
Knowledge Induction from Medical Databases with Higher-Order
Programming

Nittaya Kerdprasop and Kittisak Kerdprasop

Data Engineering and Knowledge Discovery (DEKD) Research Unit
School of Computer Engineering, Suranaree University of Technology

111 University Avenue, Nakhon Ratchasima 30000
THAILAND

nittaya@sut.ac.th, kittisakThailand@gmail.com

Abstract: - Medical data mining is an emerging area of computational intelligence applied to automatically
analyze patients’ records aiming at the discovery of new knowledge potentially useful for medical decision
making. Induced knowledge is anticipated not only to increase accurate diagnosis and successful disease
treatment, but also to enhance safety by reducing medication-related errors. Modern healthcare organizations
regularly generate huge amount of electronic data that could be used as a valuable resource for knowledge
induction to support decision-making of medical practitioners. Unfortunately, a domain-specific decision
support system that provides a suite of customized and flexible tools to efficiently induce knowledge from
medical databases with representational heterogeneity does not currently exist. We, thus, design and develop a
medical decision support system based on a powerful logic programming framework. The proposed system
includes a knowledge induction component to induce knowledge from clinical data repositories and the induced
knowledge can also be deployed to pre-treatment data from other sources. The implementation of knowledge
induction engine has been presented to express the power of higher-order programming of logic-based
language. The flexibility of our mining engine is obtained through the pattern matching and meta-programming
facilities provided by logic-based language.

Key-Words: - Medical decision making, Medical informatics, Logic-based knowledge induction, Higher-order
programming

1 Introduction
Knowledge is a valuable asset to most organizations
as a substantial source to enhance understanding of
data relationships and support better decisions to
increase organizational competency. Automatic
knowledge acquisition can be achieved through the
availability of the knowledge induction component.
The induced knowledge can facilitate various
knowledge-related activities ranging from expert
decision support, data exploration and explanation,
estimation of future trends, and prediction of future
outcomes based on present data.

In this paper, we present the knowledge
induction system specifically designed to facilitate
knowledge discovery from medical data. Various
data mining and machine learning methods had been
proposed to learn useful knowledge from medical
data [5], [6], [7], [8], [17], [19]. Major techniques
adopted by many researchers are rule induction and
classification tree generation with the main purpose
to support medical diagnosis [3], [9], [13]. Some
researchers had even extended the knowledge
discovery aspect to the larger scale of medical

decision support system and data warehouse [2], [4],
[10], [11], [20].

Our work is also in the main stream of medical
decision support system development, but our
methodology is different from those appeared in the
literature. The system proposed in this paper is
based on logic and higher-order programming
paradigms. The justification of our logic-based
system is that the closed form of Horn clauses that
treats program in the same way as data facilitates
fusion of knowledge learned from different sources;
this situation is a normal setting in medical domain.
Knowledge reuse can also easily practice in this
framework. We design the system as an integrated
environment storing a repertoire of tools for
discovering various kinds of knowledge.

The outline of this paper is as follows. Section 2
briefly discusses knowledge induction methods
implemented in our system. Section 3 reviews the
basics of logic and higher-order programming.
Sections 4 and 5 present the conceptual design and
implementation, respectively, of our system. Section
6 concludes the paper.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Nittaya Kerdprasop, Kittisak Kerdprasop

ISSN: 1790-0832 1719 Issue 10, Volume 6, October 2009

2 Knowledge Induction Methods
This section briefly reviews the three main data
mining methods extensively applied to induce
knowledge from varieties of data domains. These
methods are implemented in our medical decision
support system.

2.1 Tree-Based Knowledge Induction
Decision tree induction [18] is a popular method for
inducing knowledge from data. Popularity is due to
the fact that mining result in a form of decision tree
is interpretability, which is more concern among
medical practitioners than a sophisticated method
but lack of understandability. A decision tree is a
hierarchical structure with each node contains
decision attribute and node branches corresponding
to different attribute values of the decision node.
The goal of building decision tree is to partition data
with mixing classes down the tree until the leaf
nodes contain pure class.

In order to build a decision tree, we need to
choose the best attribute that contributes the most
towards partitioning data to the purity groups. The
metric to measure attribute’s ability to partition data
into pure class is Info, which is the number of bits
required to encode a data mixture. To choose the
best attribute, we have to calculate information gain,
which is the yield we obtained from choosing that
attribute. The information gain calculates yield on
data set before splitting and after choosing attribute
with two or more splits. The gain value of each
candidate attribute is calculated. Then choose the
maximum one to be the decision node. The process
of data partitioning continues until the data subset
has the same class label.

2.2 Association Mining
Association mining is the discovery of relationships
or correlations between items in a database. Let I =
{i1, i2, i3, ..., i m} be a set of m items and DB = { C1,
C2, C3, ..., C n} be a database of n cases or
observations and each case contains items in I. A
pattern is a set of items that occur in a case. The
number of items in a pattern is called the length of
the pattern. To search for all valid patterns of length
1 up to m in large database is computational
expensive. For a set I of m different items, the
search space for all distinct patterns can be as huge
as 2m-1. To reduce the size of the search space, the
support measurement has been introduced [1]. The
function support(P) of a pattern P is defined as a
number of cases in DB containing P. Thus,

support(P) = |{T | T  DB, P  T }|. A pattern P is
called frequent pattern if the support value of P is
not less than a predefined minimum support
threshold minS. It is the minS constraints that help
reducing the computational complexity of frequent
pattern generation. The minS metric has an anti-
monotone property and is applied as a basis for
reducing search space of mining frequent patterns in
algorithm Apriori [1].

2.3 Data Clustering
Clustering refers to the iterative process of
automatic grouping of data based on their similarity.
There exist a large number of clustering techniques,
but the most classical and popular one is the k-
means algorithm [12]. Given a data set containing n
objects, k-means partitions these objects into k
groups. Each group is represented by the centroid,
or central point, of the cluster. Once cluster means
or representatives are selected, data objects are
assigned to the nearest centers. The algorithm
iteratively selects new better representatives and
reassigns data objects until the stable condition has
been reached. The stable condition can be observed
from cluster assigning that each data object does not
change its cluster.

3 Programming Based on Logic
In logic programming, a clause is a disjunction of
literals (atomic symbols or their negations) such as
p q and p r. A statement is in clausal form if it
is a conjunction of clauses such as (p q) ( p r).
Logic programming is a subset of first order logic in
which clauses are restricted to Horn clauses.

A Horn clause, named after the logician Alfred
Horn [16], is a clause that contains at most one
positive literal such as  p q r. Horn clauses are
widely used in logic programming because their
satisfiability property can be solved by resolution
algorithm (an inference method for checking
whether the formula can be evaluated to true).

A Horn clause with no positive literal, such as
 p q, which is equivalent to  (p q), is called
query in Prolog and can be interpreted as ‘:- p, q’ in
which its value (true/false) to be proven by
resolution method. A clause that contains exactly
one positive literal such as r is called a fact
representing a true statement, written in clausal form
as ‘r :-’ in which the condition part is empty and
that means r is unconditionally true. Therefore, facts
are used to represent data. A Horn clause that
contains one positive literal and one or more

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Nittaya Kerdprasop, Kittisak Kerdprasop

ISSN: 1790-0832 1720 Issue 10, Volume 6, October 2009

negative literals such as  p q r is called a
definite clause and such clause can equivalently
written as (p q) r which in turn can be
represented as a Prolog rule as r :- p, q. The symbol
‘:-’ is intended to mean ‘’, which is implication in
first-order logic (it stands for ‘if’), and the symbol
‘,’ represents the operator  (or ‘AND’).

In Prolog, rules are used to define procedures
and a Prolog program is normally composed of facts
and rules. Running a Prolog program is nothing
more than posing queries to obtain true/false
answers. The advantages of using logic
programming are the flexible form of query posing
and the additional information regarding variable
instantiation obtained from the Prolog system once
the query is evaluated to be true.

The symbols p, q, r are called predicates in first-
order logic programming and they can be quantified
over variables such as r(X) :- p(X,Y), q(Y). This
clause has the same meaning as X (p(X,Y)  q(Y)
 r(X)).The scope of variables is within a clause
(delimit the end of clause with a period). Horn
clauses are thus the fundamental concept of logic
programming.

Higher-order predicate is a predicate in a clause
that can quantify over other predicate symbols [14],
[15]. As an example, besides the rule r(X):- p(X,Y),
q(Y), if we are also given the following five Horn
clauses (or facts): p(1, 2). p(1, 3). p(5, 4). q(2).
q(4).

By asking the query: ?- r(X), we will get the
response as ‘true’ and also the first instantiation
information as X=1. If we want to know all
instantiations that make r(X) to be true, we may ask
the query: ?- findall(X, r(X), Answer).We will get
the response: Answer = [1,5], which is a set of all
answers obtained from the predicate r(X) according
to the given facts. The predicate symbol findall
quantifies over the variables X, Answer, and the
predicate r. The predicate findall is thus called a
higher-order predicate.

Meta-level programming is also another
powerful feature of Prolog. Meta-programs treat
other programs as their input data. Data and
program in Prolog take the same representational
format, i.e. clausal form. Therefore, it is very natural
to write meta-program in Prolog.

The following example illustrates the procedure
map that takes a list of integers [1,2,3,4,5] and
another procedure square as its input arguments and
produce a list of square values as its output. If we
pose the query: ?- map(square, [1,2,3,4,5], L), then
we will get the answer: L = [1,4,9,16,25].

square(X, Y) :- Y is X*X.

map(ProcedureName, [H|T], [NewH|NewT]) :-

 Procedure=.. [ProcedureName,H,NewH],

 call(Procedure),

 map(ProcedureName, T, NewT).

map(_, [], []).

4 Medical Decision Support System
Health information is normally distributive and
heterogeneous. Hence, we design the medical
decision support system (Figure 1) to include data
integration component at the top level to collect data
from distributed databases and also from documents
in text format. Data at this stage are to be stored in a
warehouse to support direct querying as well as
analysis with knowledge induction engine.

Knowledge base in our design stores both
induced knowledge, in which its significance has to
be evaluated by the domain expert, and background
knowledge encoded from consultation with human
experts. Knowledge inferring and reasoning is the
module interfacing with medical practitioners and
physicians at the front-end and accessing knowledge
base at the back-end.

Figure 1. Knowledge induction component in the
medical decision support system

 Medical Decision Support System

 Data
 Integration

Patient records
 Clinical data &
Other documents Data warehouse

 Knowledge
 Induction induced knowledge
 and
 Evaluation background
 knowledge

 KB

 Request/query Knowledge inferring
 and reasoning
Medical Response
practitioner

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Nittaya Kerdprasop, Kittisak Kerdprasop

ISSN: 1790-0832 1721 Issue 10, Volume 6, October 2009

The process of knowledge discovery is complex
and iterative in its nature. We design the system to
be composed of two phases: knowledge induction
and knowledge inferring.

Knowledge induction is the back-end of the
system responsible for acquiring and discovering
new and useful knowledge. Usefulness is to be
validated at the final step by human experts.
Discovered knowledge is stored in the knowledge
base to be applied to solve new cases or create new
knowledge in the knowledge inferring phase, which
is the front-end of the proposed system.

The proposed system obtains input from
heterogeneous data sources. Such data can be
redundant, incomplete, and noisy. Therefore, the
knowledge-induction-and-evaluation component
(Figure 2) has been designed to clean, transform,
and select only relevant data sample.

Figure 2. Architecture of the knowledge-induction-
and-evaluation component

Figure 3. Ontology for guiding mining-method
selection at the DM step

The DM component is for performing various

mining tasks. Currently, we design and implement
three different mining modules, i.e. classification,
association, and clustering. We adopt the ontology
concept at this step to guide the mining
methodology selection. A simple form of ontology
to select appropriate mining method is shown in
Figure 3.

The Post-DM component composed of two main
features: knowledge evaluator and knowledge
integrator. These features perform functionalities
aiming at a feasible knowledge deployment.
Knowledge evaluator involves evaluation, based on
corresponding measurement metrics, of the mining
results. Knowledge integrator examines the induced
patterns to remove redundant knowledge.

5 System Implementation
In this section, we present the Prolog coding of DM,
a major module for mining different kinds of
knowledge in the knowledge-induction-and
evaluation component. Prolog code is based on the
syntax of SWI Prolog (www.swi-prolog.org).

Data format. The data to be used by any mining
method of the DM module take the same format,
that is, as a Prolog file. As an illustration, we use the
allergy data of ten patients. The following data show
information of ten patients suffering from allergy
(class = yes). The possible indicative symptoms are
sore throat, fever, swollen glands, congestion, and

Knowledge-induction-and-evaluation

Post-DM

DM

Pre-DM Transformation

Cleansing

Reduction

normalized data

guiding ontology

Classification

Association

Clustering

discovered knowledge

Knowledge
Evaluator

Knowledge
Integrator

Evaluation
metrics

Background
knowledge

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Nittaya Kerdprasop, Kittisak Kerdprasop

ISSN: 1790-0832 1722 Issue 10, Volume 6, October 2009

headache. Some patients had some of these
symptoms but are not suffering from allergy (class =
no). To induce the common symptoms (or model)
of allergy patients from this data, we have to save
this data set as a Prolog file (data.pl).

%% Data: Allergy diagnosis

 % Patients’ symptoms and their possible values

attribute(soreThroat, [yes, no]).

attribute(fever, [yes, no]).

attribute(swollenGlands, [yes, no]).

attribute(congestion, [yes, no]).

attribute(headache, [yes, no]).

attribute(class, [yes, no]).

 % data instances

instance(1, class=no, [soreThroat=yes, fever=yes,
swollenGlands=yes, congestion=yes,
headache=yes]).

instance(2, class=yes, [soreThroat=no, fever=no,
swollenGlands=no, congestion=yes,
headache=yes]).

instance(3, class=no, [soreThroat=yes, fever=yes,
swollenGlands=no, congestion=yes,
headache=no]).

instance(4, class=no, [soreThroat=yes, fever=no,
swollenGlands=yes, congestion=no,
headache=no]).

instance(5, class=no, [soreThroat=no,
fever=yes, swollenGlands=no,
congestion=yes, headache=no]).

instance(6, class=yes, [soreThroat=no, fever=no,
swollenGlands=no, congestion=yes,
headache=no]).

instance(7, class=no, [soreThroat=no,
fever=no, swollenGlands=yes,
congestion=no, headache=no]).

instance(8, class=yes, [soreThroat=yes, fever=no,
swollenGlands=no,
congestion=yes, headache=yes]).

instance(9, class=no, [soreThroat=no,
fever=yes, swollenGlands=no,
congestion=yes, headache=yes]).

instance(10, class=no, [soreThroat=yes,
fever=yes, swollenGlands=no,
congestion=yes, headache=yes]).

Classification. The objective of classification is
to induce data model of two classes: positive (class
= yes) and negative (class=no). Binary classification
is a typical task in medical data mining. The code,
however, can be easily modified to classify data
with more than two classes. To induce the common
symptoms (or model) of patients suffering from
allergy, we use the decision-tree induction method
[18]. The process starts when the following main
module is invoked. Note that clauses containing
higher-order predicates are highlighted throughout
the given program code.

:-include('data.pl').
:-dynamic current_node/1,node/2,edge/3.

 main :-

 init(AllAttr,EdgeList),

 getNode(N), % get node number

 create_edge(N,AllAttr,EdgeList),

 print_model.

 init(AllAttr,[root-nil/PB-NB]) :-

 retractall(node(_,_)),

 retractall(current_node(_)),

 retractall(edge(_,_,_)),

 assert(current_node(0)) ,

 findall(X, attribute(X,_), AllAttr1),

 delete(AllAttr1, class, AllAttr),

 findall(X2,instance(X2,class=yes,_),PB),

 findall(X3,instance(X3,class=no,_),NB).

 getNode(X) :-

 current_node(X),

 X1 is X+1,

 retractall(current_node(_)),

 assert(current_node(X1)).

The main module calls the init procedure (or

precidate) to initialize the temporary knowledge
base by removing all information that might be
remained in the knowledge base and asserting the
root node of the tree. The node and edge structures
of our decision tree have the following formats:

 node(nodeID, [PositiveCase]-[NegativeCase])

 edge(ParentNode, EdgeLabel, ChildNode)

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Nittaya Kerdprasop, Kittisak Kerdprasop

ISSN: 1790-0832 1723 Issue 10, Volume 6, October 2009

The node structure is composed of two parts:
node-id and the mixture of positive and negative
cases in that node. The edge is a link from parent
node to child node. Each edge contains three pieces
of information; that is, id of parent node, the edge
label, and id of child node. Node id 0 is a special
node representing a root node and it links to node
number 1. The tree building starts with the
create_edge and create_nodes procedures.

 create_edge(_,_,[]) :- !.

 create_edge(_,[],_) :- !.

 create_edge(N, AllAttr, EdgeList) :-

 create_nodes(N, AllAttr, EdgeList).

 create_nodes(_,_,[]) :- !.

 create_nodes(_,[],_) :- !.

 create_nodes(N, AllAttr, [H1-H2/PB-NB|T]) :-

 getNode(N1), % get node number N1

 assert(edge(N,H1-H2,N1)),

 assert(node(N1,PB-NB)),

 append(PB, NB, AllInst),

 ((PB \== [], NB \== []) ->

 (cand_node(AllAttr, AllInst, AllSplit),

 best_attribute(AllSplit,

 [V, MinAttr, Split]),

 delete(AllAttr, MinAttr, Attr2),

 create_edge(N1, Attr2, Split))

 ; true),

 create_nodes(N, AllAttr, T).

best_attribute([], Min, Min).

best_attribute([H|T], Min) :-

 best_attribute(T, H, Min).

best_attribute([H|T], Min0, Min) :-

 H =[V,_, _],

 Min0 = [V0, _, _],

 (V < V0 -> Min1 = H;

 Min1 = Min0),

 best_attribute(T, Min1, Min).

 % generate candidate decision node

cand_node([],_,[]) :- !.

cand_node(_,[],[]).

cand_node([H|T],Ins,[[Val,H,SplitL]|Att]) :-

 info(H, Ins, Val, SplitL),

 cand_node(T,Ins,Att).

 % compute Info of each candidate node

concat3(A,B,C,R) :-

 atom_concat(A,B,R1),

 atom_concat(R1,C,R).

info(A, CurInstL, R, Split) :-

 attribute(A,L),

 maplist(concat3(A,=), L, L1),

 suminfo(L1, CurInstL, R, Split).

suminfo([],_,0,[]).

suminfo([H|T], CurInstL, R, [Split | ST]) :-

 AllBag=CurInstL,

 term_to_atom(H1,H),

 findall(X1, (instance(X1,_,L1),

 member(X1, CurInstL),

 member(H1,L1)), BagGro),

 findall(X2,(instance(X2,class=yes, L2),

 member(X2, CurInstL),

 member(H1,L2)), BagPos),

 findall(X3,(instance(X3,class=no, L3),

 member(X3, CurInstL),

 member(H1,L3)), BagNeg),

 (H11=H22) =H1,

 length(AllBag, Nall),

 length(BagGro, NGro),

 length(BagPos, NPos),

 length(BagNeg, NNeg),

 Split = H11-H22/BagPos-BagNeg,

 suminfo(T, CurInstL, R1,ST),

 (NPos is 0 *->L1 = 0;

 L1 is (log(NPos/NGro)/log(2))),

 (0 is NNeg *->L2 = 0;

 L2 is (log(NNeg/NGro)/log(2))),

 (NGro is 0 -> R= 999;

 R is (NGro/Nall)*(-(NPos/NGro)*L1-

 (NNeg/NGro)*L2)+R1).

The given source code does not provide detail for

print_model procedure. Interested readers are
suggested to simply add a rule print_model :- true.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Nittaya Kerdprasop, Kittisak Kerdprasop

ISSN: 1790-0832 1724 Issue 10, Volume 6, October 2009

Then run the program by calling predicate main.
Prolog will respond true with no other information
because we simply add the always-true condition in
the print_model predicate. At this moment we can
view the tree model by calling listing(node) and
listing(edge) predicates. The results will be as
follows:

1 ?- main.
true.

2 ?- listing(node).

:- dynamic user:node/2.

user:node(1, [2, 6, 8]-[1, 3, 4, 5, 7, 9, 10]).

user:node(2, []-[1, 3, 5, 9, 10]).

user:node(3, [2, 6, 8]-[4, 7]).

user:node(4, []-[4, 7]).

user:node(5, [2, 6, 8]-[]).

true.

3 ?- listing(edge).

:- dynamic user:edge/3.

user:edge(0, root-nil, 1).

user:edge(1, fever-yes, 2).

user:edge(1, fever-no, 3).

user:edge(3, swollenGlands-yes, 4).

user:edge(3, swollenGlands-no, 5).

true.

The running results convey the following

information. From node number 1, the edge with
label fever-yes (representing attribute fever with a
value yes) links to node number 2. Node 1 contains
all ten cases of patients suffering and not suffering
from allergy, whereas node 2 contains the
information []-[1,3,5,9,10] to infer none of positive
cases and five negative cases. Therefore, the results
in the above node and edge structures represent the
following data model:

class(allergy) :- fever=no,
 swollenGlands=no.

Association mining. We implement the

association mining module based on the algorithm
APRIORI [1]. The implementation shows only the
first pass of the algorithm; that is, the generation of
frequent itemsets. The second pass, which is the
generation of association rules from frequent

itemsets, can be easily extended from the given
code.

Main predicate of this module is
association_mining. Upon invocation, this predicate
obtains input data from the predicate input(Data),
and get the minimum support value through the
predicate min_support(V). Then the main predicate
starts the process by making candidate and large
itemsets of length one, two, three, and so on
(through the predicates makeC1, makeL, and
apriori_loop, respectively). All highlighted terms
are higher-order predicates. These predicates are
maplist, include, and setof.

The predicate maplist takes three arguments;
therefore, it may be written as maplist/3. This
predicate applies its first argument, which is also a
predicate, to each element of a list appeared in the
second argument. The result is a list in the third
argument.

The predicate include/3 takes another predicate
as its first argument and adds the result obtained
from the first argument to the list in second
argument. The result appears as a list in the third
argument. The predicate setof/3 also works with
other predicate to collect each answer as a list in its
third argument.

association_mining :-

 input(Data),

min_support(V),
 makeC1(C),

 makeL(C,L),

 apriori_loop(L,1).

apriori_loop(L,N) :-

length(L) is 1,!.
apriori_loop(L,N) :- N1 is N+1,

 makeC(N1,L,C),

makeL(C, Res),
 apriori_loop(Res, N1).

makeC1(Ans) :- input(D),

 allComb(1, ItemSet, Ans2),

 maplist(countSS(D), Ans2, Ans).

makeC(N,ItemSet,Ans) :- input(D),

 allComb(2,ItemSet, Ans1),

 maplist(flatten, Ans1, Ans2),

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Nittaya Kerdprasop, Kittisak Kerdprasop

ISSN: 1790-0832 1725 Issue 10, Volume 6, October 2009

 maplist(list_to_ord_set, Ans2, Ans3) ,

 list_to_set(Ans3,Ans4),

 include(len(N), Ans4, Ans5),

 maplist(countSS(D), Ans5, Ans).

 %scan database to find: List+N
makeL(C,Res) :- include(filter, C, Ans),
 maplist(head, Ans, Res).

filter(_+N) :- input(A),

length(A, I),

 min_support(V),

N>=(V/100)*I.

head(H+_,H).

 % arbitrary subset of the set containing

 % given number of elements

comb(0, _, []).
comb(N, [X|T], [X|Comb]) :-

N > 0,

N1 is N-1,

 comb(N1,T,Comb).
comb(N,[_|T],Comb) :-

N > 0,

comb(N,T,Comb).

allComb(N,I,Ans) :-

setof(L, comb(N, I, L), Ans).

countSubset(A,[],0).

countSubset(A,[B|X],N) :-

not(subset(A,B)),

 countSubset(A,X,N).

countSubset(A,[B|X],N) :-

subset(A,B),

 countSubset(A,X,N1),

N is N1+1.

countSS(SL,S,S+N) :-

countSubset(S,SL,N).

 len(N,X) :- length(X,N1), N is N1.

Clustering. We implement the data clustering
based on k-means algorithm [12]. The main
predicate is clustering in which the number of
clusters (k) has to be specified and data are to be
included. The predicate makeInitCluster creates
initial k clusters with randomized k centroids, then
assign each data to the closest centroid through the
predicate assignPoint.

Note that the symbol ‘*’, such as those appear in
the predicate cmax(Res, A*V) and freq(X, N*Y,
N*F), refers to the data format to represent
Attribute*Value; it does not mean multiplication. In
Prolog, numerical computation will occur in a
clause with the predicate ‘is’, such as S1 is S + 1 in
the reComputeCenter procedure.

The iteration step, repeatCompute predicate, re-
computes the new k centroids and then re-assign
each data point to the new closest centroid. Iteration
stops when all data do not change their clusters. The
source code presented in the following works with
categorical data. For numerical or data with mixing
types, the distance measurement has to be modified.

clustering(K) :-

makeInitCluster(K, AllClust),

 assignPoint(AllClust, Data, Start, AllPt),

 OldClust=AllClust,

 repeatCompute(K, AllPt, OldClust).

makeInitCluster(K, AllClust):-

 initClust(K, 1, AllClust).

initClust(K, L0, []) :-

L0 > K , ! .

initClust(K, L0, [L0*L|T]) :-

instance(L0,_,L),

 L1 is L0+1,

initClust(K, L1, T).

assignPoint(_, U, M, []) :-

M > U, !.

assignPoint(AllClust, U, M, [M-V-A|T]) :-

 maplist(freq(M), AllClust, Res),

 cmax(Res, A*V),

 M1 is M+1,

 assignPoint(AllClust, U, M1, T).

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Nittaya Kerdprasop, Kittisak Kerdprasop

ISSN: 1790-0832 1726 Issue 10, Volume 6, October 2009

freq(X, N*Y, N*F) :-

 instance(X, _, L1),

 intersection(L1, Y, I),

 length(I, F).

cmax(L, A*V) :-

maplist(cvalue, L, L2),

 max_list(L2, V),

 member(A*V, L), !.

cvalue(_*V, V).

reComputeCenter(K, S, AllPoint, []) :-

S > K, !.

reComputeCenter(K, S, AllPoint, [S*NewC|T]) :-

 findall(P, member(P-_-S, AllPoint), Z),

 allPointAtAllAttr(Z, NewC),

 S1 is S+1,

 reComputeCenter(K, S1, AllPoint, T).

allPointAtAllAttr(AllP, NewClusters) :-

 findall(AttName, (attribute(AttName,_),

 AttName\==class), AttNameL),

 maplist(allPoint(AllP), AttNameL,

 NewClusters).

allPoint(AllP, Att, A) :-

 findall(Att=V, (instance(X, _, K),

 member(X, AllP),

 member(Att=V, K)) , Z),

 maxFreq(Z, A*V).

maxFreq(L, A*V) :-

 findall(X*C, (member(X,L), count(X,L,C)), Z),

 cmax(Z,A*V).

repeatCompute(K, AllPt, OldClust) :-

 reComputeCenter(K,Start,AllPt,NewClus),

 (OldClust==NewClus ->

 writeln('-No-cluster-changes***End*');

 (writeln(newClust-NewClus),

 assignPoint(NewClus,Data,Start,AllPt2),

 writeln(allNewPoint-AllPt2),

 repeatCompute(K, AllPt2, NewClus))).

6 Conclusion
Huge amount of data collected by hospitals and
clinics are not yet turned into useful knowledge due
to the lack of efficient analysis tools. We thus
propose a rapid prototyping of an automatic data-
mining tool to induce knowledge from medical data.
The induced knowledge is to be evaluated and
integrated into the knowledge base of a medical
decision support system. Discovered knowledge
facilitates the reuse of knowledge base among
decision-support applications within organizations
that own heterogeneous clinical and health
databases. One obvious application of such
knowledge is to pre-process other data sets by
grouping it into focused subset containing only
relevant data instances.

Our implementation of knowledge induction
engines is based on the concept of higher-order
Horn clauses using the logic-programming
paradigm. Higher-order programming has been
originally appeared in functional languages and
soon be ubiquitous in several modern programming
languages such as Java. Higher order style of
programming has shown the outstanding benefits of
code reuse and high level of abstraction.

This paper illustrates higher order programming
techniques in Prolog by means of higher-order
predicates such as maplist, findall, setoff, and
include. These predicates take other predicates as its
argument. With such expressive power of higher-
order predicates, program coding of the designed
system is very concise as demonstrated in the paper.
Program conciseness contributes directly to program
verification and validation, which are important
issues in software engineering.

The powerful feature of meta-level programming
in Prolog facilitates the reuse of data-mining results
represented as rules to be flexibly applied as
conditional clauses in other applications. The
plausible extension of our current work is to add
constraints into the knowledge induction method in
order to limit the search space and therefore yield
useful and timely knowledge. We also plan to
extend our system to work with stream data that
normally occur in modern medical institutions.

Acknowledgements

This research has been funded by grants from the
National Research Council and the Thailand
Research Fund (TRF, grant number RMU5080026).
Data Engineering and Knowledge Discovery

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Nittaya Kerdprasop, Kittisak Kerdprasop

ISSN: 1790-0832 1727 Issue 10, Volume 6, October 2009

(DEKD) Research Unit has been fully supported by
Suranaree University of Technology.

References:

[1] R. Agrawal et al., Fast discovery of association
rules, In U. Fayyad, G.Piatetsky-Shapiro, P.
Smyth, and R.Uthurusamy (Eds.), Advances in
Knowledge Discovery and Data Mining, AAAI
Press, pp.307-328.

[2] Y. Bedard et al., Integrating GIS components
with knowledge discovery technology for
environmental health decision support, Int. J
Medical Informatics, Vol.70, 2003, pp.79-94.

[3] C. Bojarczuk et al., A constrained-syntax
genetic programming system for discovering
classification rules: Application to medical data
sets, Artificial Intelligence in Medicine, Vol.30,
2004, pp.27-48.

[4] E. German, A. Leibowitz, and Y. Shahar, An
architecture for linking medical decision-
support applications to clinical databases and
its evaluation, J. Biomedical Informatics,
Vol.42, 2009, pp.203-218.

[5] S. Ghazavi and T. Liao, Medical data mining
by fuzzy modeling with selected features,
Artificial Intelligence in Medicine, Vol.43,
No.3, 2008, pp.195-206.

[6] M. Huang, M. Chen, and S. Lee, Integrating
data mining with case-based reasoning for
chronic diseases prognosis and diagnosis,
Expert Systems with Applications, Vol.32,
2007, pp.856-867.

[7] N. Hulse et al., Towards an on-demand peer
feedback system for a clinical knowledge base:
A case study with order sets, J Biomedical
Informatics, Vol.41, 2008, pp.152-164.

[8] C.-P. Hung, H.-J. Su, and S.-L. Yang,
Melancholia diagnosis based on GDS
evaluation and meridian energy measurement
using CMAC neural network approach, WSEAS
Transactions on Information Science and
Applications, 6(3), March 2009, pp.500-509.

[9] E. Kretschmann, W. Fleischmann, and R.
Apweiler, Automatic rule generation for
protein annotation with the C4.5 data mining
algorithm applied on SWISS-PROT,
Bioinformatics, Vol.17, No.10, 2001, pp.920-
926.

[10] P.-J. Kwon, H. Kim, and U, Kim, A study on
the web-based intelligent self-diagnosis
medical system, Advances in Engineering
Software, Vol.40, 2009, pp.402-406.

[11] C. Lin et al., A decision support system for
improving doctors’ prescribing behavior,

Expert Systems with Applications, Vol.36,
2009, pp.7975-7984.

[12] J. MacQueen, Some methods for classification
and analysis of multivariate observations,
Proceedings of the 5th Berkeley Symp. on
Mathematical Statistics and Probability, vol.1,
pp.281-297.

[13] E. Mugambi et al., Polynomial-fuzzy decision
tree structures for classifying medical data,
Knowledge-Based System, Vol.17, No.2-4,
2004, pp.81-87.

[14] G. Nadathur and D. Miller, Higher-order Horn
clauses, J ACM, Vol.37, 1990, pp.777-814.

[15] L. Naish, Higher-order logic programming in
Prolog, Technical Report 96/2, Dept. Computer
Science, Univ. Melbourne, Australia, 1996.

[16] S.-H. Nienhuys-Cheng and R.D. Wolf,
Foundations of Inductive Logic Programming,
Springer, 1997.

[17] B. Pandey and R.B. Mishra, Knowledge and
intelligent computing system in medicine,
Computers in Biology and Medicine, Vol.39,
2009, pp.215-230.

[18] J.R. Quinlan, Induction of decision trees,
Machine Learning, Vol.1, 1986, pp.81-106.

[19] O. Rijal et al., A relook at logistic regression
methods for the initial detection of lung
ailments using clinical data and chest
radiography, WSEAS Transactions on
Information Science and Applications, 6(9),
September 2009, pp.1503-1512.

[20] T. Wah and O. Sim, Development of a data
warehouse for lymphoma cancer diagnosis and
treatment decision support, WSEAS
Transactions on Information Science and
Applications, 6(3), March 2009, pp.530-543.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Nittaya Kerdprasop, Kittisak Kerdprasop

ISSN: 1790-0832 1728 Issue 10, Volume 6, October 2009

