
Remote updating procedures for

Mobile point of sale terminals

ALEŠ ZELENIK, ZDENKO MEZGEC
Margento R&D d.o.o.

Gosposvetska cesta 84, 2000 Maribor
SLOVENIA

ales.zelenik@margento.com http://www.margento.com

Abstract: The following article presents an efficient remote updating system that supports software updating
through different communication channels. The emphasis is on the robustness of transmission, data size
optimizations, quick remote firmware replacing, etc. Besides GPRS and IP based communication, there is also
explained a unique way of updating procedure with transmitting the data over speech channel of a mobile phone
– DOV. All parts of updating system are thoroughly explained.

Key-Words: - Remote update, speech channel, Data over Voice – DOV, GSM, mobile POS terminals.

1 Introduction
If we wish to ensure normal functioning of systems,
we nowadays need suitable and particularly effective
approaches to maintenance and updating of software
and hardware. This article describes in detail the
functioning of algorithms, which have been
purposely designed for updating the software of the
Margento system. The system is primarily designed
for data transfer through speech channels [1][2][6]
of different mobile telecommunication networks
such as GSM, CDMA and UMTS. For the purposes
of communication, the system also uses other
communication channels beside the speech channel,
the most important and most often used ones being
Ethernet and GPRS. The original idea of the system
is a patent-protected method of user identification
with a mobile phone [4]. Figure 1 shows a simplified
scheme of data exchange through a speech channel.
The user calls a pre-determined number of the
processing centre, puts the mobile phone on the

terminal and waits for the sign marking the end of
the data transfer, after which the user can put away
his/her phone. The processing centre can obtain all
the data on requested actions through the exchange,
and take further action according to its data. Further
information on the operation of the Margento system
is available in the articles listed among references.

The present article is divided into four chapters.
The first chapter briefly presents the operation of the
Margento system. The second chapter presents
important limitations that needed to be taken into
consideration in the development of the algorithms
designed for terminal updates. The third chapter
explains the functioning of the update system. The
update procedure describes in greater detail the
preparation of the data, the transfer of the data to the
terminals and the updating methods. Because of a
high data-security demand a part of the article also
deals with this issue. The last chapter is the
conclusion, which sums up the main characteristics
of the Margento update system.

Figure 1: Margento system overview [1]

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ales Zelenik, Zdenko Mezgec

ISSN: 1790-0832 1739 Issue 11, Volume 6, November 2009

2 Problem Formulation
Several limitations had to be taken into
consideration when designing algorithms for
updating or maintaining terminal software. The
greatest of them were the following demands. The
algorithm must securely transfer and confirm all
data. The algorithm must be able to update all types
of Margento terminals, independently from the
current hardware or other software installed on the
terminals. The algorithm must enable data transfer
irrespectively of the communication capabilities of
the terminals. In addition, the size of the data and
program memory intended for the update algorithm
must be as small as possible.

Because of remote updating, the demands for
uninterrupted functioning and a high level of
security exist. Consequently, it is necessary to
provide additional information blocks, which are to
be included with the data. They will detect various
errors in the data transfer. Namely, incorrect update
data could disable the whole Margento terminal, and
physical reprogramming would be necessary, which
is an undesirable procedure in several respects.
The next problem is a very low effective speed of
the data transfer through the speech channel, which
disables transfer of large datasets. Therefore, a
compromise must be achieved, which would enable
updating smaller parts of the application and not
only the whole.

Apart from substituting the data located in
separate FLASH sectors, the algorithm must also be
able to substitute individual parameters, logotypes,
sounds, printouts and fonts, where the new data may
be of a different size than the old data. It must be
emphasized that this is not a trivial problem, as for
data storage, the terminals have a serial FLASH
memory installed and not data FLASH memory,
which also does not contain the standard file
systems. The update algorithm will consequently
have to know different intrinsic data formats used
for the above-mentioned data types. To substitute a
dataset the algorithm will have to be able to read the
data of the entire sector onto an external RAM,
substitute the desired datasets, adjust the locations
of other data and write the combination of the old
and the new data back onto the serial FLASH.

In addition to the above-mentioned demands, the
algorithm must also be robust and resistant to
external influences. Namely, it must be possible to
interrupt the process of updating, intentionally or
not1, without this influencing proper operation of the
terminal. The updating itself must continue, when
certain conditions are again fulfilled.

1 Shut down, intermediary urgent data transfer, etc.

3 Problem Solution
For the sake of proper functioning of remote
updating other largely automated systems needed to
be developed apart from terminal algorithms. To
achieve proper functioning, changes on several
levels were necessary. Figure 2 generally shows the
whole procedure of terminal update.

The first step toward a successful update is the
serviceman, who prepares the new data intended for
the update. The data is then sent to the processing
centre, which processes it suitably and sends it to
the chosen terminals. Each terminal duly checks and
processes the received data and updates its own
values with the values prepared by the serviceman.

3.1 Data preparation
An update file containing an intrinsic format must be
prepared for proper updating of all or of individual
sets of data of an individual terminal. The software
Terminal Tool has been developed for this purpose.
The program basically supports entering, changing,
reading, deleting and marking of the parameters, the
program code, logotypes, symbols, printouts and
sounds. Figure 3 presents the basic program’s
window, which shows that the program will generate
an update file that will substitute four basic
parameters, one logotype and eleven sounds.

The program equips the update file with different
security elements, which prevent various errors in
updating the terminals. These security elements
include both the results of the hash function and
signatures as well as the parameters, which must
fully correspond to other terminal parameters. These
are the parameters of the clock rate, PLL and other
hardware parameters2. The program Terminal Tool
arranges all data that is marked as a new update
according to different terminal data formats and
simultaneously records the result in the maintenance
file, which is saved on the computer’s hard drive.

2 Security elements will be presented in detail in the
chapter on updating the terminal.

Figure 2: Update system overview

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ales Zelenik, Zdenko Mezgec

ISSN: 1790-0832 1740 Issue 11, Volume 6, November 2009

All the chosen changes need to be well tested
before sending them to normally physically very
remote positioned terminals. Although all the
changes, especially changes concerning firmware,
are usually very well tested, it is still necessary to be
careful when creating a maintenance file. Therefore,
we always first test the chosen changes included in
the update file directly on the terminal in the
development department, and only then, we can use
the update file in the subsequent steps. High
precaution measures are needed because of the fact
that we are remotely changing the behaviour of the
terminal, i.e. changing the firmware. A mistake
could occur and the new firmware could include a
bug or even have the functionality corrupted to the
point that the new firmware would not be able to
support remote update procedures anymore. If this
happened, a high number of terminals would
become impaired in a very short amount of time,
after which they could only be physically
reconfigured at every individual location.

3.2 Processing centre
The maintenance file acquired with previous
procedure is then, by the serviceman, uploaded to
the processing centre. To facilitate the handling and
update tracking we have developed a web
application called Processing System Administration
- PSA. The application operates on several levels.
For the purposes of this article, we will only present
basic features of the level or the part of the system
that is responsible for updating of the terminals.

Before introducing the system that enables
remote updating, we have been trying to avoid all
software updates as much as it was possible.
Namely, every change required a physical presence
of the serviceman at the location of each terminal,
which resulted in high costs of such changes. This is
not the case anymore, due to the introduction of the
remote update system. Since then, the number of
terminal’s updates increased as is shown in figure 4.

Figure 4: Update orders for a particular area

Figure 3: Terminal Tool

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ales Zelenik, Zdenko Mezgec

ISSN: 1790-0832 1741 Issue 11, Volume 6, November 2009

Figure 4 shows that individual updates include
certain additional information intended to facilitate
the handling of updates for all the users of the PSA.
If we click an individual update, a new window
opens, where detail information on the update can
be seen, as shown by figure 3.

The same window as shown in figure 3 is used
by the serviceman in the procedure of uploading a
new update to the processing centre. Beside the
name of the update, the description of the update
and the update’s effective date are also provided
here. The update’s effective date enables the
software developers to take care of all the necessary
software adaptations and upload the update file to
the processing centre in advance, although the
update should become effective only from a
particular date in the future onwards.

To make a further distinction according to the
importance of the update and the method of
updating the data on the terminal, we have added
information on whether the update is of critical
importance and whether the update includes
firmware. These two pieces of information have a
high influence on the update process, that is;
“critical” influences the methods for sending the
data, while “firmware” determines the steps for
selecting proper terminal’s update methods. Both
procedures will be further described in the following
subchapters. After choosing and entering informa-
tion on the update, the serviceman clicks “store”,
which records the order for the data in its database
and sends the serviceman a confirmation on the
receipt of the file and the order.

Individual processing centre communicates with
a very large number of terminals, installed at
different sales points. In a case when a certain sales
point manager requests or orders a change of a

particular parameter, this change must only be
uploaded to the terminals installed at his premises.
This is done in the next step where the serviceman
chooses target terminals on which the updates are to
be introduced. This is achieved by entering
identification numbers of the target terminals in the
user interface of the PSA. In case of a greater
number of terminals, entering individual identifica-
tion numbers would be very time consuming, which
is why we have implemented filters with which we
can mark all the terminals of one administrator at
the same time. We can also mark larger groups of
terminals, distinguished according to the sales
person, distributer, installation location, functionali-
ties and even according to the version of the
firmware installed on the terminals.

A great deal of effort has been invested in greater
user-friendliness. Thus, the functionality of
reviewing the progress of all of the updates for the
chosen terminals and their connections has been
added to PSA. If we return to figure 3, it also shows
the information on the current progress of the
update. This concrete example shows that 3176
payment terminals have been chosen for the update,
out of which 87% of the terminals have already
been successfully updated. The numbers shown next
to the icons under the total number of terminals
have the following meanings:

� 382 – num. of enabled terminals
� 22 - num. of disabled terminals
� 4 – terminals with update in progress
� 2766 – successfully updated terminals
� 2 – num. of failed updates
Unfortunately, the above-mentioned numbers do

not tell us much in terms of error detection or
delineate problems with terminal updating.
Although we know that in two cases the update has
failed, we need exact information, which are these
two terminals. This functionality has of course been
implemented in sending the data to the terminals,
but some wishes have been expressed for the users
to have a friendly overview of it. The overview of
the terminal status in respect to an individual update
has thus been added, as it is shown in figure 4.

Figure 3: Update file info

Figure 4: Status of terminals for a particular update

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ales Zelenik, Zdenko Mezgec

ISSN: 1790-0832 1742 Issue 11, Volume 6, November 2009

Beside the overview of individual update
transfer, the possibility of overviewing and
changing the updates concerning a specific terminal
has been added for the purposes of debugging, as it
is shown in figure 5. Here a list of all of the updates
and their statuses, for every individual terminal, is
available. From this overview of update status and
the time for update completion and by taking into
consideration the errors occurring during transfer
and the number of attempts to send an update to an
individual terminal, an algorithm has been added,
which can automatically determine the status of the
critical update for the update file for every
individual terminal. The purpose of the algorithm
will be presented in detail in the next subchapter.

3.3 Update data transfer
Communication channels through which the
terminal can obtain update-data are divided into two
groups:

� slow comm channels (GSM, CDMA),
� fast comm.. channels (GPRS, Ethernet, etc).
For financial reasons most terminals have only

the option of a basic method of communication with
the processing centre, i.e. communication through a
speech channel of the user’s mobile phone. The
disadvantage of this communication method is that
the bit speed of sound modulated data signals is
between 300 and 500 b/s. Because of this, these
channels are only used for transferring smaller
changes: adaptation of configuration or parameters,
changing smaller logotypes, etc.

Lately, especially due to limited possibilities
when sending update data and for the sake of
shortening the time of transaction, faster
communication channels are built into most new
terminals; the most commonly used being
communication via GPRS [3]. With it, the terminal
becomes an active communication device, meaning
the terminal can connect to the processing centre at
any time and exchanges any data.

3.3.1 Update strategies

Most often used terminal’s functionalities are
various mobile payments, depositing funds on
accounts and bonus programs. According to user
surveys, using the system for less than five seconds
is a good user experience. Transferring additional
data during the payment process may prolong this
time, which has a negative effect on the user
experience.

This problem has been solved by dividing the
transfer of update data among several payments or
transactions. With it, we can achieve a negligible
time prolongation of transactions. The basic data
transfer remains the same during payment, but the
processing centre additionally sends information on
the presence of potential update data. If the centre
does not have the relevant order, the transaction is
finished in a normal way [2]. If the order exists, the
processing centre sends a part of the update data.
The processing centre at the same time
communicates to the terminal information on
whether the update is critical. In this case the
terminal will not allow further execution of
transactions, and will ask the cashier to make a
maintenance call in which the entire update file will
be transferred. This call can be made with any
telephone.

If there is a large amount of update data, this can
consequently mean that updating the terminal will
be carried out over a longer time period. The
processing centre therefore always conducts an
analysis of transactions, so it can foresee such a
case, and thus automatically designates the status of
a critical update to this update file. The critical
status can also be designated by the serviceman who
has prepared the data. This usually happens when
the update includes essential changes, which should
be implemented as soon as possible.

In the presence of faster communication channel
also larger updates can be transferred. The main
difference in transferring larger updates is the
presence of firmware in the update data. The
condition for a faster communication channel is the

Figure 5: Update list for a particular terminal

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ales Zelenik, Zdenko Mezgec

ISSN: 1790-0832 1743 Issue 11, Volume 6, November 2009

installation of an active communication device in
the terminal, meaning that the presence of a mobile
phone is no longer required for the transfer of an
update [3]. The data transfer through a faster
communication channel is normally 10 to 1000
times faster which considerably shortens the updates
transfer time [8]. With faster connections, we have
thus waived the option of transferring smaller
updates, as transferring the complete update does
not affect the user experience. Because of the
presence of an active communication device, we
were also able to add an automated checking for
new update data. Namely with an active connection
the terminal can automatically connect with the
processing centre without the user noticing this.
Checking for new versions can therefore be done
during every transaction, as well as in specified time
intervals and at every start-up of the terminal.

The presence of a faster communication channel
or the necessary use of a slower communication
channel must be taken into consideration already
when preparing the data. At this step the difference
between the above two options is enormous, mainly
because of the large difference in transfer speed and
possibility of arbitrary connection establishment.

When using a faster communication channel, we
mostly use the strategy of sending the entire
firmware with all of the parameters, graphics,
sounds and logotypes added or we simply include
all of the data that is saved on the terminal. This
method is, because of its simplicity and simple
tracking of the software components installed on the
terminals, used with at least 90% of the updates of
the terminals enabling communication through a
faster communication channel. The other 10% of the
updates are those where we basically change all of
the data apart form certain data that is specific to the
sales point. By keeping that data, we can update a
large number of terminals with the same update
data, while preserving some degree of the specificity
of a certain sales point. These specifics mostly
include the logotypes of the sales point, certain
minimal special settings etc. These 10% also include
the updates of individual components, but we try to
avoid these, when having faster communication
channels available, as far as possible because of the
potential problems, which shall be presented below.

When using a slower communication channel we
have, at the very beginning, given up the option of
transferring firmware because of much lower
transfer data rates [2]. The low transfer data rates
also have a high influence on the choice of the
update components. If we have mentioned that with
faster channels at least in 90 % all data is
transferred, in case of a voice channel 75% of the

updates include only the transfer of the requested
updates, which minimises the amount of update
data. With this method of updating, special attention
is needed when choosing the elements for the
update. Namely, precise control over all the partial
updates since the last full update is needed. Only
this way we can know which parameters, logotypes,
sounds, etc., are installed on a certain terminal. Here
information shown in figure 5 is very helpful.
Precisely because of this added part, i.e. change
tracking, and because of the possibility of potential
errors, we usually send all the data needed by the
terminal for operation, when faster communication
channels are available.

To support all possibilities or update strategies
we had to implement additional logics on the
processing centre, which handles correct data saving
and update realizations on all the corresponding
terminals. However, we had to consider the
possibility that a request for new software updates
might appear before all the terminals have the
previous update installed. It should be noted that the
lists of updates could vary greatly among terminals
as well as the lists of completed updates and the
number of updates still waiting for installation. With
the queued updates, the difference between partial
updates and full updates is larger. If the queued
updates include only partial updates, we have no
other choice but to consecutively carry out every
update. If there is a large number of such partial
updates, the processing centre predicts the
approximate time or date when all the existent
updates should be transferred to the terminal
according to the frequency of communication with
such terminal [7][8]. If this date is in a very distant
future, the processing centre may request a separate
service call. This method is specific particularly for
transferring updates through the voice channel of
GSM network. With faster communication
channels, we normally deal with a generally shorter
queue of updates on the processing centre. The
queue becomes longer with faster channels if the
terminal is inactive for a longer period, i.e. when the
terminal is turned off. The queue for a faster
communication channel mostly includes full updates
with a smaller number of interim partial updates.
Since every full update overwrites all previous data
on the terminal, there is no point in carrying out all
updates successively; instead of that, only updates
since the last full update are performed. The
processing centre detects such cases and with every
upload of a new full update deletes all previous
updates for an individual terminal from its base.
Because the previous upload could have already
been almost fully transferred and deletion of this

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ales Zelenik, Zdenko Mezgec

ISSN: 1790-0832 1744 Issue 11, Volume 6, November 2009

data would prolong the updating of the terminal, the
processing centre may complete the existent update
despite the fact there is a new full update queued,
and only after completion decides to transfer the
new update. With this procedure, we avoid the
possibility that a certain terminal would not update
because there would always be new full updates
present at the processing centre.

3.3.2 Description of actual communication

So far, we have only discussed higher levels of
communication between the processing centre and
terminals, but have not yet mentioned the actual size
of data, the size of packets, time duration of data
transfers, etc.

In communication with the processing centre in
every packet the terminal separately receives the
information on how much data will be received,
meaning that this value may change during
operation. There are several reasons to support the
sending of packets varying in size. The first one is
the processing centre workload. The processing
centre may, according to the current workload,
decide what size of data packets would be most
suitable at the time and with what size it would be
most efficient in communication with several
terminals. The second reason to support the sending
of differently sized packets is related particularly to
updating through GPRS connection, where usually
the GPRS network provider sets an upper limit to
the size of the packets, which can be transferred
through its network. This maximum size of the
packet, which is to be sent through the network, can
however be changed by the GPRS service provider,
and this can cause problems when the maximum
allowed size of the package is reduced. The transfer
of all packets that fit the previous size limitation, but
do not fit the new limitation anymore because of
limitation reduction, could thus be cancelled, which
would disable all further communication. The last
and probably most trivial reason is the fact that
dividing the full update to equal individual packets
in most cases would not be possible. The last packet
would have to be filled up to the standard size of
packets, because of which unnecessary or ballast
data would be transferred.

Because of changing the size of the packets, an
algorithm capable of identifying and fusing the data
had to be introduced also on the terminals. Here
several problems occurred. The most obvious
problems occurred when changing the size of the
packet and simultaneous loss of data or
acknowledge for this data. Several reasons may lead
to the loss of data. Receiving update data is always

performed in the background, as the procedure must
not interrupt normal functioning of the terminal.
Because it is performed in the background, the
administrator does not know that the terminal is
being updated and may simply turn off the terminal.
Because of this, loss of data or loss of acknowledge
may occur. The last two cases may also occur if the
network signal is weak, and are even more frequent
with transfer through voice channel than with
transfer through GPRS. All possible ways of
adequate data transfer and loss of data can be
summed up in three possibilities.

1. The processing centre sends the data, but the
terminal does not receive it or the received data
includes errors.

2. The processing centre sends the information,
the terminal receives it and records it, but the
processing centre does not receive the
corresponding acknowledge.

3. The processing centre sends the data, the
terminal records it, sends a confirmation to the
centre, which receives the confirmation.

Only in the third case, data has been transferred
as predicted, while in the first two cases we have to
solve several problems. These problems may
become even greater if, in the next few moments,
the size of packets is also changed. The possible
scenarios are shown in figure 6.

The left part shows a scenario where the
processing centre sends the data (a1-b1) but the
terminal does not receive it. Consequently, the
processing centre does not receive acknowledge,
sends the same data (a1-b1) again, and again waits
for acknowledge. When sending the data again, the
size of the packet may be changed. The other two
parts of figure 6 show the second possibility, where
the processing centre did not receive the
corresponding acknowledge, but the terminal had
received the data successfully. The terminal thus
holds the data received with previous update packets
that is located to point a2 (a3), and the update data of
the last packet that is saved to point b2 (b3). The

Figure 6: Data loss prevention

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ales Zelenik, Zdenko Mezgec

ISSN: 1790-0832 1745 Issue 11, Volume 6, November 2009

processing centre unfortunately does not know this
as it has only received acknowledge for the data
saved to point a2 (a3). Because the processing centre
has not received acknowledge for the last data sent,
it sends this data again. The terminal detects from
the received data that this data has already been
received and saved, and thus sends acknowledge to
the processing centre while discarding the received
data. However, two situations may occur if the
processing centre changes the size of the packet
when sending the data again:

� the size is reduced (middle part of figure 6),
� the size is increased (right part of figure 6).
With reduced size of the packet, the terminal

receives only a smaller amount of already received
data (a2-c2). This data is confirmed by the terminal
and with the acknowledge the information is also
sent that actually more data has already been saved
and that the processing centre should only send data
from there on. The processing centre thus includes
the data from b2 to d2 in the next packet. In this way,
we can avoid sending already received data to the
greatest extent. The right part of figure 6 shows the
possibility where the size of the packet is increased.
The received packet thus includes a combination of
previously received data (a3-b3) and new data (b3-
d3). The terminal detects this, and only saves the
new data located on the interval between b3 and d3

In order the terminal can know exactly when this
duplication occurs, and can solve it appropriately,
the transfer protocol had to be well thought out. The
transfer protocol, beside the actual data, also
includes certain additional data on the content of the
packet. The update packet includes the following
information for sending the update data from the
processing centre to the terminal:

� identification code of the packet,
� operation demand,
� data size in packet,
� absolute sent data size,
� actual effective data size,
� CRC.
The identification code of the packet uniformly

determines the type of the packet and the data
content in it. When terminal receives the code, it
knows that the packet includes update data and also
knows the structure of the packet. The next
information is operation demand. This field is a
command determining what should be done with the
received data and with the existent update data. Four
commands have been used so far within operation
demand: “no maintain file”, “clear”, “add” and
“update”. By sending the “no maintain file”
command, the processing centre reports that no
update is available for that terminal at the moment.

The system is designed so that individual terminals
keep asking the processing centre if there are any
updates available, and not vice versa. The command
“clear” informs the terminal that the processing
centre will start sending a new update file and that
all potential data located at the place reserved for
the update data must be deleted. This can happen
before the previous update has been completed, i.e.
in case when a new full update is uploaded to the
processing centre during updating of previous
updates. Receiving the command “add” the terminal
knows that the received data should be added, while
the command “update” determines the end of update
data and the launch of the update procedure. As
already mentioned, the packet always also includes
the information on the size of actual data in packet,
and the packets are also equipped with the
information on the amount of all data sent so far.
This information is used by the terminal, especially
in situations presented in figure 6, so that the
terminal can, even in the cases of lost data, handle
the received data correctly. The information about
all the data used so far has a double function
because of optimization. In combination with the
“clear” command, the total number of all the data
for the current update is located in this field. The
terminal thus knows the whole amount of update
data already when receiving the “clear” command,
so this information does not have to be added to
every packet; and by combining it with the field
“absolute sent data size” we have saved a few bits,
which would, in case of the “clear” command,
always be set to zero. This way we can keep the
same structure for all the update packets. In every
packet, there is of course the actual data and at the
end of every packet, there is a result of a 16-bit
CRC.

All the received update packets are confirmed by
the terminal using the acknowledge update packet.
The latter consists of the following fields:

� identification code of the packet,
� operation request received,
� information on maintenance packet success,
� absolute received data size,
� CRC.
With this packet, the identification code has the

same function as in the above-mentioned case.
Operation request received confirms the last
requested operations the terminal has received. In
the information on the maintenance packet, success
error codes can be found. There is a large number of
these so we shall only mention the most important
ones. Beside the message that the received data has
been successfully processed, messages on problems
can appear, such as: erasing/cleaning of previous

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ales Zelenik, Zdenko Mezgec

ISSN: 1790-0832 1746 Issue 11, Volume 6, November 2009

update data failed, data size too large, data
corrupted, unknown base address, packet corrupted,
update already finished and others. The next
information determining the absolute received data
size tells the processing centre from which point on
the data for the next update packet should be sent,
which reduces the amount of duplicated data.

So far, practically all aspects of communication
have been described, apart from the actual concrete
numbers of the elements themselves. For better
understanding, we can mention, that a typical size of
the maintenance file holds approximately 1MB of
data, which is relatively large for the embedded
world, especially if we consider the transfer speeds
of used channels. When transferring individual
packets we have found that greatest efficiency is
achieved when transferring packets with the size
2kB.

At this point one might be interested in how
much time it takes for an average update file
including firmware to transfer to a terminal. The
time of course depends on the connection mode, but
from the data analysis at the processing centre, we
can conclude that an update is completed on average
in 4 to 5 minutes with GPRS connection. With IP
connection, this time is even slightly shorter,
because of shorter round trip times in the network
[7]. Because of different interruptions in the update
process, the possibility of poor network etc., all the
abovementioned algorithms and procedures had to
be introduced. Namely, if the network connection
would be interrupted for a moment every minute
this would make the entire update procedure
impossible, as it would be starting all over again and
again all of the time. This way the procedure always
continues practically from the last received data. A
comparison can be made with the problem of
interruption in data transfer from the internet. If
unpredicted situations occur there, like computer
resetting or disconnection of power supply, the
transfer of the entire file has to be started again.

3.4 Security mechanisms
For data transfer, a purposely-designed
communication protocol, which includes a number
of techniques for preventing intentional and
unintentional changing of data (BEC, FEC,
interlacing and different cryptographic procedures),
is used. Data updating is carried out on the terminal
after the last data packet is transferred from the
processing centre. Before continuing, the
authenticity and correctness of all received data is
immediately verified. Further data protection is
provided also on other levels. Each update packet

has an additional header, checked by the update
logics, which ensure proper data processing and
verification of the processing centre's logic. All
update packets are equipped with a 16-bit CRC to
determine errors, and a 16-bit CRC calculated over
all data is added.

With updates that are more important3, the data
is equipped with even stronger protection. The first
is a 160-bit result of the hash function performed
over the whole file. Next is a 288-bit signature,
which is a combination of the content of the new
firmware and a 128-bit key for signing firmware,
which is unique for every individual area. Apart
from the above-mentioned protection, there are also
other verifications verifying the compliance of
different parameter values representing the
terminal's hardware. If any error is detected,
updating is not performed and the update data is
discarded. The update data may also be discarded at
the explicit request of the processing centre, usually
made by the serviceman.

3.5 Data update
An algorithm is designed for all data updates, which
do not include firmware, and is a part of the
application level of the terminal. Since the algorithm
is a part of the application level, it naturally cannot
be used in the process of substituting the firmware.
To support the substitution of firmware, the
bootloader of the terminal had to adapted, so that at
next rebooting it is able to determine whether the
serial FLASH includes new update data. Figure 7
presents a block scheme of the software part of the
terminal, which shows the main differences between
both update procedures [5].

3 Particularly with updating the terminal’s firmware.

Figure 7: Block scheme of terminal's SW

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ales Zelenik, Zdenko Mezgec

ISSN: 1790-0832 1747 Issue 11, Volume 6, November 2009

3.5.1 Component update

The update algorithm, which is a part of the
application level of the terminal, is in charge of
updating individual components. The algorithm
must understand the data formats to be able to
substitute the data, which is why certain additional
information on the structure of the data is included
in the update data.

When substituting data we face several
problems. Substitution of different parameters is
normally not problematic, as only the value of the
parameter is changed while the type of the
parameter stays the same, meaning that even after
the update such a parameter takes up the same
amount of space on the serial FLASH or on the
EEPROM. Problems occur in substitution of non-
standard components, such as logotypes, fonts,
printouts or sounds. The possibility that, for
example, a changed sound would include exactly the
same amount of data as the original sound is very
slight. It may occur that the new sound includes less
data or that the need for space is greater. The
solutions to both problems are very similar.

As we have noted before, the data is stored on
the serial FLASH considering a certain internally
determined format. The format includes the pointers
to individual datasets in the beginning of each
sector. When we wish to substitute datasets of
different sizes, new data must be properly inserted
among the old data. This is done by composing a
target sector of data in the main memory – RAM as
follows. Data is uploaded from the serial FLASH to
RAM. When we reach the point where the data, that
is to be substituted is, we instead of the original
data, copy the update data intended for substitution.
After copying the new dataset, we again begin to
record the old data, which follows the substituted
data, and memorize the value of the pointer with an
updated location of the old data. This value will
have to be updated for all such substituted parts in
the beginning of the copied sector after completing
the operation. When several sets are present, the
above-mentioned procedure is repeated. The
procedure is completed when all the data from a
certain sector is in the RAM together with the
updated pointers describing the format and
individual elements. At this point, we only need to
write the data back to the serial FLASH.

To prevent potential unpredicted behaviour the
terminal always automatically reboots after the
update is completed. This replacement process is
protected so that the algorithm can, in spite of
unforeseen external influences already mentioned,
continue and automatically complete the interrupted
update process.

When substituting a dataset with data that takes
up more space, it is possible there would not be
enough space to record these data on an individual
sector. Terminal Tool therefore includes a
protection, which disables the creation of update
data file in such cases.

3.5.2 Firmware update

Firmware update is done in a completely different
manner than updating individual components. Not
only the data but also the basic operation of the
terminal shall be updated in this case. The update is
therefore done by the bootloader and not by an
algorithm of an application level. To successfully
store the entire firmware, the terminal must include a
larger external serial FLASH memory. A greater
demand for space arises from the fact that both the
old and the new program code must be saved on the
terminal at the same time. The algorithm must first
check the basic protection mechanisms on the
application level, after which the bootloader
continues the update. This is done by rebooting the
terminal. The bootloader is activated with every
terminal booting. It checks if updates are available
or if external devices wish to use it for a certain job.
The changes the bootloader must consider may be in
the following three locations:

� on the serial FLASH memory,
� on the program card,
� through commands of the serial comm.
In a case of a remote update procedure, the

bootloader will find the update data on a specific
location on the serial FLASH memory. The
bootloader also checks other additional
cryptographic protection elements. If all
verifications are successful, the bootloader starts
erasing the data located in the serial FLASH
memory of the DSP, the external serial FLASH
memory and on the EEPROM. The left part of
figure 8 shows a screen with all the main
information on the update process. When all the
data is deleted from the terminal, the bootloader
starts writing the update data in appropriate places.
If unexpected disconnection of power supply occurs
while writing data, this data will be deleted at the
next start-up and update procedure will start again.
All the original update data is saved in a reserved
place on the serial FLASH memory until the
terminal copies this data to appropriate locations
and performs the diagnostics, whereby the final
verification of functionality of the received data and
firmware is performed. Only after successful final
verification, the terminal begins deleting the update
data, as it is shown in the right part of figure 8.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ales Zelenik, Zdenko Mezgec

ISSN: 1790-0832 1748 Issue 11, Volume 6, November 2009

After the data is overwritten, verified, and the
update data cleared, the terminal reboots with an
updated firmware installed. The final information on
successful update is shown in figure 9.

The procedure of changing the entire firmware
and other data has been designed with the aim of
fastest possible completion. It is possible that during
the opening hours of sales points the necessity to
change some functionalities of the terminal is
ascertained. As the processing centre marks such an
update as critical with immediate effect, the terminal
must become operational again as soon as possible.
With well thought out procedure we have thus
succeeded in changing the entire firmware of the
terminal and other data in only 18 seconds. This is
of course an excellent result, as it does not interrupt
business operations in any way. Most of this time is
consumed by the deletion of sectors of the FLASH
memory, where the speed of the deletion, depends
on the predefined manufacturer’s algorithms.
Verification of safety elements, such as CRC, data
decryption and verification of keys are performed in
a bit over one second, while recording the new data
takes less than 5 seconds. The cleaning update
procedure has been moved to perform in the
background after the terminal has rebooted, which
saves a few extra seconds.

To enable good portability of update algorithms
among different platforms, they have been
developed in a way that they include only a small
part that is connected to the structure of the recorded
firmware code. All the important information on the
structure is already included in the update file. The
algorithms are structured so that they dynamically
set all the important aspects (CS, setting of the SPI

bus, setting of the serial bus, memory organization,
data formats, etc.) according to the data in the file.
This information gives the bootloader all the
necessary data on the terminal, which enables a
greater portability of its program code among
several platforms.

Finally, we should mention figure 10, which
shows from the terminal's perspective, the list of
changes necessary for successful completion of the
update procedure. Most of these changes have been
discussed in the article, so the figure 10 should only
serve to help imagine the final image of the
necessary changes and to asses the complexity of
the system.

4 Conclusion
The implementation of a remote data update system
has resulted in great advantages in terms of simpler
and more professional maintenance of the Margento
system. Because of the ease of its use, fast
responsiveness and other advantages, the algorithm
immediately became a valuable part of the Margento
system and enhanced its applicability and adaptabi-
lity. The concept of the three parts of the algorithm,
where the first takes care of the data transfer, the
second verifies the data security and the third
updates the data, has proven to be the best solution.

Figure 8: Info on screen

Figure 9: Update finished

Figure 10: Overview

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ales Zelenik, Zdenko Mezgec

ISSN: 1790-0832 1749 Issue 11, Volume 6, November 2009

By using the algorithm, we now have the
possibility of remotely and without any physical
human intervention, changing the data on the
terminal. In extreme cases, it is also possible to
completely change the behaviour of the terminal.
Thus, we can for example, change the functionality
of the terminal, which has been used, apart from
payments, for printing prepaid accounts filling cards
into a terminal, that enables automatic filling of
prepaid accounts and also storing bonus loyalty
points. The change of functionality can of course be
even more radical, as the only limitation is now in
the terminal’s hardware.

The presented update algorithm has also resulted
in an additional advantage, i.e. a simplified testing
of new program modules. The basic testing of new
program modules is still done in the Development
Department, but at the same time, we can perform
controlled tests on the real system on a smaller
number of test terminals. The results of such testing
are collected at the processing centre, where the
developers can evaluate them and compare them to
the functioning of older terminal versions. This way
advantages and disadvantages may be determined
through a comparison of functioning under real
conditions. The absence of wide testing under
controlled conditions of development laboratories is
also very cost-effective, and there is no uncertainty
over the actual behaviour of the terminals in reality
when introducing changes to all terminals, since the
answer to this has already been revealed.

References:

[1] http://www.margento.com/.
[2] Z. Mezgec, M. Pec, R. Svečko, A. Chowdhury,

Data Transmission over the Speech Channel of
GSM System, ERK’05, Int. Electrotechnical
and Computer Science Conf. (in Slovenian
with English abstract).

[3] F. Horvat, D. Slavinec, Z. Mezgec, A.
Chowdhury, Upgrade of the basic M-Pay
communication, ERK’07, Int. Electrotechnical
and Computer Science Conf. (in Slovenian
with English abstract).

[4] Z. Mezgec, A. Medved, A. Chowdhury, R.
Svečko, Mobile payments – development of a
new terminal, MIDEM’08.

[5] H. Hu, H. Hu, Research on Protocol-Level
Behavioral Substitutability of Software
Components in Component-based Software
System, WSEAS transactions on computers.

[6] M. Rashidi, A. Sayadiyan, A New Approach
for Digital Data Transmission over GSM Voice
Channel, WSEAS’08, CISST.

[7] C.M. Sarraf, L. El-Khazan, Measuring QoS for
GPRS Mobile Networks. WSEAS’05, Int.
Conf. on Telecommunications and Informatics.

[8] J. Pylarinos, S. Louvros, K. Ioannou, A.
Garmpis and S. Kotsopoulos, Traffic Analysis
in GSM/GPRS Networks using Voice Pre-
Emption Priority, WSEAS’05, Int. Conf. on
Mathematical methods and computational
techniques in electrical engineering.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ales Zelenik, Zdenko Mezgec

ISSN: 1790-0832 1750 Issue 11, Volume 6, November 2009

