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Abstract: As an alternative perspective on designing IND-CCAZ2 encryption, we introduce a new security

notion, nonce-awareness, for encryption. An encryption scheme is nonce-aware if it is computationally
infeasible to produce a valid ciphertext without knowing the associated nonce. We also show that two
remarkable IND-CCAZ2 encryption schemes are nonce-aware.
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1 Introduction

Two different goals for encryptions have been
considered: indistinguishability (IND) [11, 15]
and non-malleability (NM) [10]. IND requires
that it be infeasible for an adversary to distin-
guish between the ciphertexts of any two mes-
sages, even if the two original messages are
given. NM requires that an adversary given a
challenge ciphertext be unable to obtain a dif-
ferent ciphertext such that the plaintexts under-
lying these two ciphertexts are meaningfully re-
lated.

These goals are often considered under
three different active attacks: chosen-plaintext
attack (CPA), non-adaptive chosen-ciphertext
attack (CCA1) [17], and adaptive chosen-
ciphertext attack (CCA2) [18]. Under CPA the
adversary can obtain ciphertext of any plain-
text. Public-key encryption schemes have to
be safe against CPA. Under CCAI1 the adver-
sary can gain access to an oracle for the decryp-
tion function only for the period of time preced-
ing his being given the challenge ciphertext. In
other words, adversary’s queries to the decryp-
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tion oracle cannot depend on the challenge ci-
phertext. However, under CCA2 the adversary
can continue to have access to a decryption or-
acle even after obtaining the challenge cipher-
text. The only restriction is that the adversary
cannot make the decryption oracle decrypt the
challenge ciphertext.

One can combine the goals with the at-
tacks to gain various security notions: IND-
CPA, IND-CCA2, NM-CPA, and NM-CCA2.
Their relations have been studied in [1, 5]. In
particular, it is proved that IND-CCAZ2 is equiv-
alent to NM-CCAZ2 [1]. Among these notions
of security, IND-CCAZ2 is strong and very use-
ful for encryption schemes [21].
ternative perspective on designing IND-CCA?2
encryption, the notion of plaintext-awareness
(PA) is brought in [1, 2, 4]. PAO (respectively,
PA1) requires that it be infeasible for an ad-
versary to yield ciphertexts without knowing
the associated messages, even if he can make

As an al-

a single oracle query (respectively, a polyno-
mial number of oracle queries). Further, PA2
captures eavesdropping capability by providing
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the adversary with an additional encryption or-
acle that returns ciphertexts whose decryption
he may not know. Relations among these no-
tions (PAO, PA1, PA2, IND-CPA, IND-CCAL,
and IND-CCA?2) are studied in [2]. Especially,
PA2 plus IND-CPA implies IND-CCAZ2.

This paper introduces a new security no-
tion, nonce-awareness (NA), for encryption to
provide another perspective on designing IND-
CCAZ2 encryption. Intuitively nonce-awareness
requires that it be infeasible for an adversary
to yield ciphertexts without knowing the as-
sociated nonce, even if he can make a poly-
nomial number of oracle (including encryption
oracle) queries. We classify nonce-awareness
into two classes: NA1l and NA2. In NAl
plaintext can be extracted using only the as-
sociated nonce, but cannot in NA2. Obvi-
ously NA1 implies PA2. We also show that
two famous IND-CCA2 encryption schemes
are NA1: the signed ElGamal encryption [19]
and the Cramer-Shoup scheme [6, 7].

The rest of this paper is organized as fol-
lows. In Section 2, basic terms and nonce-
awareness are defined. Then in Section 3,
the signed ElGamal encryption [19] and the
Cramer-Shoup scheme [6, 7] are discussed.
Section 4 concludes.

2 Key Terms

We first review basic terms, and then define
nonce-awareness.

2.1 Basic Terms

Notation. We denote by ¢ the empty string, by
|m| the length of a string m, and by [] the empty
list. Given a list L and an element ¢, LQc de-
notes the list consisting of the elements in L
followed by c. Let A be an algorithm. The no-
tation state[A] denotes the state information of
A. By A(-) we denote that A has one input. By
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A(-,...,-) we denote that A has several inputs.
A may be deterministic or probabilistic. If A
is a probabilistic algorithm then A(-,...,; R)
denotes that A takes R as random coins. The
notation y < A(x) denotes that y is obtained
by running A on input x. By A°(x) we denote
that A may query the oracle O on the input z.
The notation z <~ S, for a set S, means that
is randomly selected from .S according to a uni-
form probability distribution. If « is neither an
algorithm nor a set then x < « is a assignment
statement. Let B be a boolean function. The
notation (B(y,) : {yi «— Ai(x;)}i<i<n) de-
notes the event that B(y,,) is TRUE after the
value y,, is obtained by successively running
algorithms Aj,..., A, on inputs zy,...
The statement

y Tne

Pr[B(yn) : {yi — Ai(zi)}1<i<n] =D

means that the probability that B(y,,) is TRUE
after the value y, is obtained by running
algorithms Aj, .. , T,
is p, where the probability is over the ran-
dom choices of the probabilistic algorithms in-

., A, on inputs zq,...

volved.

Definition 1 (Negligible Functions). We call a
function f : N — R negligible if for every pos-
itive polynomial P(-), there exists an ng such
that for all n > ny,

Definition 2 (DDH Assumption). Let G be
a group of large prime order q. For any

polynomial-time algorithm A that outputs a
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single bit, we define o to be

|Pr{A(G, q, 91, 92, u1,u2) = 1
| 91, 92, u1, ug chosen randomly from G|
— PrlA(G, q, 91, g2, u1,u2) = 1
| g1, g2 chosen randomly from G,
and uy = g1 and ug = gy

for random r € Z]|

The decision Diffie-Hellman (DDH) assump-
tion is that, for all polynomial-time algorithms
A, o is negligible as a function of the security
parameter.

Definition 3. An asymmetric encryption
scheme is a triple of algorithms (G, E, D).

e Key generation algorithm G: This is a
probabilistic polynomial-time algorithm
G(1*) =

parameter, sk and pk are a pair of de-

(sk, pk), where 1% is a secure

cryption and encryption keys, each of size
O(k®) for a € N a constant.

e Encryption algorithm E: This is often a
probabilistic algorithm &E(pk, m) = ¢
where m is a message in the message
space M, and c is the corresponding ci-
phertext in the ciphertext space C.

e Decryption algorithm D: This is a deter-

ministic algorithm D(sk,c) = m (ie.,
D(sk, E(pk,m)) = m) for every m €
M, where sk and pk are a pair of decryp-

tion and encryption keys.

If algorithm & is probabilistic then the encryp-
tion scheme is called probabilistic encryption.

Definition 4 (IND-CPA, IND-CCA1l, IN-
D-CCA2). [1] Let (G, &, D) be an asymmetric
encryption scheme and let A = (A1, Az) be an
adversary. For atk € {CPA,CCA1,CCA2}
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and k € N let

o=Prlt/ =b:
(sk,pk) — G(1%),
(mo,m1, s) — A7 (pk)
where |mg| = |m1],
b {0,1},
¢ — E(pk,my),

1
b/ — AQOQ(Svm()vml,pk’ C)] - 55

where

If atk=CPA then O1(-) = ¢

and Oz(-) = ¢,

If atk=CCAI then O1(-) = D(sk,-)

and Oy(+) = ¢,

If atk=CCA2 then O+ (-) = D(sk, ")

and Oz(-) = D(sk, ).
An asymmetric encryption scheme (G,E,D) is
secure in the sense of IND-atk if for every prob-
abilistic polynomial-time adversary A, and all
sufficiently large k, the adversary’s advantage
o is negligible in the security parameter k.

Plaintext-awareness is formally defined
using two experiments. We first describe the
two experiments [2, 9].

The REAL experiment:

1. (pk, sk) — G(1%);
CLIST « [J;
Choose random coins R[A], R[P] for
A, P, respectively;
State[P| « e.

2. Run A on input pk and coins R[A] until it
halts.

e If A makes query (decryption,c),
then
m «— D(sk,c);
return m to A.
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Note that A may not query the de-
cryption oracle with any ciphertext

appearing on CLIST.
o If A makes query
(encryption,auzr)  with  query

information auzx, then

(m, state|P]) <« P(aux, state[P];
R[P));

¢ — E(pk,m);

CLIST «— CLISTQc;

return c to A.

3. Let x denote the output of A.
The EXTR experiment:

1. (pk,sk) « G(1%);
CLIST+ [;
Choose random coins R[A], R[P], R[A%|
for A, P, A*, respectively;
state[P] « &;
state[A*] — (pk, R[A]).

2. Run A on input pk and coins R[A] until it
halts.

e If A makes query (decryption,c),
then
(m, state]A*]) «— A*(¢, CLIST,
state[A*]; R[A*]);
return m to A.
Note that A may not query the de-
cryption oracle with any ciphertext

appearing on CLIST.
o If A makes query
(encryption,aux)  with  query

information aux, then

(m, state[P]) «— P(aux, state[P];
R[P]);

¢ — E(pk,m);

CLIST «+ CLISTQc;

return c to A.

3. Let x denote the output of A.
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Definition 5  (Plaintext-awareness). An
asymmetric encryption scheme (G,E,D) is
plaintext-aware2 (PA2) if for any polynomial-
time ciphertext creator A, there exists a
polynomial-time pa2-extractor A* such that
for all polynomial-time plaintext creators
P and polynomial time distinguisher D the

advantage o of A relative to P, D and A*

o = |Pr[D(z) = 1|A plays REAL]
— Pr[D(z) = 1|A plays EXTR]|

is negligible in the security parameter k. Dis-
tinguisher D tries to distinguish between the
cases that A interacts with the REAL experi-
ment or the EXTR experiment.

An asymmetric encryption scheme is
plaintext-awarel (PAl) if for any polynomial-
time ciphertext creator A that makes no en-
cryption queries, there exists a polynomial-time
pal-extractor A* such that for all polynomial
time distinguisher D the advantage o of A rel-
ative to D and A*

o = |Pr[D(z) = 1|A plays REAL]
— Pr[D(z) = 1|A plays SIMU]|

is negligible in the security parameter k.

Plaintext-aware0 (PAO) is the same as PAl
except that ciphertext creator A makes exactly
one decryption query.

Definition 6 (Simulatable Encryption Scheme).
[9] An asymmetric encryption scheme
(G,E,D) is simulatable if there exist two
polynomial-time Turing machines (f, f~1)
such that:

o f is a deterministic Turing machine that
takes the public key pk and an element r €
{0,1}¢ as input, and outputs elements of
C. For simplicity, f will be represented as
a function from {0, 1}* to C and the public
key input will be suppressed.
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o f~lisa probabilistic Turing machine that
takes the public key pk and an element
¢ € C as input, and outputs elements of
{0,1}*. Again, £~ will be represented as
a function from C to {0, 1}* and the public
key input will be suppressed.

e f(f~Yc)) =cforallceC.

o There exists no polynomial-time attacker
A that has a non-negligible advantage in
winning the following experiment:

1. The challenger generates a key pair
(pk,sk) = G(1%) and randomly
chooses a bitb € {0, 1}.

2. The attacker executes A on the input
pk. The attacker has access to an or-
acle Oy that takes no input, gener-
ates a random element r € {0, 1},
and returns v ifb = 0 and f~1(f(r))
if b = 1. The attacker terminates by
outputting a guess b’ for b.

The attacker wins if b = V. The attacker’s
advantage is defined to be:

\Prib= 0] —1/2].

o There exists no polynomial-time attacker
A that has a non-negligible advantage in
winning the following experiment:

1. The challenger generates a key pair
(pk,sk) = G(1%), an empty list
CLIST, and a bit b chosen randomly
from {0, 1}.

2. The attacker executes A on the input
pk. The attacker has access to two
oracles:

— An encryption oracle that takes
a message m € M as input and
returns an encryption c. If b =
0, then the oracle returns ¢ =

ISSN: 1790-0832

1517

Ming-Luen Wu

E(pk,m). If b = 1, then the or-
acle returns ¢ = f(r), for some
randomly chosen v € {0,1}".
In either case c is added to
CLIST.

— A decryption oracle that takes
an encryption ¢ € C as input
and returns D(sk,c). The at-
tacker may not query the de-
cryption oracle on any c €
CLIST.

The attacker terminates by out-
putting a guess b’ for b.

The attacker wins if b = U'. The attacker’s
advantage is defined to be:

\Prib=0] —1/2].

A family of hash functions is said to be
universal one-way if it is computationally in-
feasible for an adversary to choose an input z,
draw a function H at random from the fam-
ily, and then find a different input y such that
H(xz) = H(y) [16]. Such hash function fam-
ilies are also called target collision-resistant.
Note that a stronger notion is that of a collision-
resistant family of hash functions. Here, it is
computationally infeasible for an adversary to
to find a pair (z,2') with = # 2’ such that
H(x) = H(2') if H is chosen at random from
a family of hash functions [8].

The random oracle model provides a math-
ematical model of an ideal hash function [3].
In this model, a hash function 4 is chosen ran-
domly from a family of hash functions, and we
are only permitted oracle access to the random
function A to obtain a random hash value. This
means that we are not given a formula to com-
pute the value of the function h. Hence, the
only way to compute a value h(zx) is to query
the oracle (random function).
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In the generic model, generic algorithms
for group GG do not exploit any special proper-
ties of the encodings of group elements, other
than the property that each group element is en-
coded as a unique string [20]. The data of a
generic algorithm is partitioned into group ele-
ments in G and non-group data. In this paper, a
generic adversary A — attacking an encryption
scheme — is an interactive algorithm that in-
teracts with a decryption oracle. The following
generic steps are counted:

e group operations,
e queries to the hash oracle H,
e interactions with a decryption oracle.

Adversary A selects the next generic step de-
pending on the non-group input and on previ-
ous collisions of group elements.

2.2 Nonce-awareness

Let (G,€,D) be an asymmetric probabilistic
encryption scheme. To formalize nonce-
awareness, we fist define two experiments.

The REAL experiment:

1. (pk,sk) < G(1%);
CLIST « [;
Choose random coins R[£], R[A], R[P]
for £, A, P, respectively;
state[P] « e.

2. Run A on input pk and coins R[A] until it
halts.

e If A makes query (nonce,c), then
nonce oracle returns r to A where r
is the associated nonce for c. Note
that A may not query any ciphertext
appearing on CLIST.
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o If A makes query
(encryption,auxr)  with  query

information aux, then

(m, state|P]) «— P(aux, state[P];
R[P]);

¢ — E(pk, m; R[E));

CLIST «— CLISTQc;

return c to A.

3. Let x denote the output of A.
The EXTR experiment:

1. (pk,sk) — G(1%);
CLIST< [|;
Choose random coins R[E], R[A], R[P],
R[A*| for &, A, P, A*, respectively;
state[P] « e;
state[A*] «— (pk, R[A]).

2. Run A on input pk and coins R[A] until it
halts.

e If A makes query (nonce, c), then
(r, state[A*]) «— A*(c,CLIST,
state[A*]; R[A*]); return r to A.
Note that A may not query any ci-
phertext appearing on CLIST.

o If A
(encryption, aux)
information aux, then
(m, state|P]) «— P(aux, state[P];
R[P]);
¢ « E(pk, m; R[E]);

CLIST « CLISTQc;
return c to A.

makes
with

query
query

3. Let x denote the output of A.

Definition 7 (Nonce-awareness). An asym-
metric encryption scheme (G,E,D) is nonce-
aware (NA) if for any polynomial-time cipher-
text creator A, there exists a polynomial-time
na-extractor A* such that for all polynomial-
time plaintext creators P and polynomial-time
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distinguisher D the advantage o of A relative
to P, D and A*

o = |Pr[D(z) = 1|A plays REAL]
— Pr[D(z) = 1|A plays EXTR]|

is negligible in the security parameter k. Dis-
tinguisher D tries to distinguish between the
cases that A interacts with the REAL experi-
ment or the EXTR experiment,

If existence of na-extractor implies that of
pa2-extractor, then nonce-awareness is called
NAI, otherwise NA2.

3 Two NA1 Encryption Schemes
3.1 The Signed ElGamal Encryption
Scheme [19]

e Setup the system parameters:

1. Two prime numbers p and ¢ such
that ¢|(p — 1).

2. g € Z; has order g. Let G = (g) be
a group of order q.

3. Arandom hash function H that maps
{0,1}* to Z,.

e Key generation algorithm: Pick a ran-
dom number z € Zj as the private key.
Compute the corresponding public key by

y=g"
e Encryption: Given a message m € G,

pick random numbers r, ¢ € Z; and com-
pute ¢ = (c1, ¢, v1,v2) as

c1=4g",
c2 =my’,

t
v = H(Cl7627g )7

vg =t + v1r mod gq.

Then, the

(c1,c2,v1,v2).
nonce used once.

ciphertext ¢ of m is
Note that r 1is the

ISSN: 1790-0832

1519

Ming-Luen Wu

e Decryption: Given (cq,co, v1,v2), com-
pute vj = H(cy, ca,g"2¢; ") and then test
if vﬂ = vy. If that test succeeds, then out-
put m = ca/c{; otherwise, terminate.

Schnorr and Jakobsson prove the following
theorem [19].

Theorem 8. Let the attacker A be given g, v,
distinct messages mg, m1, a target ciphertext
¢y corresponding to my, for a random bit b €
{0,1}, and oracles for H and for decryption.
Then a generic A using t generic steps cannot
predict b with a better probability than % + %.
The probability space consists of the random x,

H, b, and the coin tosses r of the encipherer.

Theorem 8 proves that the signed ElGamal
encryption is IND-CCAZ2 secure in the random
oracle model and the generic model.

We now show that the signed ElGamal en-
cryption is NAl. The proof of Theorem 8
in [19, Theorem 1] shows that there exists a
generic extractor A* that extracts the nonce
r = log, ¢, from a valid ciphertext produced
by A. Moreover, given r, the plaintext m can be
extracted in one generic step. Thus, the signed
ElGamal encryption is — in a generic way —
NA1. We have the following theorem.

Theorem 9. The signed ElGamal encryption
is NAl in the random oracle model and the
generic model.

3.2 The Cramer-Shoup Encryption
Scheme [6, 7]

Choose a large prime p such that p — 1 = 2g,
where ¢ is also prime. The group G is the sub-
group of order g in Z,.

e Key generation: Pick two random ele-
ments g1,g2 € G and five random ele-
ments x1,r2,Y1,Y2,2 € Zy Compute

1 T2 d Y1 Y2

c=4,'6° d =995 and e = gj.
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Pick a target collision-resistant hash func-
tion H : G° — Zg4. The private key
is (z,x1, x2,y1,y2) and the corresponding
public key is (g1, 92, €, ¢,d, H).

e Encryption: Given a message m € G,
pick a random number r € Z; and com-
pute (c1, c2,v1,v2) as

C1 91,
co = me'.
. ‘s
U1 = 92,

vy = "d™", where h = H(cy,c,v1).

The ciphertext ¢ of m is (c1,ca,v1,v2).
Note that r is the nonce used once.

e Decryption: Given (¢, c2,v1,v2), com-
pute h = H(cy, c2,v1) and then test if

c:fﬁylhvfﬁyzh = V2.

If that test succeeds, then output m =
ca/c%; otherwise, terminate.

A simple implementation to encode a mes-
sage is also suggested in [6]: restrict a message
to be an element of the set {1,...,q}, and en-
code it by squaring it modulo p, giving us an el-
ement in G. A message can be recovered from
its encoding by computing the unique square
root of its encoding modulo p that is in the set
{1,...,q}.

Cramer and Shoup prove the following the-
orem [6, 7].

Theorem 10. The above encryption scheme is
IND-CCA?2 assuming that (1) the hash function
H is chosen from a target collision-resistant
family, and (2) the DDH problem is hard in the
group G.

Now we show that the Cramer-Shoup en-
cryption scheme is NA1. Dent proves that the
scheme is simulatable under the assumptions
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that the DDH problem is hard in the group
G and the hash function H is chosen from
a target collision-resistant family [9, Section
4.1]. By the definition of a simulatable en-
cryption scheme, there exit two polynomial-
time algorithms (f, f~!) such that random el-
ement 7 and f~!(f(r)) are indistinguishable.
Also E(pk, m) and f(r) are indistinguishable.
Hence, r and f~1(&(pk, m)) are indistinguish-
able. We can regard f~! as the na-extractor,
so the scheme is nonce-aware. Further, given
f~1, we can construct pa2-extractor by com-
puting m = coe=f 7€), This is because in-
distinguishability of  and f~!(c) implies that
of coe™ and coe (9. Accordingly the
Cramer-Shoup scheme is NA1. We have the
following theorem.

Theorem 11. The above encryption scheme is
NAI assuming that (1) the hash function H is
chosen from a target collision-resistant family,
and (2) the DDH problem is hard in the group
G.

4 Conclusions

This paper puts forth a new security notion,
nonce-awareness, to capture the idea behind
IND-CCA2 encryption schemes. We also
show that two notable IND-CCA?2 encryption
schemes are NA1. These results point out an-
other perspective on designing IND-CCA?2 en-
cryption schemes.
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