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Abstract: - Medical data mining is an emerging area of computational intelligence applied to automatically 
analyze patients’ records aiming at the discovery of new knowledge potentially useful for medical decision 
making. Induced knowledge is anticipated not only to increase accurate diagnosis and successful disease 
treatment, but also to enhance safety by reducing medication-related errors. Modern healthcare organizations 
regularly generate huge amount of electronic data that could be used as a valuable resource for knowledge 
induction to support decision-making of medical practitioners. Unfortunately, a domain-specific decision 
support system that provides a suite of customized and flexible tools to efficiently induce knowledge from 
medical databases with representational heterogeneity does not currently exist. We, thus, design and develop a 
medical decision support system based on a powerful logic programming framework. The proposed system 
includes a knowledge induction component to induce knowledge from clinical data repositories and the induced 
knowledge can also be deployed to pre-treatment data from other sources. The implementation of knowledge 
induction engine has been presented to express the power of higher-order programming of logic-based 
language. The flexibility of our mining engine is obtained through the pattern matching and meta-programming 
facilities provided by logic-based language. 
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1 Introduction 
Knowledge is a valuable asset to most organizations 
as a substantial source to enhance understanding of 
data relationships and support better decisions to 
increase organizational competency. Automatic 
knowledge acquisition can be achieved through the 
availability of the knowledge induction component. 
The induced knowledge can facilitate various 
knowledge-related activities ranging from expert 
decision support, data exploration and explanation, 
estimation of future trends, and prediction of future 
outcomes based on present data.  

In this paper, we present the knowledge 
induction system specifically designed to facilitate 
knowledge discovery from medical data. Various 
data mining and machine learning methods had been 
proposed to learn useful knowledge from medical 
data [5], [6], [7], [8], [17], [19]. Major techniques 
adopted by many researchers are rule induction and 
classification tree generation with the main purpose 
to support medical diagnosis [3], [9], [13]. Some 
researchers had even extended the knowledge 
discovery aspect to the larger scale of medical 

decision support system and data warehouse [2], [4], 
[10], [11], [20]. 

Our work is also in the main stream of medical 
decision support system development, but our 
methodology is different from those appeared in the 
literature. The system proposed in this paper is 
based on logic and higher-order programming 
paradigms. The justification of our logic-based 
system is that the closed form of Horn clauses that 
treats program in the same way as data facilitates 
fusion of knowledge learned from different sources; 
this situation is a normal setting in medical domain. 
Knowledge reuse can also easily practice in this 
framework. We design the system as an integrated 
environment storing a repertoire of tools for 
discovering various kinds of knowledge. 

The outline of this paper is as follows. Section 2 
briefly discusses knowledge induction methods 
implemented in our system. Section 3 reviews the 
basics of logic and higher-order programming. 
Sections 4 and 5 present the conceptual design and 
implementation, respectively, of our system. Section 
6 concludes the paper. 
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2 Knowledge Induction Methods 
This section briefly reviews the three main data 
mining methods extensively applied to induce 
knowledge from varieties of data domains. These 
methods are implemented in our medical decision 
support system. 
 
 
2.1 Tree-Based Knowledge Induction 
Decision tree induction [18] is a popular method for 
inducing knowledge from data. Popularity is due to 
the fact that mining result in a form of decision tree 
is interpretability, which is more concern among 
medical practitioners than a sophisticated method 
but lack of understandability. A decision tree is a 
hierarchical structure with each node contains 
decision attribute and node branches corresponding 
to different attribute values of the decision node. 
The goal of building decision tree is to partition data 
with mixing classes down the tree until the leaf 
nodes contain pure class.   

In order to build a decision tree, we need to 
choose the best attribute that contributes the most 
towards partitioning data to the purity groups. The 
metric to measure attribute’s ability to partition data 
into pure class is Info, which is the number of bits 
required to encode a data mixture. To choose the 
best attribute, we have to calculate information gain, 
which is the yield we obtained from choosing that 
attribute. The information gain calculates yield on 
data set before splitting and after choosing attribute 
with two or more splits. The gain value of each 
candidate attribute is calculated. Then choose the 
maximum one to be the decision node. The process 
of data partitioning continues until the data subset 
has the same class label. 
 
 
2.2 Association Mining 
Association mining is the discovery of relationships 
or correlations between items in a database. Let I = 
{i1, i2, i3, ..., i m} be a set of m items and DB = { C1, 
C2, C3, ..., C n} be a database of n cases or 
observations and each case contains items in I. A 
pattern is a set of items that occur in a case. The 
number of items in a pattern is called the length of 
the pattern. To search for all valid patterns of length 
1 up to m in large database is computational 
expensive. For a set I of m different items, the 
search space for all distinct patterns can be as huge 
as 2m-1. To reduce the size of the search space, the 
support measurement has been introduced [1]. The 
function support(P) of a pattern P is defined as a 
number of cases in DB containing P. Thus, 

support(P) = |{T | T  DB,  P  T }|. A pattern P is 
called frequent pattern if the support value of P is 
not less than a predefined minimum support 
threshold minS. It is the minS constraints that help 
reducing the computational complexity of frequent 
pattern generation. The minS metric has an anti-
monotone property and is applied as a basis for 
reducing search space of mining frequent patterns in 
algorithm Apriori [1]. 
 
 
2.3 Data Clustering 
Clustering refers to the iterative process of 
automatic grouping of data based on their similarity. 
There exist a large number of clustering techniques, 
but the most classical and popular one is the k-
means algorithm [12]. Given a data set containing n 
objects, k-means partitions these objects into k 
groups. Each group is represented by the centroid, 
or central point, of the cluster. Once cluster means 
or representatives are selected, data objects are 
assigned to the nearest centers. The algorithm 
iteratively selects new better representatives and 
reassigns data objects until the stable condition has 
been reached. The stable condition can be observed 
from cluster assigning that each data object does not 
change its cluster. 
 
 
3 Programming Based on Logic 
In logic programming, a clause is a disjunction of 
literals (atomic symbols or their negations) such as 
p q and p r. A statement is in clausal form if it 
is a conjunction of clauses such as (p q) ( p r). 
Logic programming is a subset of first order logic in 
which clauses are restricted to Horn clauses.  

A Horn clause, named after the logician Alfred 
Horn [16], is a clause that contains at most one 
positive literal such as  p q r. Horn clauses are 
widely used in logic programming because their 
satisfiability property can be solved by resolution 
algorithm (an inference method for checking 
whether the formula can be evaluated to true). 

A Horn clause with no positive literal, such as 
 p q, which is equivalent to  ( p q ), is called 
query in Prolog and can be interpreted as ‘:- p, q’ in 
which its value (true/false) to be proven by 
resolution method. A clause that contains exactly 
one positive literal such as r is called a fact 
representing a true statement, written in clausal form 
as ‘r :-’ in which the condition part is empty and 
that means r is unconditionally true. Therefore, facts 
are used to represent data. A Horn clause that 
contains one positive literal and one or more 
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negative literals such as  p q r is called a 
definite clause and such clause can equivalently 
written as (p q) r which in turn can be 
represented as a Prolog rule as r :- p, q. The symbol 
‘:-’ is intended to mean ‘’, which is implication in 
first-order logic (it stands for ‘if’), and the symbol 
‘,’ represents the operator  (or ‘AND’).  

In Prolog, rules are used to define procedures 
and a Prolog program is normally composed of facts 
and rules. Running a Prolog program is nothing 
more than posing queries to obtain true/false 
answers. The advantages of using logic 
programming are the flexible form of query posing 
and the additional information regarding variable 
instantiation obtained from the Prolog system once 
the query is evaluated to be true. 

The symbols p, q, r are called predicates in first-
order logic programming and they can be quantified 
over variables such as r(X) :- p(X,Y), q(Y). This 
clause has the same meaning as X ( p(X,Y)  q(Y) 
 r(X) ).The scope of variables is within a clause 
(delimit the end of clause with a period). Horn 
clauses are thus the fundamental concept of logic 
programming. 

Higher-order predicate is a predicate in a clause 
that can quantify over other predicate symbols [14], 
[15]. As an example, besides the rule r(X):- p(X,Y), 
q(Y), if we are also given the following five Horn 
clauses (or facts): p(1, 2). p(1, 3). p(5, 4). q(2).       
q(4). 

By asking the query: ?- r(X), we will get the 
response as ‘true’ and also the first instantiation 
information as X=1. If we want to know all 
instantiations that make r(X) to be true, we may ask 
the query: ?- findall(X, r(X), Answer).We will get 
the response: Answer = [1,5], which is a set of all 
answers obtained from the predicate r(X) according 
to the given facts. The predicate symbol findall 
quantifies over the variables X, Answer, and the 
predicate r. The predicate findall is thus called a 
higher-order predicate. 

Meta-level programming is also another 
powerful feature of Prolog. Meta-programs treat 
other programs as their input data. Data and 
program in Prolog take the same representational 
format, i.e. clausal form. Therefore, it is very natural 
to write meta-program in Prolog.  

The following example illustrates the procedure 
map that takes a list of integers [1,2,3,4,5] and 
another procedure square as its input arguments and 
produce a list of square values as its output. If we 
pose the query: ?- map(square, [1,2,3,4,5], L), then 
we will get the answer: L = [1,4,9,16,25]. 

square(X, Y) :- Y is X*X. 

map(ProcedureName, [H|T], [NewH|NewT]) :- 

          Procedure=.. [ProcedureName,H,NewH], 

          call(Procedure), 

          map(ProcedureName, T, NewT). 

map(_, [], []). 
 
 
4 Medical Decision Support System 
Health information is normally distributive and 
heterogeneous. Hence, we design the medical 
decision support system (Figure 1) to include data 
integration component at the top level to collect data 
from distributed databases and also from documents 
in text format. Data at this stage are to be stored in a 
warehouse to support direct querying as well as 
analysis with knowledge induction engine. 

Knowledge base in our design stores both 
induced knowledge, in which its significance has to 
be evaluated by the domain expert, and background 
knowledge encoded from consultation with human 
experts. Knowledge inferring and reasoning is the 
module interfacing with medical practitioners and 
physicians at the front-end and accessing knowledge 
base at the back-end. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Knowledge induction component in the 
medical decision support system 
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The process of knowledge discovery is complex 
and iterative in its nature. We design the system to 
be composed of two phases: knowledge induction 
and knowledge inferring. 

Knowledge induction is the back-end of the 
system responsible for acquiring and discovering 
new and useful knowledge. Usefulness is to be 
validated at the final step by human experts. 
Discovered knowledge is stored in the knowledge 
base to be applied to solve new cases or create new 
knowledge in the knowledge inferring phase, which 
is the front-end of the proposed system. 

The proposed system obtains input from 
heterogeneous data sources. Such data can be 
redundant, incomplete, and noisy. Therefore, the 
knowledge-induction-and-evaluation component 
(Figure 2) has been designed to clean, transform, 
and select only relevant data sample.  

 
Figure 2. Architecture of the knowledge-induction-
and-evaluation component 
 

 

 
 
Figure 3. Ontology for guiding mining-method 
selection at the DM step 

 
The DM component is for performing various 

mining tasks. Currently, we design and implement 
three different mining modules, i.e. classification, 
association, and clustering. We adopt the ontology 
concept at this step to guide the mining 
methodology selection. A simple form of ontology 
to select appropriate mining method is shown in 
Figure 3. 

The Post-DM component composed of two main 
features: knowledge evaluator and knowledge 
integrator. These features perform functionalities 
aiming at a feasible knowledge deployment. 
Knowledge evaluator involves evaluation, based on 
corresponding measurement metrics, of the mining 
results. Knowledge integrator examines the induced 
patterns to remove redundant knowledge.  
 
 
5 System Implementation 
In this section, we present the Prolog coding of DM, 
a major module for mining different kinds of 
knowledge in the knowledge-induction-and 
evaluation component. Prolog code is based on the 
syntax of SWI Prolog (www.swi-prolog.org). 

Data format. The data to be used by any mining 
method of the DM module take the same format, 
that is, as a Prolog file. As an illustration, we use the 
allergy data of ten patients. The following data show 
information of ten patients suffering from allergy 
(class = yes). The possible indicative symptoms are 
sore throat, fever, swollen glands, congestion, and 
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headache. Some patients had some of these 
symptoms but are not suffering from allergy (class = 
no).  To induce the common symptoms (or model) 
of allergy patients from this data, we have to save 
this data set as a Prolog file (data.pl). 

%% Data: Allergy diagnosis 

  % Patients’ symptoms and their possible values 

attribute( soreThroat,  [yes, no]). 

attribute( fever, [yes, no]). 

attribute( swollenGlands, [yes, no]). 

attribute( congestion, [yes, no]). 

attribute( headache, [yes, no]). 

attribute( class, [yes, no]). 

     % data instances 

instance(1, class=no, [soreThroat=yes, fever=yes, 
swollenGlands=yes, congestion=yes, 
headache=yes]). 

instance(2, class=yes, [soreThroat=no,   fever=no,   
swollenGlands=no,   congestion=yes, 
headache=yes]). 

instance(3, class=no, [soreThroat=yes, fever=yes, 
swollenGlands=no,   congestion=yes, 
headache=no]). 

instance(4, class=no,   [soreThroat=yes, fever=no,   
swollenGlands=yes, congestion=no,   
headache=no]). 

instance(5, class=no,   [soreThroat=no,   
fever=yes, swollenGlands=no,   
congestion=yes, headache=no]). 

instance(6, class=yes, [soreThroat=no,   fever=no,   
swollenGlands=no,   congestion=yes, 
headache=no]). 

instance(7, class=no,   [soreThroat=no,   
fever=no,   swollenGlands=yes, 
congestion=no,   headache=no]). 

instance(8, class=yes, [soreThroat=yes, fever=no, 
swollenGlands=no,    
congestion=yes, headache=yes]). 

instance(9, class=no,   [soreThroat=no,   
fever=yes, swollenGlands=no,   
congestion=yes, headache=yes]). 

instance(10, class=no, [soreThroat=yes, 
fever=yes, swollenGlands=no,  
congestion=yes, headache=yes]). 

 

Classification. The objective of classification is 
to induce data model of two classes: positive (class 
= yes) and negative (class=no). Binary classification 
is a typical task in medical data mining. The code, 
however, can be easily modified to classify data 
with more than two classes. To induce the common 
symptoms (or model) of patients suffering from 
allergy, we use the decision-tree induction method 
[18]. The process starts when the following main 
module is invoked. Note that clauses containing 
higher-order predicates are highlighted throughout 
the given program code. 

 
:-include('data.pl'). 
:-dynamic current_node/1,node/2,edge/3. 

 main :-   

       init(AllAttr,EdgeList), 

       getNode(N), % get node number 

    create_edge(N,AllAttr,EdgeList),   

       print_model.   
   
 init(AllAttr,[root-nil/PB-NB]) :- 

       retractall(node(_,_)), 

       retractall(current_node(_)), 

       retractall(edge(_,_,_)), 

       assert(current_node(0)) , 

       findall(X, attribute(X,_), AllAttr1), 

       delete(AllAttr1, class, AllAttr), 

       findall(X2,instance(X2,class=yes,_),PB),      

       findall(X3,instance(X3,class=no,_),NB). 
  
 getNode(X) :-  

        current_node(X),  

        X1 is X+1, 

        retractall( current_node(_)), 

        assert( current_node(X1)). 
 
The main module calls the init procedure (or 

precidate) to initialize the temporary knowledge 
base by removing all information that might be 
remained in the knowledge base and asserting the 
root node of the tree. The node and edge structures 
of our decision tree have the following formats: 

 node(nodeID, [PositiveCase]-[NegativeCase])  

 edge(ParentNode, EdgeLabel, ChildNode) 
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The node structure is composed of two parts: 
node-id and the mixture of positive and negative 
cases in that node. The edge is a link from parent 
node to child node. Each edge contains three pieces 
of information; that is, id of parent node, the edge 
label, and id of child node. Node id 0 is a special 
node representing a root node and it links to node 
number 1. The tree building starts with the 
create_edge and create_nodes procedures. 

 
  create_edge(_,_,[]) :- !. 

  create_edge(_,[],_) :- !.  

  create_edge(N, AllAttr, EdgeList) :-   

                 create_nodes(N, AllAttr, EdgeList). 
 

  create_nodes(_,_,[]) :- !. 

  create_nodes(_,[],_) :- !. 

  create_nodes(N, AllAttr, [H1-H2/PB-NB|T]) :- 

           getNode(N1),    % get node number N1 

           assert(edge(N,H1-H2,N1)), 

           assert(node(N1,PB-NB)),  

           append(PB, NB, AllInst),   

          ( (PB \== [], NB \== []) -> 

               (cand_node(AllAttr, AllInst, AllSplit),  

                best_attribute(AllSplit, 

                                    [V, MinAttr, Split]),  

                delete(AllAttr, MinAttr, Attr2), 

                create_edge( N1, Attr2, Split))   

               ;   true ), 

           create_nodes(N, AllAttr, T). 
 

best_attribute([], Min, Min). 

best_attribute([H|T], Min) :- 

 best_attribute(T, H, Min). 

best_attribute([H|T], Min0, Min) :-   

        H =[V,_, _ ],  

         Min0 = [V0, _, _ ], 

 ( V < V0 -> Min1 = H;  

                            Min1 = Min0), 

 best_attribute(T, Min1, Min). 
 

   % generate candidate decision node 

cand_node([],_,[]) :- !. 

cand_node(_,[],[]). 

 

cand_node([H|T],Ins,[[Val,H,SplitL]|Att]) :-   

 info(H, Ins, Val, SplitL), 

 cand_node(T,Ins,Att). 
 

   % compute Info of each candidate node 

concat3(A,B,C,R) :-  

           atom_concat(A,B,R1), 

           atom_concat(R1,C,R). 

info(A, CurInstL, R, Split) :-  

          attribute(A,L), 

          maplist( concat3(A,=), L, L1),      

          suminfo(L1, CurInstL, R, Split).  
 

suminfo([],_,0,[]).  

suminfo([H|T], CurInstL, R, [Split | ST]) :- 

          AllBag=CurInstL, 

          term_to_atom(H1,H), 

          findall(X1, (instance(X1,_,L1),   

                            member(X1, CurInstL),     

                            member(H1,L1)), BagGro), 

          findall(X2,(instance(X2,class=yes, L2),  

                            member(X2, CurInstL),  

                            member(H1,L2)), BagPos), 

          findall(X3,(instance(X3,class=no, L3),      

                            member(X3, CurInstL), 

                            member(H1,L3)), BagNeg),  

         (H11=H22) =H1,  

          length(AllBag, Nall),  

          length(BagGro, NGro),   

          length(BagPos, NPos),  

          length(BagNeg, NNeg),                    

          Split = H11-H22/BagPos-BagNeg, 

          suminfo(T, CurInstL, R1,ST),       

         ( NPos is 0 *->L1 = 0;  

             L1 is (log(NPos/NGro)/log(2)) ), 

         ( 0 is NNeg *->L2 = 0;  

             L2 is (log(NNeg/NGro)/log(2)) ), 

         ( NGro is 0 -> R= 999;  

             R is (NGro/Nall)*(-(NPos/NGro)*L1- 

                      (NNeg/NGro)*L2)+R1 ).    
 
The given source code does not provide detail for 

print_model procedure. Interested readers are 
suggested to simply add a rule print_model :- true. 
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Then run the program by calling predicate main. 
Prolog will respond true with no other information 
because we simply add the always-true condition in 
the print_model predicate. At this moment we can 
view the tree model by calling listing(node) and 
listing(edge) predicates. The results will be as 
follows: 

1 ?- main. 
true.  
 
2 ?- listing(node). 

:- dynamic user:node/2. 

user:node(1, [2, 6, 8]-[1, 3, 4, 5, 7, 9, 10]). 

user:node(2, []-[1, 3, 5, 9, 10]). 

user:node(3, [2, 6, 8]-[4, 7]). 

user:node(4, []-[4, 7]). 

user:node(5, [2, 6, 8]-[]). 

true. 
 
3 ?- listing(edge). 

:- dynamic user:edge/3. 

user:edge(0, root-nil, 1). 

user:edge(1, fever-yes, 2). 

user:edge(1, fever-no, 3). 

user:edge(3, swollenGlands-yes, 4). 

user:edge(3, swollenGlands-no, 5). 

true. 
 
The running results convey the following 

information. From node number 1, the edge with 
label fever-yes (representing attribute fever with a 
value yes) links to node number 2. Node 1 contains 
all ten cases of patients suffering and not suffering 
from allergy, whereas node 2 contains the 
information []-[1,3,5,9,10] to infer none of positive 
cases and five negative cases. Therefore, the results 
in the above node and edge structures represent the 
following data model: 

class(allergy) :-  fever=no,  
                                  swollenGlands=no. 
 
Association mining. We implement the 

association mining module based on the algorithm 
APRIORI [1]. The implementation shows only the 
first pass of the algorithm; that is, the generation of 
frequent itemsets. The second pass, which is the 
generation of association rules from frequent 

itemsets, can be easily extended from the given 
code.  

Main predicate of this module is 
association_mining. Upon invocation, this predicate 
obtains input data from the predicate input(Data), 
and get the minimum support value through the 
predicate min_support(V). Then the main predicate 
starts the process by making candidate and large 
itemsets of length one, two, three, and so on 
(through the predicates makeC1, makeL, and 
apriori_loop, respectively). All highlighted terms 
are higher-order predicates. These predicates are 
maplist, include, and setof. 

The predicate maplist takes three arguments; 
therefore, it may be written as maplist/3. This 
predicate applies its first argument, which is also a 
predicate, to each element of a list appeared in the 
second argument. The result is a list in the third 
argument. 

The predicate include/3 takes another predicate 
as its first argument and adds the result obtained 
from the first argument to the list in second 
argument. The result appears as a list in the third 
argument. The predicate setof/3 also works with 
other predicate to collect each answer as a list in its 
third argument. 

 
association_mining :-  

          input(Data),  

min_support(V), 
          makeC1(C), 

          makeL(C,L), 

          apriori_loop(L,1). 

 
apriori_loop(L,N) :-  

length(L) is 1,!. 
apriori_loop(L,N) :- N1 is N+1, 

          makeC(N1,L,C),  

makeL(C, Res), 
          apriori_loop(Res, N1). 
 
makeC1(Ans) :- input(D),  

          allComb(1, ItemSet, Ans2), 

          maplist(countSS(D), Ans2, Ans).   

 

makeC(N,ItemSet,Ans) :- input(D), 

          allComb(2,ItemSet, Ans1), 

          maplist(flatten, Ans1, Ans2),     
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          maplist(list_to_ord_set, Ans2, Ans3) ,   

          list_to_set(Ans3,Ans4),  

          include(len(N), Ans4, Ans5),    

          maplist(countSS(D), Ans5, Ans).   

 

                     %scan database to find: List+N 
makeL(C,Res) :- include(filter, C, Ans), 
  maplist(head, Ans, Res). 

 
filter(_+N) :-  input(A),  

length(A, I), 

          min_support(V),  

N>=(V/100)*I. 

 
head(H+_,H). 

 
     % arbitrary subset of the set containing  

     %  given number of elements 

comb(0, _, []). 
comb(N, [X|T], [X|Comb]) :-  

N > 0,  

N1 is N-1, 

          comb(N1,T,Comb). 
comb(N,[_|T],Comb) :-  

N > 0,  

comb(N,T,Comb). 

 
allComb(N,I,Ans) :-  

setof( L, comb(N, I, L), Ans). 

 
countSubset(A,[],0). 

countSubset(A,[B|X],N) :-  

not(subset(A,B)), 

          countSubset(A,X,N). 

countSubset(A,[B|X],N) :-  

subset(A,B), 

          countSubset(A,X,N1),  

N is N1+1. 

 
countSS(SL,S,S+N) :-  

countSubset(S,SL,N). 

   len(N,X) :- length(X,N1), N is N1. 

Clustering. We implement the data clustering 
based on k-means algorithm [12]. The main 
predicate is clustering in which the number of 
clusters (k) has to be specified and data are to be 
included. The predicate makeInitCluster creates 
initial k clusters with randomized k centroids, then 
assign each data to the closest centroid through the 
predicate assignPoint.  

Note that the symbol ‘*’, such as those appear in 
the predicate cmax(Res, A*V) and freq(X, N*Y, 
N*F), refers to the data format to represent 
Attribute*Value; it does not mean multiplication. In 
Prolog, numerical computation will occur in a 
clause with the predicate ‘is’, such as S1 is S + 1 in 
the reComputeCenter procedure. 

The iteration step, repeatCompute predicate, re-
computes the new k centroids and then re-assign 
each data point to the new closest centroid. Iteration 
stops when all data do not change their clusters. The 
source code presented in the following works with 
categorical data. For numerical or data with mixing 
types, the distance measurement has to be modified. 

 

clustering(K) :-  

makeInitCluster(K, AllClust), 

 assignPoint(AllClust, Data, Start, AllPt), 

 OldClust=AllClust, 

 repeatCompute(K, AllPt, OldClust). 

 

makeInitCluster(K, AllClust):-   

           initClust(K, 1, AllClust). 

 

initClust(K, L0, []) :-   

L0 > K ,  ! . 

initClust(K, L0, [L0*L|T]) :-   

instance(L0,_,L), 

         L1 is L0+1,  

initClust(K, L1, T). 

 

assignPoint(_, U, M, []) :-  

M > U,  !. 

assignPoint(AllClust, U, M, [M-V-A|T]) :-  

           maplist(freq(M), AllClust, Res), 

  cmax(Res, A*V),   

 M1 is M+1, 

         assignPoint(AllClust, U, M1, T). 
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freq(X, N*Y, N*F) :-  

           instance(X, _, L1), 

           intersection(L1, Y, I),  

 length(I, F). 

 

cmax(L, A*V) :-  

maplist(cvalue, L, L2), 

          max_list(L2, V),  

 member(A*V, L), !. 

cvalue(_*V, V). 

 

reComputeCenter(K, S, AllPoint, []) :-  

S > K,  !. 

reComputeCenter(K, S, AllPoint, [S*NewC|T]) :- 

           findall(P, member(P-_-S, AllPoint), Z), 

  allPointAtAllAttr(Z, NewC), 

          S1 is S+1, 

          reComputeCenter(K, S1, AllPoint, T). 

 

allPointAtAllAttr(AllP, NewClusters) :- 

 findall(AttName, (attribute(AttName,_),   

                           AttName\==class), AttNameL), 

 maplist(allPoint(AllP), AttNameL,  

                           NewClusters). 

allPoint(AllP, Att, A) :- 

     findall(Att=V, (instance(X, _, K),  

                              member(X, AllP),  

                              member(Att=V, K)) , Z), 

     maxFreq(Z, A*V). 

 

maxFreq(L, A*V) :-  

     findall(X*C, (member(X,L), count(X,L,C)), Z),  

     cmax(Z,A*V). 

 

repeatCompute(K, AllPt, OldClust) :- 

    reComputeCenter(K,Start,AllPt,NewClus), 

   ( OldClust==NewClus ->  

       writeln('-No-cluster-changes***End*'); 

       ( writeln(newClust-NewClus),          

         assignPoint(NewClus,Data,Start,AllPt2), 

         writeln(allNewPoint-AllPt2), 

         repeatCompute(K, AllPt2, NewClus) ) ). 

6 Conclusion 
Huge amount of data collected by hospitals and 
clinics are not yet turned into useful knowledge due 
to the lack of efficient analysis tools. We thus 
propose a rapid prototyping of an automatic data-
mining tool to induce knowledge from medical data. 
The induced knowledge is to be evaluated and 
integrated into the knowledge base of a medical 
decision support system. Discovered knowledge 
facilitates the reuse of knowledge base among 
decision-support applications within organizations 
that own heterogeneous clinical and health 
databases. One obvious application of such 
knowledge is to pre-process other data sets by 
grouping it into focused subset containing only 
relevant data instances. 

Our implementation of knowledge induction 
engines is based on the concept of higher-order 
Horn clauses using the logic-programming 
paradigm. Higher-order programming has been 
originally appeared in functional languages and 
soon be ubiquitous in several modern programming 
languages such as Java. Higher order style of 
programming has shown the outstanding benefits of 
code reuse and high level of abstraction.  

This paper illustrates higher order programming 
techniques in Prolog by means of higher-order 
predicates such as maplist, findall, setoff, and 
include. These predicates take other predicates as its 
argument. With such expressive power of higher-
order predicates, program coding of the designed 
system is very concise as demonstrated in the paper. 
Program conciseness contributes directly to program 
verification and validation, which are important 
issues in software engineering.  

The powerful feature of meta-level programming 
in Prolog facilitates the reuse of data-mining results 
represented as rules to be flexibly applied as 
conditional clauses in other applications. The 
plausible extension of our current work is to add 
constraints into the knowledge induction method in 
order to limit the search space and therefore yield 
useful and timely knowledge. We also plan to 
extend our system to work with stream data that 
normally occur in modern medical institutions. 
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