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Abstract: - With the evolution of information technology and software systems, software reliability has become 

one of the most important topics of software engineering. As the dependency of society on software systems 

increase, so increases also the importance of efficient software fault prediction. In this paper we present a new 

approach to improving the classification of faulty software modules. The proposed approach is based on 

filtering training sets with the introduction of data outliers identification and removal method. The method uses 

an ensemble of evolutionary induced decision trees to identify the outliers. We argue that a classifier trained by 

a filtered dataset captures a more general knowledge model and should therefore perform better also on unseen 

cases. The proposed method is applied on a real-world software reliability analysis dataset and the obtained 

results are discussed. 
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1 Introduction 
The early and accurate identification of potentially 

dangerous (faulty) software modules is of vital 

importance for better software reliability. Reliability 

is one of the most important aspects of software 

systems of any kind (information systems, 

embedded systems, etc.). The size and complexity 

of software is growing dramatically during last 

decades. The demand for highly complex software 

systems is increasing more rapidly than the ability to 

design, implement and maintain them.  

When the requirements for and dependencies of 

computers increase, the possibility of crises from 

failures also increases. The impact of these failures 

ranges from inconvenience to economic damages to 

loss of lives – therefore it is clear that software 

reliability is becoming a major concern not only for 

software engineers and computer scientists, but also 

for the society as a whole. Therefore, the 

employment of an efficient fault predictive 

technique to foresee dangerous software modules is 

essential. 

With the creation of large empirical databases of 

software projects, as a result of stimulated research 

on estimation models, metrics and methods for 

measuring and improving processes and products, 

intelligent mining of these datasets can largely add 

to the improvement of software reliability [1]. In 

order to help the software engineers in predicting 

the faulty software modules, computerized data 

mining and decision support tools can be used 

which are able to help software engineers to process 

a huge amount of data available from previous 

software projects and suggest the probable 

prediction based on the values of several important 

attributes. Black-box classification methods (neural 

networks for example) are not very appropriate for 

this kind of task, because the software experts want 

to evaluate and validate the decision making process 

induced by those tools, before there is enough trust 

to use the tools in practice. 

On the other hand, the evaluation of the induced 

classification rules produced by the computerized 

tools by a software expert can be an important 

source of new knowledge on the associations of the 

available attributes and new ―laws‖ of software 

reliability engineering. In order to achieve this goal, 

the classification process should be easily 

understandable, interpretable and straightforward. 

One of the most popular and proven-useful 

approach are decision trees. However, it has been 

shown that decision trees are a weak classifier, 

prone to produce very different solutions based on 

an even small change in input (training) data. 

Therefore, inaccuracies and noise in training data 

can easily lead to an inaccurate result. 
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The idea that we present in this paper is to 

construct an outlier prediction method that filters 

out so-called data outliers, i.e. data items that fall 

outside the boundaries that enclose most other data 

items in the data set [1, 2]. When a filtered dataset is 

used to train a classifier (a decision tree) it should 

produce a better and more reliable classification 

result. Furthermore, as a consequence of increased 

homogeneity of the data, the results should be more 

general and thus simpler, less complex and easier to 

apply in general. Similar method has already been 

applied to data mining in medicine with some 

success [3]. 

 

 

1.1 The aim and scope of the paper 
The main objective of this paper is to investigate 

whether it is possible to improve the classification 

performance of several machine learning algorithms 

when the outliers are filtered out of the training set. 

For the outlier prediction method a set of 

evolutionary induced decision trees is used. The 

proposed approach is applied to a software 

engineering problem of predicting potentially 

dangerous (containing errors and faults) software 

modules. The data mining results (both quantitative 

classification results and qualitative assessment of 

induced models) of different machine learning 

algorithms are presented and discussed.  

 

 

2 Filtering the dataset by outlier 

prediction method 
The basic idea of outlier prediction is to define a 

criterion or criteria, upon which for each data case 

from a dataset can be determined whether it belongs 

to the majority of the cases or not. If the specific 

data case regarding the defined criteria does not 

belong to the majority, then it is called an outlier 

(regarding specific criteria). How the criteria are 

defined determines the outlier prediction method. In 

general, defining outlier criteria is not trivial, 

whereas the identification of outliers based on these 

criteria is. 

In our previous work we presented how to use 

evolutionary algorithm for the induction of decision 

trees [4, 5, 6]. One of the greatest advantage of 

evolutionary construction of decision trees, beside 

the proven efficiency in classifying, is the ability to 

produce several comparably accurate classifiers for 

the same dataset. Having this in mind, it is possible 

to get a decision for the same data case based on 

different classifiers (using different attributes and/or 

different relations). 

Our proposition for the prediction of outliers is 

the following: if a single (known) data case is 

classified differently by different accurate 

classifiers, it potentially contains contradictory 

information (Figure 1). Although this contradiction 

is not necessarily an error in data, a usual decision 

tree classifier is not able to correctly construct a 

general model based on such data. Therefore, our 

proposition is that the general knowledge model 

built by a decision tree (or some other induction 

method in that matter) would be more efficient 

when a classifier would be trained without such 

misleading data. 
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Fig 1. When a single data record is classified 

differently by different classifiers, it potentially 

contains contradictory information. 

 

 

In our method, we first define an approach to the 

identification of outliers. For this purpose the 

algorithm for the construction of decision trees 
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genTrees is used (described in the next section). 

With genTrees a set of classifiers (decision trees) 

are induced. For each training object (data case from 

the training set) classification cci(x) is calculated for 

all decision classes (Eq. 1) – the resulting value 

represents the number of classifiers that classified 

object x with the decision class i. Then classification 

confusion score CCS(x) is calculated for each 

training object x (Eq. 2) – the result represents the 

confusion score of a set of classifiers when 

classifying object x; if all DTs give the same 

classification, then the result is 0; higher numbers 

represent less homogeneous objects for 

classification – possible outliers. The higher is the 

number CCS(x), more probably lies the object x 

outside the majority area. Based on the CCS (Eq. 2) 

it is determined which objects should be filtered out 

from the dataset for the classification process. For 

this purpose a tolerance threshold tt is defined for a 

dataset; if CCS(x)>tt then object x is filtered out. 
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3 Backend technologies: evolutionary 

algorithms and decision trees 
The central point of our approach, as has been said 

above, is the use of evolutionary induced decision 

trees which are being used to construct a set of 

classifiers for identifying outliers in a training set. 

Both backend technologies enabling our approach 

are briefly presented first, following by the 

description of our algorithm for inducing decision 

trees. 

 

 

3.1 Evolutionary algorithms 
Genetic algorithms are adaptive heuristic search 

methods which may be used to solve all kinds of 

complex search and optimisation problems [7, 8]. 

They are based on the evolutionary ideas of natural 

selection and genetic processes of biological 

organisms. Like natural populations evolve 

according to the principles of natural selection and 

―survival of the fittest‖, first laid down by Charles 

Darwin, so by simulating this process, genetic 

algorithms are able to evolve solutions to real-world 

problems, if they have been suitably encoded [9]. 

They are often capable of finding optimal solutions 

even in the most complex of search spaces or at 

least they offer significant benefits over other search 

and optimisation techniques. The basic mechanism 

of evolutionary algorithms is presented in Figure 2. 

 

 

 
 

Fig 2. The basic mechanism of evolutionary 

algorithms: selection, crossover and mutation. 

 

 

A typical genetic algorithm operates on a set of 

solutions (population) within the search space. The 

search space represents all the possible solutions 

which can be obtained for the given problem, and is 

usually very complex or even infinite. Every point 

of the search space is one of the possible solutions 

and therefore the aim of the genetic algorithm is to 

find an optimal point or at least come as close to it 

as possible. 

The genetic algorithm consists of three genetic 

operators: selection, crossover (recombination), and 

mutation. Selection is the survival of the fittest 

individuals within the genetic algorithm with the 

aim of giving the preference to the best ones. For 

this purpose all solutions have to be evaluated, 

which is done with the use of the evaluation 

function. Selection determines individuals to be 

used for the second genetic operator - crossover or 

recombination, where from two good individuals a 

new, even better one is constructed. The crossover 

process is repeated until the whole new population 

is completed with the offspring produced by the 
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crossover. All constructed individuals have to 

preserve the feasibility regarding the given problem; 

in this manner it is important to coordinate internal 

representation of individuals with genetic operators. 

The last genetic operator is mutation, which is an 

occasional (low probability) alteration of an 

individual that helps to find an optimal solution to 

the given problem faster and more reliably. 

 

 

3.2 Decision trees 
Inductive inference is the process of moving from 

concrete examples to general models, where the 

goal is to learn how to classify objects by analysing 

a set of instances (already solved cases) whose 

classes are known. Instances are typically 

represented as attribute-value vectors. Training 

input consists of a set of such vectors, each 

belonging to a known class, and the output consists 

of a mapping from attribute values to classes. This 

mapping should accurately classify both the given 

instances and other unseen instances. 

A decision tree (DT) [5, 9] is a formalism for 

expressing such mappings and consists of tests or 

attribute nodes linked to two or more sub-trees and 

leafs or decision nodes labeled with a class which 

means the decision. A test node computes some 

outcome based on the attribute values of an 

instance, where each possible outcome is associated 

with one of the sub-trees. An instance is classified 

by starting at the root node of the tree. If this node is 

a test, the outcome for the instance is determined 

and the process continues using the appropriate sub-

tree. When a leaf is eventually encountered, its label 

gives the predicted class of the instance. An 

example of a DT is presented in Figure 3. 

 

 

 
 

Fig 3. An example of a decision tree. 

DTs have been already used in a large amount of 

different applications: in medicine [5], finance [11], 

environmental studies [12], etc. Their greatest 

advantage is comparatively high classification 

accuracy while preserving the transparent 

knowledge model which can be easily interpreted 

and validated by domain experts. This has made 

DTs one of the most popular classifiers. 

 

 

3.3 Evolutionary induction of decision trees: 

the genTrees algorithm 
Evolutionary algorithms (EAs) are generally used 

for very complex optimization tasks [8], for which 

no efficient deterministic or heuristic method is 

developed. Construction of DTs is a complex task, 

but an exact method exists, that in general works 

efficiently and reliably [5, 9]. At a first glance there 

is no reason to use EAs. Nevertheless, there are 

some objective reasons that justify our evolutionary 

approach. First, EAs provide a very general concept 

that can be used in all kinds of decision making 

problems. Because of their robustness they can be 

used also on incomplete, noisy data (which often 

happens because of measurement errors, 

unavailability of proper instruments, etc.). This is 

not very successfully solvable by traditional 

techniques of DT construction. Furthermore, EAs 

use evolutionary principles to evolve solutions, 

therefore solutions can be found that can be easily 

overlooked otherwise. Another important advantage 

of EAs is the possibility of optimizing the decision 

tree's topology and adapting class intervals for 

numeric attributes, within the evolution process. 

And the most important advantage of the 

evolutionary approach in our case is that not only 

one but several equally qualitative solutions are 

obtained for the same dataset. In this way the same 

decision can be made based on different attributes 

and/or combination of the attributes. By different 

settings of parameters in EA runs, searching can be 

directed to different situations that give us different 

solutions for our final decision forest. 

Of course there are also some drawbacks of our 

method regarding the heuristic induction, the most 

obvious one being the higher induction time 

complexity. 

When defining the internal representation of 

individuals within the genetic population, together 

with the appropriate genetic operators that will work 

upon the population, it is important to assure the 

feasibility of all solutions during the whole 

evolution process. We decided to present an 

individual directly as a DT. In this manner all 

intermediate solutions are feasible, no information is 
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lost because of the conversion between internal 

representation and the DT, the fitness function (FF) 

can be straightforward, etc. The problem with direct 

coding of solution may bring some problems in 

defining of genetic operators. As DTs may be seen 

as a kind of simple computer programs (with 

attribute nodes being conditional clauses and 

decision nodes being assignments) we decided to 

define genetic operators similar to those used in 

genetic programming where individuals are 

computer program trees [10].  

The induction of DT-like classifiers with the use 

of evolutionary algorithms has been already used in 

several cases [5, 14, 15], also applied to software 

engineering [6]. 

 

 

3.3.1 Induction of DTs for the initial population 

First step of the genetic algorithm is the induction of 

the initial population. A random decision tree is 

constructed based on the following algorithm: 

 
1. input: number of attribute nodes V that will be in 

the tree 

2. select an attribute Ai from the set of all possible K 

attributes and define it a root node tn 

3. in accordance with the selected attribute's Ai type 

(discrete or continuous) define a test for this node 

tn:  

a. for continuous attributes in a form of tn(Ai) < 

i , where tn(Ai) is the attribute value for a 

data object and i is a split constant 

b. for discrete attributes two disjunctive sets of all 

possible attribute values are randomly defined 

4. connect empty leaves to both new branches from 

node tn 

5. randomly select an empty leaf node tn (note 

below) 

6. randomly select an attribute Ai from the set of all 

possible K attributes (note below) 

7. replace the selected leaf node tn with the attribute 

Ai and go to step 3 

8. finish when V attribute nodes has been created 

 

In the above algorithm: 

- the probability of selecting an empty leaf is 

decreased with the depth of the leaf in a growing 

tree, and 

- the probability of choosing an attribute depends 

on a number of previous uses of that attribute in 

a tree – in this manner unused attributes have 

better chances to be selected. 

 

A simplified pseudo-code of the above algorithm is 

presented at Figure 4. 

 

 

// initial decision trees 

Select number of nodes N 

repeat 

  Select an attribute Xi 

  Define ft(Xi)< i or ft(Xi)  V 

  Connect empty leaves to node 

  Randomly select an empty leaf node 

until N nodes are created 

 

Fig 4. The basic algorithm for constructing  

random DTs. 

 

 

For each empty leaf the following algorithm 

determines the appropriate decision class: let S be 

the training set of all training objects N with M 

possible decision classes 1, .., M and Ni is the 

number of objects within S of a class i. Let S
tn
 be 

the sample set at node tn (an empty leaf for which 

we are trying to select a decision class) with N
tn
 

objects; Ni
tn
 is the number of objects within S

tn
 of a 

decision class i. Now we can define a function that 

measures a potential percentage of correctly 

classified objects of a class i: 

 

i

tn

i

N

N
itnF ),(  (3) 

 

Decision i
tn
 for the leaf node tn is then marked as 

the decision i, for which F(tn,i) is maximal. 

The ranking of an individual DT within a 

population is based on the FF:  

 

M

i

V

i

uiii nuwtncaccwFF
1 1

)()1(  (4) 

 

where M is the number of decision classes, V is the 

number of attribute nodes in a tree, acci is the 

accuracy of classification of objects of a specific 

decision class i, wi is the importance weight for 

classifying the objects of the decision class i, c(tni) 

is the cost of using the attribute in a node tni, nu is 

number of unused decision (leaf) nodes, i.e. where 

no object from the training set fall into, and wu is the 

weight of the presence of unused decision nodes in a 

tree. 

According to FF the best trees (the most fit ones) 

have the lowest function values – the aim of the 

evolutionary process is to minimize the value of FF 

for the best tree. A near optimal DT would: 1) 

classify all training objects with accuracy in 
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accordance with importance weights wi (some 

decision classes may be more important than the 

others), 2) have very little unused decision nodes 

(there is no evaluation possible for this kind of 

decision nodes regarding the training set), and 3) 

consist of low-cost attribute nodes (in this manner 

the desirable/undesirable attributes can be 

prioritized).  

 

 

3.3.2 Crossover and mutation 

Crossover works on two selected individuals as an 

exchange of two randomly selected sub-trees. In this 

manner a randomly selected training object is 

selected first which is used to determine paths (by 

finding a decision through the tree) in both selected 

trees. Then an attribute node is randomly selected 

on a path in the first tree and an attribute is 

randomly selected on a path in the second tree. 

Finally, the sub-tree from a selected attribute node 

in the first tree is replaced with the sub-tree from a 

selected attribute node in the second tree and in this 

manner an offspring is created which is put into a 

new population. 

Mutation consists of several parts: 1) one 

randomly selected attribute node is replaced with 

another attribute, randomly chosen from the set of 

all attributes; 2) a test in a randomly selected 

attribute node is changed, i.e. the split constant is 

mutated; 3) a randomly selected decision (leaf) node 

is replaced by an attribute node; 4) a randomly 

selected attribute node is replaced by a decision 

node.  

 

 

// evolving DTs 

repeat 

  tournament selection 

  crossover 

  mutation 

  evaluate all DTs with FF 

until termination criteria reached 

 

Fig 5. The basic algorithm for evolving DTs. 

 

 

With the combination of presented crossover that 

works as a constructive operator towards local 

optimums, and mutation that works as a destructive 

operator in order to keep the needed genetic 

diversity, the searching for the solution tends to be 

directed toward the globally optimal solution. In this 

manner the optimal solution is the most appropriate 

DT regarding our specific needs (expressed in the 

form of FF). As the evolution repeats, more 

qualitative solutions are obtained regarding the 

chosen FF. The evolution stops when an optimal or 

at least an acceptable solution is found or if the 

fitness score of the best individual does not change 

for a predefined (large) number of generations.  

A simplified pseudo-code algorithm for the 

evolutionary process of improving the quality of a 

DT (in accordance with FF) is presented at Figure 5. 

 

 

4 Application of the method 
The described training set filtering method has been 

applied to a real-world software reliability analysis 

dataset, composed at the University of Udine, Italy, 

from the software development project of a hospital 

information system – the whole medical software 

system consists of 904 modules in C programming 

language representing more than 2.000.000 lines of 

code. 

First the modules have been identified either as 

OK or DANGEROUS by applying the model 

developed by Pighin [11] – the modules that contain 

less than 5 errors were set as OK and the others as 

DANGEROUS. A set of 168 attributes, containing 

various software complexity measures, has been 

determined for each software module. From all 904 

modules 804 have been randomly selected for the 

training set, and the remaining 100 modules have 

been selected for the testing set. 

A set of classifiers were induced with genTrees 

based on the training set. Then outliers were 

identified using the class confusion score metrics 

(Eq. 2), which were removed from the original 

training set in order to get a filtered training set. 

Finally, some well-known classification algorithms 

were used on both original and filtered training set 

in order to compare classification results. The 

following classification algorithms have been used: 

AREX [12], ID3, C4.5 [13, 14], Naïve-Bayes (N-B), 

instance-based classifier (IB, i.e. k-nearest 

neighbors), and logistic regression (LogReg) [15, 

16]. All the results are the averages of 10-fold cross-

validation. 

 

 

4.1 A Dataset 
The used software complexity measures dataset 

(SCM dataset) has been carefully composed from a 

well-prepared protocol [17]. The starting point for 

the analysis was the definition and measurement of 

a set of experimental attributes connected to the 

structure of software products after the code phase. 

Such parameters may, for example, be the total 

number of lines of code and lines of comments, the 
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occurrence of various types of instructions, the 

operators and the types of data used. For each 

software module, moreover, the fault signals up to 

the moment when measurement started were 

considered. By faults all the malfunctions 

encountered during the internal test phase and after 

the release of the software are meant. In our 

experimental environment the code phase included a 

preliminary test of modules. After this phase the 

modules went on to the real test session, in which 

faults were signaled and measurement started. 

What had to be dealt with was whether the 

chosen set of parameters would be sufficiently large 

to identify the structure of a program. Accordingly it 

has been started with a very large set of parameters. 

These parameters were affected by the persistence 

of multicollinearity. It was necessary to reduce the 

total number of parameters to a smaller set of 

independent parameters. This was achieved by 

statistical procedures eliminating those which were 

heavily dependent on other parameters in explaining 

the presence of faults in a code, or which were 

completely irrelevant. A subset of 168 structural 

parameters was defined which the factorial analysis 

identified as being reasonably free from 

multicollinearity, plus the dependent variable, the 

number of faults. The basic properties of the SCM 

dataset are presented in Table 1. 

 

 

Table 1. The basic properties of the  

SCM dataset. 

 

number of cases 904 

number of attributes 168 

- nominal 1 

- continuous 167 

number of decision classes 2 

decision classes distribution 76.4%;   23.6% 

 

 

4.2 Quantitative results 
As described above, after filtering out the outliers 

by the proposed outlier prediction method, the 

reduced data set has been used by some well-known 

classification methods. When using the same 

training set and the same parameter setting, the 

algorithms produce the same – deterministic results 

(for example C4.5 algorithm uses entropy measures 

for the induction of decision trees, etc). In this 

manner, the difference in achieved classification 

effectiveness on a testing set can be objectively 

compared between the induced classifiers trained by 

either the original, non-filtered training set or the 

filtered training set. The classification results are 

presented in tables 2 and 3 and on figures 4 and 5. 

For the SCM dataset five classifiers were 

induced and the tolerance threshold selected tt=0.2; 

if none or only one classifier (out of five) 

misclassified an object, then the object was not 

identified as an outlier. Altogether 29 objects (from 

804 in the original training set) were removed from 

the training set (3.6% removal). 

 

 

Table 2. Average classification accuracies on the 

SCM training dataset. 

 

classification 

algorithm 

accuracy on the training set [%] 

original set filtered set 

AREX 80.10 82.20 

C4.5 95.60 96.50 

ID3 100.00 100.00 

IB 100.00 100.00 

Naïve-Bayes 72.14 73.16 

LogReg 92.04 91.61 

 

 

Table 3. Average classification accuracies on the 

SCM testing dataset. 

 

classification 

algorithm 

accuracy on the training set [%] 

original set filtered set 

AREX 80.10 82.20 

C4.5 95.60 96.50 

ID3 100.00 100.00 

IB 100.00 100.00 

Naïve-Bayes 72.14 73.16 

LogReg 92.04 91.61 

 

 

 

Accuracy on training set for SCM dataset.

70,00

75,00

80,00

85,00

90,00

95,00

100,00

105,00

AREX C4.5 ID3 IB Naive-

Bayes

LogReg

original

f iltered

 
 

Fig. 4. Classification results on the SCM training 

dataset. 
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Accuracy on testing set for SCM dataset.
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Fig. 5. Classification results on the SCM testing 

dataset 

 

 

All the results presented are based on the 10-fold 

cross validation for each algorithm on a training set 

and a testing set. The classification results of the 

method AREX are based on 10 independent 

evolutionary runs for each fold.  

 

 

4.3 Qualitative results 
The possibility of accurate predictions of the 

potentially dangerous software modules based on 

the software complexity attributes is very important 

for software engineers in order to improve the 

software reliability. The proposed classification 

method proves to be effective in performing this 

task. However, the ―knowledge‖ (i.e. combinations 

of the used attributes) used to make the predictions 

would be of an immense importance in order to 

decrease the possibility of the problems to arise in 

the first place. Therefore, the built knowledge 

models (like decision trees or decision rules) should 

be studied to find this knowledge. 

An interesting phenomenon that arose with the 

filtering of the identified outliers from the original 

training set is the fact, that the built knowledge 

models based upon the filtered learning set were 

much less complex than those built on the original, 

non-filtered learning set. This means that less 

attributes were used to predict the faulty modules 

and the overall models were simpler, smaller and 

less complex – easier to interpret. For the 

comparison on Figure 6 there are two decision trees 

built on the original, non-filtered learning set, and 

on Figure 7 there are a few decision trees built on 

the filtered learning set; the accuracy of all the 

decision models are pretty much the same. We can 

see that in the case of filtered training set, the 

resulting classifiers are almost as simple as simple 

rules, whereas the classifiers induced on the original 

training set are much more demanding to interpret. 
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Fig. 6. Two of the induced decision trees for 

predicting dangerous software modules on the 

original, non-filtered learning set. 

 

 

 
tot_of_comments 

  |--[<5099.142000] break 

  |  |--[<12.903000] OK 

  |  |--[>=12.903000] DANGER 

  |--[>=5099.142000] DANGER 

 

 
declared_vect 

  |--[<23.902000] solo_comment_lines 

  |  |--[<111.570000] OK  

  |  |--[>=111.570000] DANGER  

  |--[>=23.902000] DANGER  

 

 
StrCtrl_lines 

  |--[<25.257927] signif_of_comments 

  |  |--[<2484.224000] OK  

  |  |--[>=2484.224000] DANGER  

  |--[>=25.257927] DANGER  
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case 

  |--[<20.648000] words_of_comments 

  |  |--[<216.804000] OK 

  |  |--[>=216.804000] DANGER 

  |--[>=20.648000] DANGER 

 

Fig. 7. A few of the induced decision trees for 

predicting dangerous software modules on the 

filtered learning set. 

 

 

 

4.4 Discussion 
The classification results on the SCM dataset show 

that all the decision tree based classifiers (AREX, 

ID3, C4.5) improved on the training set (as 

expected) and also improved considerably on the 

testing set. Whereas the improvement was expected 

on the training set, as the outliers are more difficult 

to place in the general model, the improvement on 

the testing set was only hoped for. The Naïve-Bayes 

classifier improved on the training set, but scored 

the same on the testing set. The IB and LogReg 

classifiers scored practically the same results on the 

training set and show some improvements on the 

testing set. 

From the above results it can be concluded that 

the filtering of the training dataset (by removing the 

outliers) has only a minor effect on IB classifiers; as 

they search for the most similar objects in the 

dataset practically the outliers have no effect on the 

search. 

The decision tree classifiers benefit from filtering 

– the removal of outliers helps to reduce the 

uncertainty that is introduced by outliers, even as 

the percentage of the removed objects is rather small 

(3.6%). As DTs are very weak classifiers, where 

even a change of a single training case can result in 

a completely different solution, the removal of 

identified outliers (which are selected based on their 

complexity of being correctly classified) 

substantially improves the classification results. 

The Naïve-Bayes and logistic regression 

classifiers do not benefit considerably from filtering; 

however, the classification results are not worse 

either. We must know that statistics, upon which 

these classifiers are based, normally works towards 

generalization, neglecting minor (boundary) cases. 

For this reason, in our opinion, the removal of 

outliers from the training set does not influence the 

results considerably. 

Generally speaking for all the used classification 

methods: when using the filtered training set, the 

quantitative classification results on the testing set 

are at least as good as when trained on the original 

training set, and in many cases better.  

 

 

5 Conclusion 
A fault predictive technique to foresee dangerous 

software modules has been presented in the paper. It 

is based on a new outlier prediction and removal 

technique, that is used to filter an original training 

set, which is then used to train various classifiers. 

Our proposition was that the filtered training 

datasets used to train the classifiers can improve the 

classification results regarding the original, non-

filtered datasets. 

The obtained results show an improvement of the 

classification performance with the decision tree 

classifiers (which are weak classifiers), where 

outliers have rather negative effect on the training 

process. The proposed approach has only a minor 

effect on the instance based, Naïve-Bayes and 

logistic regression classifiers – in these cases the 

outliers do not represent a big issue as statistical 

methods already work primarily in a generalization 

manner, neglecting minor (boundary) cases. 

However, all the classification results are at least as 

good as with the original, non-filtered dataset. This 

fact speaks in favor of using the proposed outlier 

prediction and removal method when inducing a 

fault predictive knowledge model. In particular, 

because trained knowledge models (in the case of 

inducing DT classifiers), at least as it turned out in 

our experiment, are substantially less complex when 

trained upon filtered training sets. In this manner, an 

expert can draw some general knowledge out of the 

induced model. 

As even the smallest improvement is of vital 

importance when mining the software reliability 

measures data, we plan to further explore the 

possibilities that the proposed approach offers. 
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