)

classesnum

i

i

xcc

xcc
xCCS

_

1

2

max

1
)(

)(
)(

(2)

3 Backend technologies: evolutionary

algorithms and decision trees
The central point of our approach, as has been said

above, is the use of evolutionary induced decision

trees which are being used to construct a set of

classifiers for identifying outliers in a training set.

Both backend technologies enabling our approach

are briefly presented first, following by the

description of our algorithm for inducing decision

trees.

3.1 Evolutionary algorithms
Genetic algorithms are adaptive heuristic search

methods which may be used to solve all kinds of

complex search and optimisation problems [7, 8].

They are based on the evolutionary ideas of natural

selection and genetic processes of biological

organisms. Like natural populations evolve

according to the principles of natural selection and

―survival of the fittest‖, first laid down by Charles

Darwin, so by simulating this process, genetic

algorithms are able to evolve solutions to real-world

problems, if they have been suitably encoded [9].

They are often capable of finding optimal solutions

even in the most complex of search spaces or at

least they offer significant benefits over other search

and optimisation techniques. The basic mechanism

of evolutionary algorithms is presented in Figure 2.

Fig 2. The basic mechanism of evolutionary

algorithms: selection, crossover and mutation.

A typical genetic algorithm operates on a set of

solutions (population) within the search space. The

search space represents all the possible solutions

which can be obtained for the given problem, and is

usually very complex or even infinite. Every point

of the search space is one of the possible solutions

and therefore the aim of the genetic algorithm is to

find an optimal point or at least come as close to it

as possible.

The genetic algorithm consists of three genetic

operators: selection, crossover (recombination), and

mutation. Selection is the survival of the fittest

individuals within the genetic algorithm with the

aim of giving the preference to the best ones. For

this purpose all solutions have to be evaluated,

which is done with the use of the evaluation

function. Selection determines individuals to be

used for the second genetic operator - crossover or

recombination, where from two good individuals a

new, even better one is constructed. The crossover

process is repeated until the whole new population

is completed with the offspring produced by the

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Vili Podgorelec

ISSN: 1790-0832 1753 Issue 11, Volume 6, November 2009

crossover. All constructed individuals have to

preserve the feasibility regarding the given problem;

in this manner it is important to coordinate internal

representation of individuals with genetic operators.

The last genetic operator is mutation, which is an

occasional (low probability) alteration of an

individual that helps to find an optimal solution to

the given problem faster and more reliably.

3.2 Decision trees
Inductive inference is the process of moving from

concrete examples to general models, where the

goal is to learn how to classify objects by analysing

a set of instances (already solved cases) whose

classes are known. Instances are typically

represented as attribute-value vectors. Training

input consists of a set of such vectors, each

belonging to a known class, and the output consists

of a mapping from attribute values to classes. This

mapping should accurately classify both the given

instances and other unseen instances.

A decision tree (DT) [5, 9] is a formalism for

expressing such mappings and consists of tests or

attribute nodes linked to two or more sub-trees and

leafs or decision nodes labeled with a class which

means the decision. A test node computes some

outcome based on the attribute values of an

instance, where each possible outcome is associated

with one of the sub-trees. An instance is classified

by starting at the root node of the tree. If this node is

a test, the outcome for the instance is determined

and the process continues using the appropriate sub-

tree. When a leaf is eventually encountered, its label

gives the predicted class of the instance. An

example of a DT is presented in Figure 3.

Fig 3. An example of a decision tree.

DTs have been already used in a large amount of

different applications: in medicine [5], finance [11],

environmental studies [12], etc. Their greatest

advantage is comparatively high classification

accuracy while preserving the transparent

knowledge model which can be easily interpreted

and validated by domain experts. This has made

DTs one of the most popular classifiers.

3.3 Evolutionary induction of decision trees:

the genTrees algorithm
Evolutionary algorithms (EAs) are generally used

for very complex optimization tasks [8], for which

no efficient deterministic or heuristic method is

developed. Construction of DTs is a complex task,

but an exact method exists, that in general works

efficiently and reliably [5, 9]. At a first glance there

is no reason to use EAs. Nevertheless, there are

some objective reasons that justify our evolutionary

approach. First, EAs provide a very general concept

that can be used in all kinds of decision making

problems. Because of their robustness they can be

used also on incomplete, noisy data (which often

happens because of measurement errors,

unavailability of proper instruments, etc.). This is

not very successfully solvable by traditional

techniques of DT construction. Furthermore, EAs

use evolutionary principles to evolve solutions,

therefore solutions can be found that can be easily

overlooked otherwise. Another important advantage

of EAs is the possibility of optimizing the decision

tree's topology and adapting class intervals for

numeric attributes, within the evolution process.

And the most important advantage of the

evolutionary approach in our case is that not only

one but several equally qualitative solutions are

obtained for the same dataset. In this way the same

decision can be made based on different attributes

and/or combination of the attributes. By different

settings of parameters in EA runs, searching can be

directed to different situations that give us different

solutions for our final decision forest.

Of course there are also some drawbacks of our

method regarding the heuristic induction, the most

obvious one being the higher induction time

complexity.

When defining the internal representation of

individuals within the genetic population, together

with the appropriate genetic operators that will work

upon the population, it is important to assure the

feasibility of all solutions during the whole

evolution process. We decided to present an

individual directly as a DT. In this manner all

intermediate solutions are feasible, no information is

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Vili Podgorelec

ISSN: 1790-0832 1754 Issue 11, Volume 6, November 2009

lost because of the conversion between internal

representation and the DT, the fitness function (FF)

can be straightforward, etc. The problem with direct

coding of solution may bring some problems in

defining of genetic operators. As DTs may be seen

as a kind of simple computer programs (with

attribute nodes being conditional clauses and

decision nodes being assignments) we decided to

define genetic operators similar to those used in

genetic programming where individuals are

computer program trees [10].

The induction of DT-like classifiers with the use

of evolutionary algorithms has been already used in

several cases [5, 14, 15], also applied to software

engineering [6].

3.3.1 Induction of DTs for the initial population

First step of the genetic algorithm is the induction of

the initial population. A random decision tree is

constructed based on the following algorithm:

1. input: number of attribute nodes V that will be in

the tree

2. select an attribute Ai from the set of all possible K

attributes and define it a root node tn

3. in accordance with the selected attribute's Ai type

(discrete or continuous) define a test for this node

tn:

a. for continuous attributes in a form of tn(Ai) <

i , where tn(Ai) is the attribute value for a

data object and i is a split constant

b. for discrete attributes two disjunctive sets of all

possible attribute values are randomly defined

4. connect empty leaves to both new branches from

node tn

5. randomly select an empty leaf node tn (note

below)

6. randomly select an attribute Ai from the set of all

possible K attributes (note below)

7. replace the selected leaf node tn with the attribute

Ai and go to step 3

8. finish when V attribute nodes has been created

In the above algorithm:

- the probability of selecting an empty leaf is

decreased with the depth of the leaf in a growing

tree, and

- the probability of choosing an attribute depends

on a number of previous uses of that attribute in

a tree – in this manner unused attributes have

better chances to be selected.

A simplified pseudo-code of the above algorithm is

presented at Figure 4.

// initial decision trees

Select number of nodes N

repeat

 Select an attribute Xi

 Define ft(Xi)< i or ft(Xi) V

 Connect empty leaves to node

 Randomly select an empty leaf node

until N nodes are created

Fig 4. The basic algorithm for constructing

random DTs.

For each empty leaf the following algorithm

determines the appropriate decision class: let S be

the training set of all training objects N with M

possible decision classes 1, .., M and Ni is the

number of objects within S of a class i. Let S
tn
 be

the sample set at node tn (an empty leaf for which

we are trying to select a decision class) with N
tn

objects; Ni
tn
 is the number of objects within S

tn
 of a

decision class i. Now we can define a function that

measures a potential percentage of correctly

classified objects of a class i:

i

tn

i

N

N
itnF),((3)

Decision i
tn
 for the leaf node tn is then marked as

the decision i, for which F(tn,i) is maximal.

The ranking of an individual DT within a

population is based on the FF:

M

i

V

i

uiii nuwtncaccwFF
1 1

)()1((4)

where M is the number of decision classes, V is the

number of attribute nodes in a tree, acci is the

accuracy of classification of objects of a specific

decision class i, wi is the importance weight for

classifying the objects of the decision class i, c(tni)

is the cost of using the attribute in a node tni, nu is

number of unused decision (leaf) nodes, i.e. where

no object from the training set fall into, and wu is the

weight of the presence of unused decision nodes in a

tree.

According to FF the best trees (the most fit ones)

have the lowest function values – the aim of the

evolutionary process is to minimize the value of FF

for the best tree. A near optimal DT would: 1)

classify all training objects with accuracy in

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Vili Podgorelec

ISSN: 1790-0832 1755 Issue 11, Volume 6, November 2009

accordance with importance weights wi (some

decision classes may be more important than the

others), 2) have very little unused decision nodes

(there is no evaluation possible for this kind of

decision nodes regarding the training set), and 3)

consist of low-cost attribute nodes (in this manner

the desirable/undesirable attributes can be

prioritized).

3.3.2 Crossover and mutation

Crossover works on two selected individuals as an

exchange of two randomly selected sub-trees. In this

manner a randomly selected training object is

selected first which is used to determine paths (by

finding a decision through the tree) in both selected

trees. Then an attribute node is randomly selected

on a path in the first tree and an attribute is

randomly selected on a path in the second tree.

Finally, the sub-tree from a selected attribute node

in the first tree is replaced with the sub-tree from a

selected attribute node in the second tree and in this

manner an offspring is created which is put into a

new population.

Mutation consists of several parts: 1) one

randomly selected attribute node is replaced with

another attribute, randomly chosen from the set of

all attributes; 2) a test in a randomly selected

attribute node is changed, i.e. the split constant is

mutated; 3) a randomly selected decision (leaf) node

is replaced by an attribute node; 4) a randomly

selected attribute node is replaced by a decision

node.

// evolving DTs

repeat

 tournament selection

 crossover

 mutation

 evaluate all DTs with FF

until termination criteria reached

Fig 5. The basic algorithm for evolving DTs.

With the combination of presented crossover that

works as a constructive operator towards local

optimums, and mutation that works as a destructive

operator in order to keep the needed genetic

diversity, the searching for the solution tends to be

directed toward the globally optimal solution. In this

manner the optimal solution is the most appropriate

DT regarding our specific needs (expressed in the

form of FF). As the evolution repeats, more

qualitative solutions are obtained regarding the

chosen FF. The evolution stops when an optimal or

at least an acceptable solution is found or if the

fitness score of the best individual does not change

for a predefined (large) number of generations.

A simplified pseudo-code algorithm for the

evolutionary process of improving the quality of a

DT (in accordance with FF) is presented at Figure 5.

4 Application of the method
The described training set filtering method has been

applied to a real-world software reliability analysis

dataset, composed at the University of Udine, Italy,

from the software development project of a hospital

information system – the whole medical software

system consists of 904 modules in C programming

language representing more than 2.000.000 lines of

code.

First the modules have been identified either as

OK or DANGEROUS by applying the model

developed by Pighin [11] – the modules that contain

less than 5 errors were set as OK and the others as

DANGEROUS. A set of 168 attributes, containing

various software complexity measures, has been

determined for each software module. From all 904

modules 804 have been randomly selected for the

training set, and the remaining 100 modules have

been selected for the testing set.

A set of classifiers were induced with genTrees

based on the training set. Then outliers were

identified using the class confusion score metrics

(Eq. 2), which were removed from the original

training set in order to get a filtered training set.

Finally, some well-known classification algorithms

were used on both original and filtered training set

in order to compare classification results. The

following classification algorithms have been used:

AREX [12], ID3, C4.5 [13, 14], Naïve-Bayes (N-B),

instance-based classifier (IB, i.e. k-nearest

neighbors), and logistic regression (LogReg) [15,

16]. All the results are the averages of 10-fold cross-

validation.

4.1 A Dataset
The used software complexity measures dataset

(SCM dataset) has been carefully composed from a

well-prepared protocol [17]. The starting point for

the analysis was the definition and measurement of

a set of experimental attributes connected to the

structure of software products after the code phase.

Such parameters may, for example, be the total

number of lines of code and lines of comments, the

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Vili Podgorelec

ISSN: 1790-0832 1756 Issue 11, Volume 6, November 2009

occurrence of various types of instructions, the

operators and the types of data used. For each

software module, moreover, the fault signals up to

the moment when measurement started were

considered. By faults all the malfunctions

encountered during the internal test phase and after

the release of the software are meant. In our

experimental environment the code phase included a

preliminary test of modules. After this phase the

modules went on to the real test session, in which

faults were signaled and measurement started.

What had to be dealt with was whether the

chosen set of parameters would be sufficiently large

to identify the structure of a program. Accordingly it

has been started with a very large set of parameters.

These parameters were affected by the persistence

of multicollinearity. It was necessary to reduce the

total number of parameters to a smaller set of

independent parameters. This was achieved by

statistical procedures eliminating those which were

heavily dependent on other parameters in explaining

the presence of faults in a code, or which were

completely irrelevant. A subset of 168 structural

parameters was defined which the factorial analysis

identified as being reasonably free from

multicollinearity, plus the dependent variable, the

number of faults. The basic properties of the SCM

dataset are presented in Table 1.

Table 1. The basic properties of the

SCM dataset.

number of cases 904

number of attributes 168

- nominal 1

- continuous 167

number of decision classes 2

decision classes distribution 76.4%; 23.6%

4.2 Quantitative results
As described above, after filtering out the outliers

by the proposed outlier prediction method, the

reduced data set has been used by some well-known

classification methods. When using the same

training set and the same parameter setting, the

algorithms produce the same – deterministic results

(for example C4.5 algorithm uses entropy measures

for the induction of decision trees, etc). In this

manner, the difference in achieved classification

effectiveness on a testing set can be objectively

compared between the induced classifiers trained by

either the original, non-filtered training set or the

filtered training set. The classification results are

presented in tables 2 and 3 and on figures 4 and 5.

For the SCM dataset five classifiers were

induced and the tolerance threshold selected tt=0.2;

if none or only one classifier (out of five)

misclassified an object, then the object was not

identified as an outlier. Altogether 29 objects (from

804 in the original training set) were removed from

the training set (3.6% removal).

Table 2. Average classification accuracies on the

SCM training dataset.

classification

algorithm

accuracy on the training set [%]

original set filtered set

AREX 80.10 82.20

C4.5 95.60 96.50

ID3 100.00 100.00

IB 100.00 100.00

Naïve-Bayes 72.14 73.16

LogReg 92.04 91.61

Table 3. Average classification accuracies on the

SCM testing dataset.

classification

algorithm

accuracy on the training set [%]

original set filtered set

AREX 80.10 82.20

C4.5 95.60 96.50

ID3 100.00 100.00

IB 100.00 100.00

Naïve-Bayes 72.14 73.16

LogReg 92.04 91.61

Accuracy on training set for SCM dataset.

70,00

75,00

80,00

85,00

90,00

95,00

100,00

105,00

AREX C4.5 ID3 IB Naive-

Bayes

LogReg

original

f iltered

Fig. 4. Classification results on the SCM training

dataset.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Vili Podgorelec

ISSN: 1790-0832 1757 Issue 11, Volume 6, November 2009

Accuracy on testing set for SCM dataset.

70,00

73,00

76,00

79,00

82,00

85,00

AREX C4.5 ID3 IB Naive-

Bayes

LogReg

original

f iltered

Fig. 5. Classification results on the SCM testing

dataset

All the results presented are based on the 10-fold

cross validation for each algorithm on a training set

and a testing set. The classification results of the

method AREX are based on 10 independent

evolutionary runs for each fold.

4.3 Qualitative results
The possibility of accurate predictions of the

potentially dangerous software modules based on

the software complexity attributes is very important

for software engineers in order to improve the

software reliability. The proposed classification

method proves to be effective in performing this

task. However, the ―knowledge‖ (i.e. combinations

of the used attributes) used to make the predictions

would be of an immense importance in order to

decrease the possibility of the problems to arise in

the first place. Therefore, the built knowledge

models (like decision trees or decision rules) should

be studied to find this knowledge.

An interesting phenomenon that arose with the

filtering of the identified outliers from the original

training set is the fact, that the built knowledge

models based upon the filtered learning set were

much less complex than those built on the original,

non-filtered learning set. This means that less

attributes were used to predict the faulty modules

and the overall models were simpler, smaller and

less complex – easier to interpret. For the

comparison on Figure 6 there are two decision trees

built on the original, non-filtered learning set, and

on Figure 7 there are a few decision trees built on

the filtered learning set; the accuracy of all the

decision models are pretty much the same. We can

see that in the case of filtered training set, the

resulting classifiers are almost as simple as simple

rules, whereas the classifiers induced on the original

training set are much more demanding to interpret.

alpha

 |--[<0.63233] OK

 |--[>=0.63233] signif_of_comments

 |--[<1480.0400] StrCtrl_lines

 | |--[<44.5500] OK

 | |--[>=44.5500] DANGEROUS

 |--[>=1480.0400] selection_instr

 |--[<3.799] DANGEROUS

 |--[>=3.799] formal_function_params

 |--[<19.162] DANGEROUS

 |--[>=19.162] signif_of_comments

 |--[<3026.5080] OK

 |--[>=3026.5080] DANGEROUS

words_of_comments

 |--[<188.769] break

 | |--[<12.282] function_calls_to_funcs

 | | |--[<11.985] vect_function_args

 | | | |--[<25.088] const_with_#define

 | | | | |--[<41.584] formal_func_pars

 | | | | | |--[<8.134] OK

 | | | | | |--[>=8.134] DANGEROUS

 | | | | |--[>=41.584] DANGEROUS

 | | | |--[>=25.088] fileType

 | | | |--[c,r,h] OK

 | | | |--[s] DANGEROUS

 | | |--[>=11.985] StrCtrl_lines

 | | |--[<10.611] DANGEROUS

 | | |--[>=10.611] OK

 | |--[>=12.282] DANGEROUS

 |--[>=188.769] DANGEROUS

Fig. 6. Two of the induced decision trees for

predicting dangerous software modules on the

original, non-filtered learning set.

tot_of_comments

 |--[<5099.142000] break

 | |--[<12.903000] OK

 | |--[>=12.903000] DANGER

 |--[>=5099.142000] DANGER

declared_vect

 |--[<23.902000] solo_comment_lines

 | |--[<111.570000] OK

 | |--[>=111.570000] DANGER

 |--[>=23.902000] DANGER

StrCtrl_lines

 |--[<25.257927] signif_of_comments

 | |--[<2484.224000] OK

 | |--[>=2484.224000] DANGER

 |--[>=25.257927] DANGER

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Vili Podgorelec

ISSN: 1790-0832 1758 Issue 11, Volume 6, November 2009

case

 |--[<20.648000] words_of_comments

 | |--[<216.804000] OK

 | |--[>=216.804000] DANGER

 |--[>=20.648000] DANGER

Fig. 7. A few of the induced decision trees for

predicting dangerous software modules on the

filtered learning set.

4.4 Discussion
The classification results on the SCM dataset show

that all the decision tree based classifiers (AREX,

ID3, C4.5) improved on the training set (as

expected) and also improved considerably on the

testing set. Whereas the improvement was expected

on the training set, as the outliers are more difficult

to place in the general model, the improvement on

the testing set was only hoped for. The Naïve-Bayes

classifier improved on the training set, but scored

the same on the testing set. The IB and LogReg

classifiers scored practically the same results on the

training set and show some improvements on the

testing set.

From the above results it can be concluded that

the filtering of the training dataset (by removing the

outliers) has only a minor effect on IB classifiers; as

they search for the most similar objects in the

dataset practically the outliers have no effect on the

search.

The decision tree classifiers benefit from filtering

– the removal of outliers helps to reduce the

uncertainty that is introduced by outliers, even as

the percentage of the removed objects is rather small

(3.6%). As DTs are very weak classifiers, where

even a change of a single training case can result in

a completely different solution, the removal of

identified outliers (which are selected based on their

complexity of being correctly classified)

substantially improves the classification results.

The Naïve-Bayes and logistic regression

classifiers do not benefit considerably from filtering;

however, the classification results are not worse

either. We must know that statistics, upon which

these classifiers are based, normally works towards

generalization, neglecting minor (boundary) cases.

For this reason, in our opinion, the removal of

outliers from the training set does not influence the

results considerably.

Generally speaking for all the used classification

methods: when using the filtered training set, the

quantitative classification results on the testing set

are at least as good as when trained on the original

training set, and in many cases better.

5 Conclusion
A fault predictive technique to foresee dangerous

software modules has been presented in the paper. It

is based on a new outlier prediction and removal

technique, that is used to filter an original training

set, which is then used to train various classifiers.

Our proposition was that the filtered training

datasets used to train the classifiers can improve the

classification results regarding the original, non-

filtered datasets.

The obtained results show an improvement of the

classification performance with the decision tree

classifiers (which are weak classifiers), where

outliers have rather negative effect on the training

process. The proposed approach has only a minor

effect on the instance based, Naïve-Bayes and

logistic regression classifiers – in these cases the

outliers do not represent a big issue as statistical

methods already work primarily in a generalization

manner, neglecting minor (boundary) cases.

However, all the classification results are at least as

good as with the original, non-filtered dataset. This

fact speaks in favor of using the proposed outlier

prediction and removal method when inducing a

fault predictive knowledge model. In particular,

because trained knowledge models (in the case of

inducing DT classifiers), at least as it turned out in

our experiment, are substantially less complex when

trained upon filtered training sets. In this manner, an

expert can draw some general knowledge out of the

induced model.

As even the smallest improvement is of vital

importance when mining the software reliability

measures data, we plan to further explore the

possibilities that the proposed approach offers.

References:

[1] P.K. Kapur, O. Shatnawi, A.G. Aggarwal, R.

Kumar, Unified framework for developing

testing effort dependent software reliability

growth models, WSEAS Transactions on

Systems, vol. 8, num. 4, 2009, pp. 521-531.

[2] M.M. Breunig, H.-P. Kriegel, R.T. Ng, J.

Sander, LOF: Identifying density-based local

outliers, Proceedings of ACM SIGMOD, 2000.

[3] E.M. Knorr, R.T. Ng, Algorithms for mining

distance-based outliers in large datasets,

Proceedings of the 24th VLDB Conference,

1998.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Vili Podgorelec

ISSN: 1790-0832 1759 Issue 11, Volume 6, November 2009

[4] V. Podgorelec, M. Hericko, I. Rozman,

Improving mining of medical data by outliers

prediction, Proceedings of the 18th IEEE

Symposium on Computer-based Medical

Systems CBMS'2005, 2005.

[5] V. Podgorelec, P. Kokol, Towards more

optimal medical diagnosing with evolutionary

algorithms, Journal of Medical Systems,

Kluwer Academic/Plenum Press, vol. 25, num.

3, 2001, pp. 195-220.

[6] V. Podgorelec, P. Kokol, B. Stiglic, I. Rozman,

Decision trees: an overview and their use in

medicine, Journal of Medical Systems, Kluwer

Academic/Plenum Press, vol. 26, num. 5, 2002,

pp. 445-463.

[7] V. Podgorelec, P. Kokol, Evolutionary induced

decision trees for dangerous software modules

prediction, Information Processing Letters, vol.

82, num. 1, 2002, pp. 31-38.

[8] T. Baeck, Evolutionary Algorithms in Theory

and Practice, Oxford University Press, Inc.,

1996.

[9] D.E. Goldberg, Genetic Algorithms in Search,

Optimization, and Machine Learning, Reading

MA: Addison Wesley, 1989.

[10] J.H. Holland, Adaptation in natural and

artificial systems, Cambridge, MA: MIT Press,

1975.

[11] A. Rotshtein, M. Posner, H. Rakytyanska,

Fuzzy IF-THEN Rules Extraction for Medical

Diagnosis Using Genetic Algorithm, WSEAS

Transactions on Systems, vol. 3, num. 2, 2004,

pp. 995-1000.

[12] C.-S. Huang, Y.-J. Lin, C. Lin, Implementation

of classifiers for choosing insurance policy

using decision trees: a case study, WSEAS

Transactions on Computers, vol. 7, num. 10,

2008, pp. 1679-1689.

[13] J.R. Koza, Genetic Programming: On the

Programming of Computers by Natural

Selection, Cambridge, MA: MIT Press, 1992.

[14] M. Kasparova, J. Krupka, P. Jirava,

Application of decision trees in problem of air

quality modelling in the Czech Republic

locality, WSEAS Transactions on Systems, vol.

7, num. 10, 2008, pp. 1166-1175.

[15] M. Zorman, B. Cernohorski, G. Gorsek, M.

Ojstersek, Hybrid evolutionary built decision

trees for prediction of perspective cross-country

skiers, WSEAS Transactions on Information

Science and Applications, vol. 2, num. 1, 2005,

pp. 32-37.

[16] M. Pighin, P. Kokol, RPSM: A risk-predictive

structural experimental metric, Proceedings of

FESMA'99, pp. 459–464, 1999.

[17] V. Podgorelec, P. Kokol, I. Rozman, AREX -

Classification rules extracting algorithm based

on automatic programming, Proceedings of the

15th European Conference on Artificial

Intelligence ECAI 2002, pp. 330-334, 2002.

[18] J.R. Quinlan, C4.5: Programs for Machine

Learning, Morgan Kaufmann, 1993.

[19] —, RuleQuest Research Data Mining Tools,

http://www.rulequest.com, 2001.

[20] —, Machine Learning in C++, MLC++ library,

http://www.sgi.com/tech/mlc, 2001.

[21] J. Demsar, B. Zupan, Orange: From

Experimental Machine Learning to Interactive

Data Mining, White Paper

(www.ailab.si/orange), Faculty of Computer

and Information Science, University of

Ljubljana, 2004.

[22] V. Podgorelec, P. Kokol, M. Zorman, M.

Sprogar, M. Pighin, The Operative Constraints

of Software Reliability Prediction Methods,

Proceedings of the World Multiconference

SCI'2001, 2001.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Vili Podgorelec

ISSN: 1790-0832 1760 Issue 11, Volume 6, November 2009

