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Abstract: As an alternative perspective on designing IND-CCA2 encryption, we introduce a new security
notion, nonce-awareness, for encryption. An encryption scheme is nonce-aware if it is computationally
infeasible to produce a valid ciphertext without knowing the associated nonce. We also show that two
remarkable IND-CCA2 encryption schemes are nonce-aware.
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1 Introduction
Two different goals for encryptions have been
considered: indistinguishability (IND) [11, 15]
and non-malleability (NM) [10]. IND requires
that it be infeasible for an adversary to distin-
guish between the ciphertexts of any two mes-
sages, even if the two original messages are
given. NM requires that an adversary given a
challenge ciphertext be unable to obtain a dif-
ferent ciphertext such that the plaintexts under-
lying these two ciphertexts are meaningfully re-
lated.

These goals are often considered under
three different active attacks: chosen-plaintext
attack (CPA), non-adaptive chosen-ciphertext
attack (CCA1) [17], and adaptive chosen-
ciphertext attack (CCA2) [18]. Under CPA the
adversary can obtain ciphertext of any plain-
text. Public-key encryption schemes have to
be safe against CPA. Under CCA1 the adver-
sary can gain access to an oracle for the decryp-
tion function only for the period of time preced-
ing his being given the challenge ciphertext. In
other words, adversary’s queries to the decryp-

tion oracle cannot depend on the challenge ci-
phertext. However, under CCA2 the adversary
can continue to have access to a decryption or-
acle even after obtaining the challenge cipher-
text. The only restriction is that the adversary
cannot make the decryption oracle decrypt the
challenge ciphertext.

One can combine the goals with the at-
tacks to gain various security notions: IND-
CPA, IND-CCA2, NM-CPA, and NM-CCA2.
Their relations have been studied in [1, 5]. In
particular, it is proved that IND-CCA2 is equiv-
alent to NM-CCA2 [1]. Among these notions
of security, IND-CCA2 is strong and very use-
ful for encryption schemes [21]. As an al-
ternative perspective on designing IND-CCA2
encryption, the notion of plaintext-awareness
(PA) is brought in [1, 2, 4]. PA0 (respectively,
PA1) requires that it be infeasible for an ad-
versary to yield ciphertexts without knowing
the associated messages, even if he can make
a single oracle query (respectively, a polyno-
mial number of oracle queries). Further, PA2
captures eavesdropping capability by providing
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the adversary with an additional encryption or-
acle that returns ciphertexts whose decryption
he may not know. Relations among these no-
tions (PA0, PA1, PA2, IND-CPA, IND-CCA1,
and IND-CCA2) are studied in [2]. Especially,
PA2 plus IND-CPA implies IND-CCA2.

This paper introduces a new security no-
tion, nonce-awareness (NA), for encryption to
provide another perspective on designing IND-
CCA2 encryption. Intuitively nonce-awareness
requires that it be infeasible for an adversary
to yield ciphertexts without knowing the as-
sociated nonce, even if he can make a poly-
nomial number of oracle (including encryption
oracle) queries. We classify nonce-awareness
into two classes: NA1 and NA2. In NA1
plaintext can be extracted using only the as-
sociated nonce, but cannot in NA2. Obvi-
ously NA1 implies PA2. We also show that
two famous IND-CCA2 encryption schemes
are NA1: the signed ElGamal encryption [19]
and the Cramer-Shoup scheme [6, 7].

The rest of this paper is organized as fol-
lows. In Section 2, basic terms and nonce-
awareness are defined. Then in Section 3,
the signed ElGamal encryption [19] and the
Cramer-Shoup scheme [6, 7] are discussed.
Section 4 concludes.

2 Key Terms
We first review basic terms, and then define
nonce-awareness.

2.1 Basic Terms
Notation. We denote by ε the empty string, by
|m| the length of a string m, and by [] the empty
list. Given a list L and an element c, L@c de-
notes the list consisting of the elements in L

followed by c. Let A be an algorithm. The no-
tation state[A] denotes the state information of
A. By A(·) we denote that A has one input. By

A(·, . . . , ·) we denote that A has several inputs.
A may be deterministic or probabilistic. If A
is a probabilistic algorithm then A(·, . . . , ·;R)
denotes that A takes R as random coins. The
notation y ← A(x) denotes that y is obtained
by running A on input x. By AO(x) we denote
that A may query the oracle O on the input x.
The notation x

u← S, for a set S, means that x

is randomly selected from S according to a uni-
form probability distribution. If α is neither an
algorithm nor a set then x← α is a assignment
statement. Let B be a boolean function. The
notation (B(yn) : {yi ← Ai(xi)}1≤i≤n) de-
notes the event that B(yn) is TRUE after the
value yn is obtained by successively running
algorithms A1, . . . , An on inputs x1, . . . , xn.
The statement

Pr[B(yn) : {yi ← Ai(xi)}1≤i≤n] = p

means that the probability that B(yn) is TRUE
after the value yn is obtained by running
algorithms A1, . . . , An on inputs x1, . . . , xn

is p, where the probability is over the ran-
dom choices of the probabilistic algorithms in-
volved.

Definition 1 (Negligible Functions). We call a
function f : N→ R negligible if for every pos-
itive polynomial P (·), there exists an n0 such
that for all n > n0,

f(n) <
1

P (n)
.

Definition 2 (DDH Assumption). Let G be
a group of large prime order q. For any
polynomial-time algorithm A that outputs a
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single bit, we define σ to be

|Pr[A(G, q, g1, g2, u1, u2) = 1

| g1, g2, u1, u2 chosen randomly from G]

− Pr[A(G, q, g1, g2, u1, u2) = 1

| g1, g2 chosen randomly from G,

and u1 = gr
1 and u2 = gr

2

for random r ∈ Zq]|

The decision Diffie-Hellman (DDH) assump-
tion is that, for all polynomial-time algorithms
A, σ is negligible as a function of the security
parameter.

Definition 3. An asymmetric encryption
scheme is a triple of algorithms (G, E ,D).

• Key generation algorithm G: This is a
probabilistic polynomial-time algorithm
G(1k) = (sk, pk), where 1k is a secure
parameter, sk and pk are a pair of de-
cryption and encryption keys, each of size
O(ka) for a ∈ N a constant.

• Encryption algorithm E: This is often a
probabilistic algorithm E(pk, m) = c,
where m is a message in the message
space M, and c is the corresponding ci-
phertext in the ciphertext space C.

• Decryption algorithm D: This is a deter-
ministic algorithm D(sk, c) = m (i.e.,
D(sk, E(pk,m)) = m) for every m ∈
M, where sk and pk are a pair of decryp-
tion and encryption keys.

If algorithm E is probabilistic then the encryp-
tion scheme is called probabilistic encryption.

Definition 4 (IND-CPA, IND-CCA1, IN-
D-CCA2). [1] Let (G, E ,D) be an asymmetric
encryption scheme and let A = (A1, A2) be an
adversary. For atk ∈ {CPA, CCA1, CCA2}

and k ∈ N let

σ = Pr[b′ = b :

(sk, pk)← G(1k),

(m0, m1, s)← AO1
1 (pk)

where |m0| = |m1|,

b
u← {0, 1},

c← E(pk,mb),

b′ ← AO2
2 (s,m0,m1, pk, c)]− 1

2
,

where
If atk=CPA then O1(·) = ε

and O2(·) = ε,
If atk=CCA1 then O1(·) = D(sk, ·)
and O2(·) = ε,

If atk=CCA2 then O1(·) = D(sk, ·)
and O2(·) = D(sk, ·).

An asymmetric encryption scheme (G, E ,D) is
secure in the sense of IND-atk if for every prob-
abilistic polynomial-time adversary A, and all
sufficiently large k, the adversary’s advantage
σ is negligible in the security parameter k.

Plaintext-awareness is formally defined
using two experiments. We first describe the
two experiments [2, 9].

The REAL experiment:

1. (pk, sk)← G(1k);
CLIST ← [];
Choose random coins R[A], R[P ] for
A,P, respectively;
State[P ]← ε.

2. Run A on input pk and coins R[A] until it
halts.

• If A makes query (decryption, c),
then
m← D(sk, c);
return m to A.

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Ming-Luen Wu

ISSN: 1790-0832 1515 Issue 9, Volume 6, September 2009



Note that A may not query the de-
cryption oracle with any ciphertext
appearing on CLIST .

• If A makes query
(encryption, aux) with query
information aux, then
(m, state[P ]) ← P (aux, state[P ];
R[P ]);
c← E(pk, m);
CLIST ← CLIST@c;
return c to A.

3. Let x denote the output of A.

The EXTR experiment:

1. (pk, sk)← G(1k);
CLIST← [];
Choose random coins R[A], R[P ], R[A∗]
for A,P,A∗, respectively;
state[P ]← ε;
state[A∗]← (pk, R[A]).

2. Run A on input pk and coins R[A] until it
halts.

• If A makes query (decryption, c),
then
(m, state[A∗]) ← A∗(c, CLIST ,
state[A∗]; R[A∗]);
return m to A.
Note that A may not query the de-
cryption oracle with any ciphertext
appearing on CLIST .

• If A makes query
(encryption, aux) with query
information aux, then
(m, state[P ]) ← P (aux, state[P ];
R[P ]);
c← E(pk, m);
CLIST ← CLIST@c;
return c to A.

3. Let x denote the output of A.

Definition 5 (Plaintext-awareness). An
asymmetric encryption scheme (G, E ,D) is
plaintext-aware2 (PA2) if for any polynomial-
time ciphertext creator A, there exists a
polynomial-time pa2-extractor A∗ such that
for all polynomial-time plaintext creators
P and polynomial time distinguisher D the
advantage σ of A relative to P , D and A∗

σ = |Pr[D(x) = 1|A plays REAL]

− Pr[D(x) = 1|A plays EXTR]|

is negligible in the security parameter k. Dis-
tinguisher D tries to distinguish between the
cases that A interacts with the REAL experi-
ment or the EXTR experiment.

An asymmetric encryption scheme is
plaintext-aware1 (PA1) if for any polynomial-
time ciphertext creator A that makes no en-
cryption queries, there exists a polynomial-time
pa1-extractor A∗ such that for all polynomial
time distinguisher D the advantage σ of A rel-
ative to D and A∗

σ = |Pr[D(x) = 1|A plays REAL]

− Pr[D(x) = 1|A plays SIMU ]|

is negligible in the security parameter k.
Plaintext-aware0 (PA0) is the same as PA1

except that ciphertext creator A makes exactly
one decryption query.

Definition 6 (Simulatable Encryption Scheme).
[9] An asymmetric encryption scheme
(G, E ,D) is simulatable if there exist two
polynomial-time Turing machines (f, f−1)
such that:

• f is a deterministic Turing machine that
takes the public key pk and an element r ∈
{0, 1}ℓ as input, and outputs elements of
C. For simplicity, f will be represented as
a function from {0, 1}ℓ to C and the public
key input will be suppressed.
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• f−1 is a probabilistic Turing machine that
takes the public key pk and an element
c ∈ C as input, and outputs elements of
{0, 1}ℓ. Again, f−1 will be represented as
a function from C to {0, 1}ℓ and the public
key input will be suppressed.

• f(f−1(c)) = c for all c ∈ C.

• There exists no polynomial-time attacker
A that has a non-negligible advantage in
winning the following experiment:

1. The challenger generates a key pair
(pk, sk) = G(1k) and randomly
chooses a bit b ∈ {0, 1}.

2. The attacker executes A on the input
pk. The attacker has access to an or-
acle Of that takes no input, gener-
ates a random element r ∈ {0, 1}ℓ,
and returns r if b = 0 and f−1(f(r))
if b = 1. The attacker terminates by
outputting a guess b′ for b.

The attacker wins if b = b′. The attacker’s
advantage is defined to be:

|Pr[b = b′]− 1/2|.

• There exists no polynomial-time attacker
A that has a non-negligible advantage in
winning the following experiment:

1. The challenger generates a key pair
(pk, sk) = G(1k), an empty list
CLIST, and a bit b chosen randomly
from {0, 1}.

2. The attacker executes A on the input
pk. The attacker has access to two
oracles:

– An encryption oracle that takes
a message m ∈M as input and
returns an encryption c. If b =
0, then the oracle returns c =

E(pk, m). If b = 1, then the or-
acle returns c = f(r), for some
randomly chosen r ∈ {0, 1}ℓ.
In either case c is added to
CLIST.

– A decryption oracle that takes
an encryption c ∈ C as input
and returns D(sk, c). The at-
tacker may not query the de-
cryption oracle on any c ∈
CLIST .

The attacker terminates by out-
putting a guess b′ for b.

The attacker wins if b = b′. The attacker’s
advantage is defined to be:

|Pr[b = b′]− 1/2|.

A family of hash functions is said to be
universal one-way if it is computationally in-
feasible for an adversary to choose an input x,
draw a function H at random from the fam-
ily, and then find a different input y such that
H(x) = H(y) [16]. Such hash function fam-
ilies are also called target collision-resistant.
Note that a stronger notion is that of a collision-
resistant family of hash functions. Here, it is
computationally infeasible for an adversary to
to find a pair (x, x′) with x ̸= x′ such that
H(x) = H(x′) if H is chosen at random from
a family of hash functions [8].

The random oracle model provides a math-
ematical model of an ideal hash function [3].
In this model, a hash function h is chosen ran-
domly from a family of hash functions, and we
are only permitted oracle access to the random
function h to obtain a random hash value. This
means that we are not given a formula to com-
pute the value of the function h. Hence, the
only way to compute a value h(x) is to query
the oracle (random function).

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Ming-Luen Wu

ISSN: 1790-0832 1517 Issue 9, Volume 6, September 2009



In the generic model, generic algorithms
for group G do not exploit any special proper-
ties of the encodings of group elements, other
than the property that each group element is en-
coded as a unique string [20]. The data of a
generic algorithm is partitioned into group ele-
ments in G and non-group data. In this paper, a
generic adversary A — attacking an encryption
scheme — is an interactive algorithm that in-
teracts with a decryption oracle. The following
generic steps are counted:

• group operations,

• queries to the hash oracle H ,

• interactions with a decryption oracle.

Adversary A selects the next generic step de-
pending on the non-group input and on previ-
ous collisions of group elements.

2.2 Nonce-awareness
Let (G, E ,D) be an asymmetric probabilistic
encryption scheme. To formalize nonce-
awareness, we fist define two experiments.

The REAL experiment:

1. (pk, sk)← G(1k);
CLIST ← [];
Choose random coins R[E ], R[A], R[P ]
for E , A, P , respectively;
state[P ]← ε.

2. Run A on input pk and coins R[A] until it
halts.

• If A makes query (nonce, c), then
nonce oracle returns r to A where r

is the associated nonce for c. Note
that A may not query any ciphertext
appearing on CLIST .

• If A makes query
(encryption, aux) with query
information aux, then
(m, state[P ]) ← P (aux, state[P ];
R[P ]);
c← E(pk,m; R[E ]);
CLIST ← CLIST@c;
return c to A.

3. Let x denote the output of A.

The EXTR experiment:

1. (pk, sk)← G(1k);
CLIST← [];
Choose random coins R[E ], R[A], R[P ],
R[A∗] for E , A, P , A∗, respectively;
state[P ]← ε;
state[A∗]← (pk, R[A]).

2. Run A on input pk and coins R[A] until it
halts.

• If A makes query (nonce, c), then
(r, state[A∗]) ← A∗(c, CLIST,

state[A∗]; R[A∗]); return r to A.
Note that A may not query any ci-
phertext appearing on CLIST .

• If A makes query
(encryption, aux) with query
information aux, then
(m, state[P ]) ← P (aux, state[P ];
R[P ]);
c← E(pk,m; R[E ]);
CLIST ← CLIST@c;
return c to A.

3. Let x denote the output of A.

Definition 7 (Nonce-awareness). An asym-
metric encryption scheme (G, E ,D) is nonce-
aware (NA) if for any polynomial-time cipher-
text creator A, there exists a polynomial-time
na-extractor A∗ such that for all polynomial-
time plaintext creators P and polynomial-time
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distinguisher D the advantage σ of A relative
to P , D and A∗

σ = |Pr[D(x) = 1|A plays REAL]

− Pr[D(x) = 1|A plays EXTR]|

is negligible in the security parameter k. Dis-
tinguisher D tries to distinguish between the
cases that A interacts with the REAL experi-
ment or the EXTR experiment,

If existence of na-extractor implies that of
pa2-extractor, then nonce-awareness is called
NA1, otherwise NA2.

3 Two NA1 Encryption Schemes
3.1 The Signed ElGamal Encryption

Scheme [19]
• Setup the system parameters:

1. Two prime numbers p and q such
that q|(p− 1).

2. g ∈ Z∗
p has order q. Let G = ⟨g⟩ be

a group of order q.

3. A random hash function H that maps
{0, 1}∗ to Zq.

• Key generation algorithm: Pick a ran-
dom number x ∈ Z∗

q as the private key.
Compute the corresponding public key by
y = gx.

• Encryption: Given a message m ∈ G,
pick random numbers r, t ∈ Z∗

q and com-
pute c = (c1, c2, v1, v2) as

c1 = gr,

c2 = myr,

v1 = H(c1, c2, g
t),

v2 = t + v1r mod q.

Then, the ciphertext c of m is
(c1, c2, v1, v2). Note that r is the
nonce used once.

• Decryption: Given (c1, c2, v1, v2), com-
pute v′1 = H(c1, c2, g

v2c−v1
1 ) and then test

if v′1 = v1. If that test succeeds, then out-
put m = c2/cx

1 ; otherwise, terminate.

Schnorr and Jakobsson prove the following
theorem [19].

Theorem 8. Let the attacker A be given g, y,
distinct messages m0,m1, a target ciphertext
cb corresponding to mb for a random bit b ∈
{0, 1}, and oracles for H and for decryption.
Then a generic A using t generic steps cannot
predict b with a better probability than 1

2 + t2

q .
The probability space consists of the random x,
H , b, and the coin tosses r of the encipherer.

Theorem 8 proves that the signed ElGamal
encryption is IND-CCA2 secure in the random
oracle model and the generic model.

We now show that the signed ElGamal en-
cryption is NA1. The proof of Theorem 8
in [19, Theorem 1] shows that there exists a
generic extractor A∗ that extracts the nonce
r = logg c1 from a valid ciphertext produced
by A. Moreover, given r, the plaintext m can be
extracted in one generic step. Thus, the signed
ElGamal encryption is — in a generic way —
NA1. We have the following theorem.

Theorem 9. The signed ElGamal encryption
is NA1 in the random oracle model and the
generic model.

3.2 The Cramer-Shoup Encryption
Scheme [6, 7]

Choose a large prime p such that p − 1 = 2q,
where q is also prime. The group G is the sub-
group of order q in Z∗

p.

• Key generation: Pick two random ele-
ments g1, g2 ∈ G and five random ele-
ments x1, x2, y1, y2, z ∈ Z∗

q . Compute
c = gx1

1 gx2
2 , d = gy1

1 gy2
2 and e = gz

1 .
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Pick a target collision-resistant hash func-
tion H : G3 7→ Zq. The private key
is (z, x1, x2, y1, y2) and the corresponding
public key is (g1, g2, e, c, d,H).

• Encryption: Given a message m ∈ G,
pick a random number r ∈ Z∗

q and com-
pute (c1, c2, v1, v2) as

c1 = gr
1,

c2 = mer.

v1 = gr
2,

v2 = crdrh, where h = H(c1, c2, v1).

The ciphertext c of m is (c1, c2, v1, v2).
Note that r is the nonce used once.

• Decryption: Given (c1, c2, v1, v2), com-
pute h = H(c1, c2, v1) and then test if

cx1+y1h
1 vx2+y2h

1 = v2.

If that test succeeds, then output m =
c2/cz

1; otherwise, terminate.

A simple implementation to encode a mes-
sage is also suggested in [6]: restrict a message
to be an element of the set {1, . . . , q}, and en-
code it by squaring it modulo p, giving us an el-
ement in G. A message can be recovered from
its encoding by computing the unique square
root of its encoding modulo p that is in the set
{1, . . . , q}.

Cramer and Shoup prove the following the-
orem [6, 7].

Theorem 10. The above encryption scheme is
IND-CCA2 assuming that (1) the hash function
H is chosen from a target collision-resistant
family, and (2) the DDH problem is hard in the
group G.

Now we show that the Cramer-Shoup en-
cryption scheme is NA1. Dent proves that the
scheme is simulatable under the assumptions

that the DDH problem is hard in the group
G and the hash function H is chosen from
a target collision-resistant family [9, Section
4.1]. By the definition of a simulatable en-
cryption scheme, there exit two polynomial-
time algorithms (f, f−1) such that random el-
ement r and f−1(f(r)) are indistinguishable.
Also E(pk,m) and f(r) are indistinguishable.
Hence, r and f−1(E(pk, m)) are indistinguish-
able. We can regard f−1 as the na-extractor,
so the scheme is nonce-aware. Further, given
f−1, we can construct pa2-extractor by com-
puting m = c2e

−f−1(c). This is because in-
distinguishability of r and f−1(c) implies that
of c2e

−r and c2e
−f−1(c). Accordingly the

Cramer-Shoup scheme is NA1. We have the
following theorem.

Theorem 11. The above encryption scheme is
NA1 assuming that (1) the hash function H is
chosen from a target collision-resistant family,
and (2) the DDH problem is hard in the group
G.

4 Conclusions
This paper puts forth a new security notion,
nonce-awareness, to capture the idea behind
IND-CCA2 encryption schemes. We also
show that two notable IND-CCA2 encryption
schemes are NA1. These results point out an-
other perspective on designing IND-CCA2 en-
cryption schemes.

References:

[1] M. Bellare, A. Desai, D. Pointcheval,
and P. Rogaway. Relations among no-
tions of security for public-key encryption
schemes. In Advances in Cryptology—
CRYPTO ’98, volume 1462, pages 26–45,
1998.

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Ming-Luen Wu

ISSN: 1790-0832 1520 Issue 9, Volume 6, September 2009



[2] M. Bellare and A. Palacio. To-
wards plaintext-aware public-key encryp-
tion without random oracles. In P. J. Lee,
editor, ASIACRYPT, volume 3329 of Lec-
ture Notes in Computer Science, pages
48–62. Springer, 2004.

[3] M. Bellare and P. Rogaway. Random ora-
cles are practical: A paradigm for design-
ing efficient protocols. In CCS ’93, Pro-
ceedings of the 1st ACM Conference on
Computer and Communications Security,
pages 62–73. ACM, 1993.

[4] M. Bellare and P. Rogaway. Opti-
mal asymmetric encryption. In A. D.
Santis, editor, Advances in Cryptology—
EUROCRYPT 94, volume 950 of Lecture
Notes in Computer Science, pages 92–
111. Springer-Verlag, 1995, 9–12 May
1994.

[5] M. Bellare and A. Sahai. Non-malleable
encryption: Equivalence between two no-
tions, and an indistinguishability-based
characterization. In M. J. Wiener, ed-
itor, CRYPTO, volume 1666 of Lecture
Notes in Computer Science, pages 519–
536. Springer, 1999.

[6] R. Cramer and V. Shoup. A practical
public key cryptosystem provably secure
against adaptive chosen ciphertext attack.
In H. Krawczyk, editor, CRYPTO, volume
1462 of Lecture Notes in Computer Sci-
ence, pages 13–25. Springer, 1998.

[7] R. Cramer and V. Shoup. Design and
analysis of practical public-key encryp-
tion schemes secure against adaptive cho-
sen ciphertext attack. SIAM Journal on
Computing, 33(1):167–226, 2003.
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