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Abstract: We present an alternative online simulation model for human tissue. Online simulation of human tissue
deformation during surgical training or surgical assistance is becoming increasingly important within the medical
community. Unfortunately, even classical simulation models find human tissue to be computationally too costly for
online simulation. In this paper, we simplify the complex biomechanical nature of human tissue within reasonable
limits to develop a mathematical model which can be used for online simulation. This simplification is based on
two principles; volume conservation and Pascal’s Principle. Volume conservation is inherent to many organs in the
human body due to the high concentration of blood (almost incompressible liquid) in them. Given an externally
applied force, we use Pascal’s Principle to obtain the global deformation vector at each time-step during simulation.

Key–Words: Virtual Reality, Soft Tissue Simulation, Surgical Simulators.

1 Introduction

Human tissue is deformable. Hence, modeling this
behavior is essential for applications that involve soft
tissue simulation. In a medical simulator for example
[1], human tissue is generally represented by a geo-
metrical model and a physical model. Often, a combi-
nation of the two is referred to as a numerical model.
In current surgical simulation systems, the numerical
model may be subjected to real-time interactive de-
formations and haptic force feedback under different
surgical tool based gestures [2]. So accurate models
need to be designed to realize the consistency between
them. In other words, there is a need to model the
biomechanical nature of soft tissue by using mathe-
matical equations so that consistent visual deforma-
tion and haptic force feedback can be provided inter-
actively to the user.

Soft tissue, being complex physically and geo-
metrically, is often divided into a set of smaller ele-
ments to facilitate analysis. Over the past fifteen years
or so, many mathematical models that are based on
the concept of discrete elements have been proposed
for soft tissue. In practice, most of these models are
simplified for soft tissue simulation. This results in a
trade-off between physical accuracy and computation
efficiency. Such an adaptive scheme gives us varia-
tions in the formulation of the above mentioned mod-
els. The main concerns regarding these physical mod-
els are described in the following sections.

1.1 Interactive Time
The first concern is the effective modeling of soft tis-
sue to achieve an interactive-time surgical simulation.
Up to now, several models have been suggested, but
none of them has been satisfactory from the simula-
tion point of view as yet. Since the simulated object
itself is very complicated and computation resources
are limited, it is natural to consider a trade-off between
physical accuracy and computation efficiency. A com-
promise can be done by laying more emphasis on the
areas of interest, for example, linear elasticity, local
deformation or volume conservation. So this idea has
to be implemented adaptively. This adaptation scheme
is now the main topic of research in biomechanical
models of soft tissue.

1.2 Numerical Stability
A second concern regarding soft tissue models is the
numerical resolution scheme applied to solve these
systems. Currently we find several methods; linear
static, nonlinear static, linear dynamic and nonlinear
dynamic, each being applied depending on the appli-
cation and interactive-time requirements. For exam-
ple, simulating cutting and tearing generally requires
a dynamic model to accurately capture the viscoelas-
tic properties of soft tissue when topology changes.
On the other hand, simulating large deformations or
stress-relaxation may only require at most a nonlin-
ear static model owing to the well-damped nature of
soft tissue. In either case, the main issue of interest
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is always stability and rapidity of the chosen scheme,
during the entire history of load application.

1.3 Realism
Another concern regarding soft tissue models is re-
alism. This corresponds to identifying the physical
parameters of a model such that the behavior of the
model is close to reality. This part is the most difficult
as it requires a lot of expertise and experimentation.
Expertise, usually from medical professionals, is re-
quired because soft tissue needs to be alive during ex-
perimentation so that the results obtained from them
are valid and accurate.

In this work, we present another variation of
a soft tissue simulation model based on bulk vari-
ables. This model is called the Volume Distribution
Method (VDM) [3]. We are interested in simulating
deformable objects which have an elastic shell as sur-
face and are filled with an incompressible fluid. Many
human organs have this characteristic, for example the
human liver can be considered as such an object. It is
composed of two major parts; an elastic skin called
Capsule of Glisson as the surface and the Parenchyma
which is the interior that is full of liquid (≈ 95%
blood).

2 Previous Works [4]
It would be quite impossible to highlight all possible
variations in soft tissue simulation models that have
been used. These variations have been tailored for de-
formable objects and developed for a certain applica-
tion. However, a survey on deformable models which
are used on a virtual reality platform can be found in
[5]. In this paper, the conclusion was that physically
based models are more suitable for computer graphics
simulation. Our work is more related to the formu-
lation of physically based models of soft tissue using
discrete elements. Within this context, so far finite
elements and particle systems have been used as dis-
crete elements. We discuss these models in the fol-
lowing section, highlighting the advantages and the
disadvantages which has led us to propose an alterna-
tive physical model.

2.1 Particle Systems
The method of using a particle system network which
consists of a mesh of nodes connected by elastic links
to model soft objects has been applied by many au-
thors in various fields. The mass-spring network is the
most common technique used, i.e. the masses are the
nodes and the springs are the edges of the mesh. This

mass-spring network is used to discretize the equa-
tions of motion. The link connecting pairs of nodes al-
lows the local description of elastic properties in soft
tissue and the masses at the nodes give inertia prop-
erties. This particle system model is relatively easy
to implement, computationally efficient (fast simula-
tion) and numerically stable (no stiffness phenomena
appears in deformable objects).

The mass-spring network is a simple physical
model with a solid mathematical foundation and well-
understood dynamics. Its computational burden is rel-
atively small [4] and is thus suitable for interactive-
time applications. Since the mass-spring network has
a simple structure, many operations like large defor-
mations and topology modifications can be simulated
easily. Furthermore, as interactions in this model are
local between nodes, parallel computations are possi-
ble. Hence, it is common that we find this model in
many applications involving soft tissue.

Mass-spring networks has been widely used in 2D
and 3D facial static and dynamic animation [6] [7]. It
also has been used for cloth simulation, video games
and animation movies. Several methods have been
suggested to avoid numerical instability [8] [9]. A
lot of research work has also been done on the mass-
spring network to improve various aspects like adap-
tive refinement of the parameters [10] and controlling
the isotropy or anisotropy of the material being sim-
ulated [11]. [12] developed a simple but efficient al-
gorithm based on the mass-spring model for micro-
surgery simulation. This algorithm took advantage of
the locality of the deformations to reduce calculations
by using a wave-propagation technique that automat-
ically halts computation when deformations become
insignificant. Using this algorithm, they achieved an
updating frequency of 30Hz for the deformations in
a suturing vessel surgery, which is compatible with
interactive-time graphic animation.

Unfortunately, this physical model has some
drawbacks. When representing a volume using bi-
nary connectors, the model can lead to several prob-
lems. Certain constraints like volume conservation are
not easily expressed in the model. Of course, more
springs will improve connectivity and thus produce
a better approximation of the volume. Thus, a vol-
umetric object could perhaps be accurately modeled
by an infinite amount of particles and springs, but
this is clearly not an option computationally speaking.
To remedy this problem, it has been proposed to add
cross springs, thereby connecting opposing corners.
However, this implies that the physical behavior of the
object is intrinsically dependent on the connectivity of
the springs. When aiming for physical realism, this is
clearly a handicap. Alternatively [13] proposed the
use of angular and torsion springs, but this again is

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS K. Sundaraj

ISSN: 1790-0832 1708 Issue 10, Volume 6, October 2009



another form of topological dependency. Also, proper
values for the constants of the mass-spring network
are not easily specified.

2.2 Finite Elements
The finite element method is a full continuum model.
It gives the equilibrium of a body when subjected to
external forces. This is obtained by minimizing the to-
tal potential energy of the system. In this method, soft
tissue is represented by an elementary volume. The
deformation of this volume is often expressed using
the Green-Lagrange tensor which has the nice prop-
erty of being invariant to rotation or translation. Since
the internal stress of the volume is proportional to the
deformation (or strain), we may obtain the forces at
the nodes if the stress-strain relationship is known.

Several extensions to the FEM model has been
done by several authors in various forms such that
it can be applied to soft tissue simulation. The
tensor-mass model discretizes the virtual organ with
conformal tetrahedras [14]. It is found that when
there is a topology modification procedure, the tensor-
mass model can give more accurate results. The ini-
tially proposed tensor-mass model only accommo-
dated small displacements, but [15] made modifica-
tions to the model for large displacements by using
nonlinear strain tensors and anisotropic material laws.
In the hybrid-elastic model [16], there is a combina-
tion of a quasi-static precomputed linear elastic model
and a tensor-mass model. Thus, the hybrid-elastic
model takes advantage of the good properties of the
combined models. Another combination of models to
produce a hybrid model system can be found in [17].
In [18] the hybrid-elastic model is used to simulate a
hepatectomy surgical procedure.

On the whole, FEM has too heavy a computa-
tion burden to achieve accurate and interactive-time
results. For complicated objects, under linear analy-
sis, we may be interested only on the parts that can be
seen (the surface). It is then possible to condense the
matrix equation and apply some precomputation tech-
niques to reduce computation [19]. In spite of this,
we believe that FEM is not suitable for interactive-
time applications for the present CPU capacity. But
if there is no topology changes, it is possible to ob-
tain real-time deformations by using precomputation
[20]. Nevertheless this is limited to small deforma-
tions which can be a handicap for soft tissue simula-
tions. But [21] have proposed an implementation of an
explicit formulation of FEM taking into account large
deformations and topology changes. They managed
to perform cutting on a virtual human liver by consid-
ering human behavior and limiting stress conditions.

However, the finite element method (FEM) was

originally intended for small deformations. Large de-
formations can be simulated but at the loss of accu-
racy. Furthermore, the physical behavior of soft tis-
sue, particularly volume conservation, which is re-
flected in the choice of the deformation tensor and the
stress-strain material tensor is arbitrary. It generally
depends on the application intended for. Neverthe-
less, the finite element method has the best approxi-
mation of deformation of an elementary volume and
as such produces the most realistic physical simula-
tion for soft tissue.

3 Volume Distribution Method
(VDM) [3]

VDM is a surface based method that allows the com-
putation of a global deformation vector produced by
an external load vector. It only requires the surface
to be discretized with the inside being transparent to
the model. The interior of the object is assumed to be
filled by some incompressible fluid. This fluid acts as
the medium that transfers the change in energy expe-
rienced by the deformable object due to a change in
state from equilibrium.

Figure 1: A deformable object with the surface dis-
cretized and a zoomed view of the surface. The inte-
rior of this object is filled with some incompressible
fluid.

Consider a deformable object of volume V and
surface area A that is represented by Q discrete sur-
face elements of vectorial surface area S as shown in
Fig. 1. Each element has M nodes and the entire sur-
face has N nodes. Let each node i be shared by k
neighboring elements and connected to j neighboring
nodes. The following can be obtained,

Ai =
∑
k

Sk

M
(1)

Vi = V
‖Ai‖
A

(2)
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where A and V are the distributed area and volume
respectively for each node. When a force is applied to
a node on the surface, deformation is produced. How-
ever, this deformation is a result of the applied force
F and skin tension T . They are given as,

Fi = Bi
∆Vi

Vi
(3)

Ti =
∑
j

Bij
∆Vi −∆Vj

Vi
(4)

whereBi andBij are the modulus of elasticity and the
connectivity modulus of elasticity constants of node i
respectively. In the VDM model, stress is a function
of strain and strain is related to a change in volume,

εi =
∑
j

∆Vi −∆Vj (5)

σi =
Bi

Vi
εi (6)

where ε and σ are the strain and stress respectively.
Equilibrium of the system at each node is obtained
when the external pressure E is equal to the internal
pressure I . They are given as,

Ei = Oi + Fi + Ti (7)

Ii = Ui + Ci +Gi (8)

where O is the surrounding environmental pressure,
U is the pressure of the incompressible fluid, C is the
pressure when contact is applied andG is the pressure
due to the effects of gravity. G is given as,

Gi = ρigiδi (9)

where ρ is the density of the incompressible fluid and
δ is the measured hydrostatic distance of the node due
to the contained fluid. By considering equilibrium of
all nodes, the following is obtained using index nota-
tions,

Bi
∆Vi

Vi
+

∑
j

Bij
∆Vi −∆Vj

Vi
−∆Pi

= Ci + ρigiδi ∀ i = 1 . . . N (10)

where ∆P = U − O. By applying Pascal’s Princi-
ple which gives constant change in pressure through-
out the deformable object, the index i can be removed
from ∆Pi. We can now add a boundary condition
to our system. The incompressibility of the fluid im-
poses the constraint that the volume of the deformable
object is maintained at all times. This can be stated as,

N∑
i

∆Vi = 0 (11)

Since we are interested to obtain the global dis-
placement vector, ∆V can be rewritten as,

∆Vi = Ai∆Li (12)

where ∆L is displacement vector of a node. We now
have 3N + 1 equations and 3N + 1 unknowns; ∆Li

for i = 1 . . . N and ∆P . These equations can be as-
sembled in the following form,

K∆L = R (13)

where K is the state matrix of the VDM assemblage,
∆L is the global deformation vector and R is the load
vector which consists of applied contact pressure C
and the hydrostatic pressure G terms. During run-
time, this equation is solved using standard numerical
methods and the geometrical model is updated.

In our experiments, a nonlinear analysis was con-
ducted whereby all nonlinear terms are updated at
each time-step. This amounts to simulating large de-
formations and large strains. In this case, for large
systems, a simple inversion or preconditioning of the
state matrix at each time-step may be computation-
ally expensive for interactive-time applications. How-
ever, the rapid increase in computational power has
popularized iterative methods as a resolution scheme.
We chose the Bi-Conjugate Gradient (BCG) iterative
method as our optimal resolution scheme [22] for
our experiments. This method is attractive for large
sparse systems because only the nonzero terms of the
state matrix is stored; hence minimal memory. For
real-time solution of very large systems, even a so-
lution in n iterations may be too expensive. How-
ever, in interactive-time applications the solution ∆L
only changes minimally from one time-step to an-
other. Then, by using the previous result of the dis-
placement vector as the starting guess for ∆L, we can
achieve dramatic gains in speed after finding the first
solution. The number of iterations needed to mini-
mize the error below a certain tolerance is very much
smaller than the value of N .

4 Simulation Results
In this section, we presents the simulation results of
the VDM model. This simulation model was tested
for anisotropic behavior, stress distribution and finally
a comparison with a classical model like FEM was
done.

4.1 Stress Distribution
To plot the stress distribution in our VDM model, we
used the cube at rest as an example again (see Fig. 2).

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS K. Sundaraj

ISSN: 1790-0832 1710 Issue 10, Volume 6, October 2009



This time, a force to compress the cube was applied
and deformation was allowed in all directions without
preference. Three test points were used to observe the
magnitude of stress of the cube. The results are pre-
sented.

Figure 2: A test cube at rest was used as an exam-
ple for the stress distribution test. 3 test points were
chosen; A, B and C on the xz-plane.

The results in Fig. 3 show that the stress expe-
rienced by the cube due to volumic tension is indeed
dependent on the displacement and the distributed sur-
face area. In other words, they are a function of volu-
mic change. The stress in the x-direction is very min-
imal for all the test points because these points have
displacement vectors with small x-components. On
the other hand, since all the test points have signifi-
cant displacement in the other directions, stress is ob-
served to increase in the y and z directions. Point C
has almost zero stress in the z-direction because dur-
ing compression, this point has minimum distributed
area in this direction. For the stress in the y-direction,
point A has minimum stress. This is due to the fact
that this point is constrained not to move in this direc-
tion. On the other hand, points B and C are displaced
in the y-direction but pointB has a higher stress which
is due to the higher net volumic change experienced as
compared to point C.

4.2 Anisotropic Behavior
To test this behavior, we compared deformation
curves of three points on a cube at rest that were
placed on the xy, xz and yz planes respectively (see
Fig. 4). In this test, a force was applied to com-

(a)

(b)

(c)

Figure 3: (a) Stress distribution along the x-direction.
(b) Stress distribution along the y-direction. (c) Stress
distribution along the z-direction.
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press the cube at rest. We first allowed deformation
in all directions. We then changed the bulk modulus
to observe the behavior of the cube. The results from
the deformation curves show that the VDM model re-
spects the imposed anisotropic constraints.

Figure 4: A test cube at rest was used as an example
for the anisotropic behavior test. 3 test points were
chosen; A on the xy-plane, B on the xz-plane and C
on the yz-plane.

From the results shown in Fig. 6, we can see that
the cube behaves differently when the bulk modulus is
changed. In the first test, the displacement of pointsB
and C coincide. This is because of the uniform bulk
modulus. Hence, these points should move equally to
maintain conservation of volume. In the second test,
point B is on the xz-plane which has bulk modulus
set to infinity. From the displacement curves, point
B is seen to have nearly zero displacement. On the
other hand, point C has a larger displacement vector
in time. This is due to the constraint of conservation
of volume. In the last test, deformation was preferred
in the y-direction. This is observed in the displace-
ment curve of pointB by comparing with the first test.
PointC however, has a smaller displacement vector to
maintain volume conservation. We note that point A
has a constant displacement curve in all the three tests.
This is due to the constraint of type contact applied to
this node. In conclusion, by changing the bulk modu-
lus that is associated to the nodes, deformation can be
preferred in a particular direction.

4.3 Comparison with FEM
To investigate the accuracy of the VDM model, we de-
cided to compare it with a well known classical model
like the FEM model. In these experiments, two beam

mesh as shown in Fig. 5 with similar rigidity charac-
teristics was used. One end of the beam was fixed and
the other end was subjected to a displacement vector
describing various types of large deformations. The
final configuration of the beam was observed and the
displacement vectors of several points along the beam
was compared.

Figure 5: A test beam with one end fixed was used as
an example for the comparison test. 3 test points were
chosen; A, B and C along the y-axis.

From the results, we can see that there is a dif-
ference in the behavior of the nodes but the general
shape of the beam seem to be identical. We observed
the difference from one tine step to another. In the
first test for stretching, a systematic increase of about
5% in the average error of the curves are observed for
all the test points. When a force to bend the beam
was applied, a constant systematic increase of about
2% in the average error is observed between all the
test points. Twisting was applied in the last test where
again a systematic increase of about 5% in the average
error of the curves are observed for all the test points.

The difference between the models is neverthe-
less expected. FEM is a volumic model as compared
to VDM which is surface based. Also, the physical
parameters of FEM and VDM are not easily matched.
The error in the rigidity constant is another source of
error in the results. It is unclear how a deformable
beam would behave under externally applied forces.
But, we would like to note that realism was rather ob-
served in the VDM model. At each time-step, we cal-
culated the volume of the beam of the two models and
found that volume conservation was rather observed
in the VDM model. In conclusion, there is a differ-
ence between the two models, but if we would like
to observe volume conservation, VDM seems to be a
better choice.
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(a)

(b)

(c)

Figure 6: (a) Compression with uniform bulk modulus. (b) The bulk modulus along the x-direction was set to
infinity. (c) The bulk modulus of the cube was set such that deformation is preferred in the y-direction.
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(a) (b)

(c) (d)

Figure 7: Stretching of a beam with one end fixed and a force applied along the y-axis at the other end. Final
configuration of the beam with the, (a) VDM model and (b) FEM model. (c) The variation of the magnitude of the
displacement vector of the 3 test points. (d) The variation in total object volume during stretching.
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(a) (b)

(c) (d)

Figure 8: Bending of a beam with one end fixed and a force applied along the x-axis at the other end. Final
configuration of the beam with the, (a) VDM model and (b) FEM model. (c) The variation of the displacement
vector of the 3 test points. (d) The variation in total object volume during bending.
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(a) (b)

(c) (d)

Figure 9: Twisting of a beam with one end fixed and a force applied to rotate along the xz-plane at the other
end. Final configuration of the beam with the, (a) VDM model and (b) FEM model. (c) The variation of the
displacement vector of the 3 test points. (d) The variation in total object volume during twisting.
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5 Conclusion
An alternative soft tissue simulation model based on
bulk variables like pressure, volume and modulus of
elasticity has been presented. This model is surface
based, hence it’s complexity is in general lower than
a volume based simulation model like FEM. A key
feature of VDM is the absence of discretization of the
interior. The physical properties of soft tissue in the
VDM model depends on the organ being simulated.
If for example a liver is being simulated, since it is
95% irrigated by blood, we require the density ρ and
modulus of elasticity B of blood. Experiments to de-
termine these parameters must be conducted. Sim-
ulation results show that the behavior of the VDM
model follows a similar pattern like the FEM model
for large deformations like stretching, bending and
twisting but volume conservation was observed much
more in VDM. In addition, these deformation patterns
could be obtain much faster as VDM is computation-
ally less costly. These results were obtained using a
simple beam mesh to simulate soft tissue fibers.
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