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Abstract: - The integration of different data structures e.g. relational databases of information systems is a current issue 
in the area of information sciences. Numerous solutions aroused recently aiming to achieve a high accuracy in 
similarity measurement and integration of schema entities coming from different schemas. Researches usually properly 
evaluate the capabilities of these approaches from the point of view of accuracy. However the computational 
complexity of the proposed algorithms is hardly ever examined in the most of these works. We claim that efficiency of 
a solution can only be judged by taking into account both the accuracy and the computational requirements of 
participating algorithms. Since there are many known measurement methods and metrics for the evaluation of 
accuracy, the focus is set for the analysis of their computational complexity in this paper. After the problem 
formulation the main ideas behind our method are presented. Various approximation techniques and methods of 
applied algorithm theory are used to evaluate the different approaches. Three specific approaches were also selected to 
present the work of our method in details on them. Experiments run on several test inputs are also included. 
 
Key-Words: - Computational complexity, Schema matching, Approximation techniques in computational requirement 
estimation 
 
1   Introduction 
Integration of different software systems and 
corresponding data structures is a certain need in 
information technology. The field of its applications is 
various starting from medical systems to enterprise 
application integration through E-commerce and E-
government. Because system integration is hardly 
separable from the mapping of different data structures, 
the schema matching problem i.e. comparing and 
aligning of entities of schemas to each other is a current 
issue as well. 

The aim of schema matching algorithms is to identify 
the semantic relevance between the entities of different 
data representation structures coming from different 
systems. Most of the proposals contain a similarity 
measure component, which returns the connection 
strength between two objects in the form of a number 
between 0 and 1. Pairs of entities having a value near to 
1 probably represent the same real world concepts. 
Hence they must be connected during the schema or 
application integration task. On the other hand, entities 
described by lower values are out of interest from the 
point of view of integration. Similarity measurement 
methods can save a lot of human efforts this way. Thus 
preventing the necessity of the presence of a human 
expert during the schema matching task is also a 
reasonable goal by developing different approaches and 
methodologies. 

There are 3 basic types of schema matching 
approaches today:  

• Linguistic approaches examine the naming similarity 
of entities using different string comparing functions 
for example searching for sub-strings or 
concatenations. Usually they are also extended by 
(domain specific) dictionaries and taxonomies to be 
able to detect the similarities in the meaning of 
schema concepts as well.  

• Structural methods are based on the comparing of 
paths connected to the given entities leading to the 
leaves, children or to the root element. The main idea 
behind this approach is, that two entities of two 
different schemas probably represent the same real 
world entity if their structural neighborhood is built 
similarly e.g. the two paths leading to the root 
element are similar. Path similarities are mainly 
measured by defining indicators for similar node 
correspondence, node order, etc. 

• Combining the two approaches above and applying 
more specific algorithms within solid frameworks 
results in a solution called combined approach. 
Because of its robustness and effectiveness, most of 
the presented solutions are from this category in 
current literature. However algorithm complexity and 
computational costs are hardly taken into account.  

There are many possible area of application e.g. aligning 
of service interfaces in a SOA based integration 
scenario, where schema matching algorithms should be 
performed quite often during the everyday work. In this 
case, it is important to have an algorithm, which is able 
to be executed in an acceptable time. Therefore analyzes 
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and prediction of algorithms’ runtime is at least as 
essential as the evaluation of the accuracy of their 
results. 

This paper presents mathematical methods and 
techniques to predict computational costs and hence 
execution run-time of schema matching approaches. The 
structure of the paper is as follows: the next chapter 
summarizes works related to ours. In chapter 3 we 
present the problem of computational requirement 
estimation and describe our solution.  Chapter 4 contains 
experimental results validating our method. Chapter 5 
briefly describes algorithm accuracy and finally chapter 
6 concludes the achieved results. 
 
 
2   Related work 
There are numerous researches in literature about 
comparison and evaluation of different data sources and 
their schemas [1, 5, 8, 11, 15, 16, 17,18, 19]. 

An automated schema matching solution working on 
XML schemas is presented in [14]. The described 
method combines linguistic and structural similarity 
extended with the evaluation of data type 
compatibilities. Within the linguistic part abbreviations 
and acronyms are also identified while prepositions and 
articles are disregarded due to domain-specific 
dictionaries constructed for the examined schemas. 

A special approach, called similarity flooding is 
presented in the work [12], which is hard to be identified 
upon the classification of schema matching approaches 
introduced above. The main idea behind the similarity 
flooding is that the similarity of two given entities can be 
measured by the similarity of their neighborhoods. The 
paper also presents detailed analyzes and comparison of 
results to other approaches. However this is performed 
only from the point of view of accuracy and the paper 
lacks any kind of estimation of run-time costs. This 
algorithm is described in details and compared with our 
approach later in chapters 3 and 4. 

The authors in [4] present a conventional example of 
a combined approach. The evaluation starts with a 
linguistic analyzes based on the open dictionary called 
WordNet[6], but the main added value is the 
comprehensive structural method performed on the 
schema trees. Unfortunately this paper also lacks of 
computational complexity estimation. 

Although this requires the handling of functions 
working also on graphs, matrices and other ordered data 
structures, our solution is able to predict the 
computational requirement also for this approach – see 
later in chapters 3 and 4. 

The presented approach called Cupid in [9] also uses 
a wider set of techniques including discovering 
mappings based on their names, data types, constraints 
and schema structure. The authors constitute that most of 

the useful information can be found in the leaves of 
schemas. Thus the similarity of the leaf context is highly 
weighted in the calculations. The number of one to one 
comparisons is decreased by a separately clustering of 
concepts into categories at an early stage of the method. 
Otherwise the different implementations e.g. the 
structural similarity evaluation of this approach are quite 
similar to the previous one preventing me from the 
further description and comparison of them with other 
approaches. Furthermore we can also judge approaches 
against two other proposals (DIKE[14] and MOMIS[2]) 
indirectly, because Cupid definitely outperforms both of 
them. 

In [13] the authors present a schema matching 
method working on XML schemas. Similarly to the 
approach Cupid the evaluation starts with the clustering 
of schemas into various groups. The syntactic similarity 
measurement is performed in 3 steps namely 
preprocessing, data mining and postprocessing while a 
specific graph representation called dendogram 
facilitates the generalization and specialization processes 
of the clusters to develop an appropriate schema class 
hierarchy. Unfortunately the analysis of the results is 
restricted to the parameterization of the presented 
approach and is only presented in the unique metrics of 
the paper. This hinders the comparison with other 
approaches including mine. However taking into account 
the size of evaluated schemas and the values of applied 
efficiency indicators the performance should be at the 
same level as the methods in [12] and [9]. 

The authors of [3] propose an algorithm based on tree 
similarity matching methods in a multi agent 
environment for a classical buyer-seller scenario. The 
similarity algorithm itself is implemented as a recursive 
functional program in a language called Relfun. 
Although this may save some computational costs in the 
run-time, an additional transformation step of classical 
XML based inputs i.e. the XML serialization in Object-
Oriented RuleML is needed. Because there are no 
experiments on schemas of realistic sizes presented, the 
exact comparison of this approach with others would 
require enormous amount of work. Taking into account 
the applied structural algorithm and comparing it with 
other approaches the performance of this approach can 
be similar (or maybe slightly better in run-time) to the 
methods in [12] and [9]. 

A generic schema matching tool called COMA++ is 
presented in [7]. It provides a library of individual 
matchers realizing a flexible platform for a combined 
matcher. The application of different matching strategies 
and the decomposition of large schemas with a 
fragment-based matcher into smaller sets ensure high 
scalability for the presented schema matching solution. 
The approach is also evaluated on schemas from various 
sizes (containing a number of nodes between 27 and 843 
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and a number of possible paths between 34 and 26228) 
and it is also compared with other proposals extensively. 
However the focus is mainly set on accuracy comparison 
while it a proper and detailed analyzes of run-time cost 
is still missing.  

 
 

3   Algorithm complexity of approaches 
Besides of the expected accuracy of the results the run 
time cost of an algorithm is also a key aspect by finding 
a solution for the schema matching problem. More 
accurate solutions may require much more resources 
(e.g. computational performance) to provide results. This 
can lead to enormous long run-time in the given 
hardware configurations which can not be accepted by 
some system e.g. online, real time systems or even by a 
solid development environment.  

The costs of an algorithm are strictly connected with 
the complexity of the given method. We have proved 
that complexity is proportional by the expected number 
of the steps at the execution. Because there is a (single) 
computer operation in the background of each performed 
step, the actual run-time of given computer 
configurations can also be predicted for given schemas 
this way. Hence the number of the expected steps is 
calculated by our method. In the next few paragraphs we 
present the main tasks and tools of our method. For 
better understanding tasks of real schema matching 
solutions are also described and evaluated.  
 
 
3.1   Examples for schema matching approaches 
The proposal similarity flooding is based on the 
following idea: if a graph is constructed where nodes 
represent entities like complex types or attributes and 
edges represent relationship among them like containing, 
inheritance or association, the relation between two 
given entity of the schemas is determined by the relation 
of their neighborhood. In other worlds, if the nodes close 
to entity A in the fist schema are semantically related to 
corresponding nodes close to entity B in the second 
schema, then entity A and entity B are probably 
semantically related and vice versa [4].  

The key point of the approach is the algorithm for 
similarity flooding, where similarity of the nodes is 
distributed among the neighbors. This is performed for 
all nodes in a specially constructed pair wise 
connectivity graph (PCG). Furthermore this is an 
iterative step, which is stopped by reaching a stable state 
or a given number of ran iterative steps. The results 
(similarity values of entities creating common nodes in 
the PCG) are directly readable after flooding is stopped. 

The next presented approach - called WordNet in our 
article- has a strong structural analyzer part but relies on 

the values of a dictionary based matcher, the WordNet 
[4, 6]. After the initial values of similarity between 
entities is evaluated based on the WordNet, a complex 
structural matching algorithm determines the relations 
between the entities reconstructed in directed acyclic 
graphs (DAGs). 

We have also developed a schema matching solution 
in our former work [10]. The approach determines 
similarity values on three partial similarity functions. 
The name, connected term and attribute context 
similarities give the returning values by a weighted sum. 
The algorithm was designed to also perform well in 
everyday problem solutions. Hence its computational 
complexity is intended to be much lower than using 
other approaches. On the other hand its accuracy is also 
not lower so this approach – called NTA in the rest of the 
paper – definitely outperforms other presented 
algorithms, see later. 

Every main steps of every approach will be presented 
and analyzed from the point of computational 
complexity in the next few sub-chapters.  
 
 
3.2 Complexity of simple comparisons and 

constructional tasks 
This section presents the computational complexity of 
some simpler tasks upcoming for example in the 
approach NTA. 

By evaluating the linguistic correspondence between 
the naming of different complex types of schemas we 
use function , which is a single one-step 
operation – function substring. So the number of steps of 
function  is 1 for a given evaluation of two 
different complex types. 

),( ji GCN

), ji GC(N

Calculating the similarity based on attached terms uses 
the function . This compares all attached 
concepts of evaluated couples what results 

),( ji GCT

)G( jTerm)C(Term i ∗  number of steps, where )C(Terms i
  

is the number of terms connected to complex type . iC
The correspondence between the attributes of 

complex types is calculated by the function . 
Within this every attribute of the local schema is 
compared with every attribute of the global schema 
resulting  number of steps 

),( ji GCA

)jG(Attr)C(Attr i ∗  where 

)C(Attr i
 represents the number of attributes connected 

to complex type . iC
By the comparisons of two whole schemas all 

functions depicted above should be calculated to all pairs 
of the complex types of the schemas. This means  
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)G(Attr)C(Attr)G(Term)C(Term1

)G,C(Steps

jiji
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∗+∗+=

=

∑
 

steps for schemas C and G. 
These expressions should be applied for every simple 

comparing steps of every schema matching approaches 
e.g. the retrieving of the similarity values from the 
dictionary in proposal Wordnet or by the creation of 
initial values between the OIM graph nodes in the 
similarity flooding. 
 
Most of the algorithm requires some preparation e.g. 
constructing trees from complex types before its 
execution. This requires the processing of all complex 
types with their all attributes which costs 
 

)G(TermG)C(TermC

GC)G(Attr)C(Attr)G,C(Steps

ji

j
j

i
iepairPr_NTA

∗+∗+

++++= ∑∑  , 

 
where C  is the number of the complex types in the first 
schema and G denotes the number of complex types in 
the second schema. So similar to the computational 
requirements of preparation in approach NTA, every 
preparation steps of every matching algorithms should 
be estimated with the expression above. 

By the similarity flooding an open information model 
(OIM) based graph is constructed both from the local 
schemas. Similarly to initial graph construction by the 
NTA approach this step requires  
 

⎟
⎟
⎟

⎠

⎞

⎜
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⎜

⎝
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∗=

∑∑
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2)G,C(Steps

GC

j
j

i
i

OIM
, 

 
where (  ) is the number of existing data types in 
the first schema (second schema respectively) and the 
constant value of 3 is the insertion cost of the tree 
special category node (complex type, attribute, and 
attribute type) at the end of the expression. 

cY GY

The computational complexity of tree construction 
step of the approach Wordnet can also be predicted this 
way. So the first step of approach Wordnet requires 

 
GC)G(Attr)C(Attr)G,C(Steps

j
j

i
iTreeConstr +++= ∑∑  

 
computational steps. 
The second task of approach Wordnet should be 
mentioned here as well. Semantic relevance of entities of 
both schemas is retrieved from the Wordnet database in 
a number of steps as follows: 
  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∗⎟
⎠

⎞
⎜
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⎛
+=

∑

∑

j
j

i
iWordNET

)G(Attr_SimpleG
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(1) 
(5) 

 
 
3.3   Complexity of special graph traversals 

An initial mapping between the nodes of the two 
OIM graphs is calculated in approach similarity 
flooding. This will represent a rough starting value for 
the similarity of nodes (used later by the initializing of 
the flooding algorithm at the PCG). The generated 
number of nodes to each complex type is 2 (1 for the 
entity and 1 for its name). Similarly, all attributes and 
possible range types will also be presented by 2 nodes in 
the OIM. Hence the number of generated nodes is 2 
times the number of complex types plus 2 times the 
number of attributes plus 2 times the number of data 
types existing in the given schema. 

(2) 

Besides, there are exactly 2 nodes generated to every 
complex type and 3 initial nodes for signing complex 
type, attribute and data type category nodes. During the 
creation of initial mapping every node of the 2 generated 
OIM schemas must be compared to every node of the 
other schema. Thus the number of the steps 
(comparisons) performing in this section is the 
following: 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++∗

∗⎟
⎠

⎞
⎜
⎝

⎛
+++=

∑

∑

G
j

j

i
cimap_Init

Y2)G(Attr2G23

Y2)C(Attr2C23)G,C(Steps
 (6) 

(3) 
 
So the required steps of comparisons were calculated by 
determining the nodes created in each steps of the graph 
construction. This kind of deductions can also be used 
by analyzing of various matchers containing special 
graph-based structures. 

Another typical example for this could be the 
evaluation of the PCG graph creation step by the 
similarity flooding approach. The pair wise connectivity 
graph (PCG) is created along the same type of edges of 
the two schemas. (The type of edges can be type, name, 
and other relation like attribute and data type).  To do so, 
every edge of the same type from the two schemas is 
evaluated. Without presenting the detailed deduction 
here, the number of expected execution steps of the PCG 
creation is calculated by expression (7) as follows: 

(4) 
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To the estimation of the steps of the flooding itself we 
need to know the exact number of the nodes in the PCG 
graph. A deduction similarly to the above presented 
cases leads to expression (8): 
 

⎟
⎠

⎞
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⎛
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⎠

⎞
⎜
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⎛
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i
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Thus the flooding itself is performed on each node of the PCG 
the required number of its computational steps is as follows: 
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where  signs that this must be performed for all 

iterative steps. 

∑
steps

(...)

 
 
3.4   Complexity of structure comparisons 
The structural similarity of graph nodes is calculated by 
3 aspects by the approach Wordnet. The ancestor, child 
and leaf context all contribute to the final value of the 
similarity. 
The ancestor similarity is calculated as follows: 
 

)G,C(LS)P,P(PS)G,C(Sim ji21jiancest ∗= ,  
 
where   is the path similarity function for the 
path starting from entities   (   respectively) to the 
root element of the given trees and function   
represents the result of WordNet request for  and . 
Because the values of LS are already available only the 
two paths should be found. Because the computational 
complexity of the functions contained by the path 
similarity are in order , the a number of steps in 
this task is estimated as follows (11): 

)P,P(PS 21

iC

)2

jG

)G,C(LS ji

iC jG

n(O

 
)P(length)P(length)G,C(Steps 21jiancest ∗= ,  

 
Where function length() returns the number of nodes in a 
given path. 

For the overall method of the calculation of ancestor 
context this must be performed for all possible pairs of 
complex types of the two schemas. However we face a 
serious problem by evaluating the expression above for 
real schemas: the length of the path is different value for 
every node of the tree. To be able to solve the problem, 
the length of paths within a schema is estimated by a 
constant value. For this we have chosen the average 
lengths to the root calculated as follows: 

 

i
i

irootiroot C/)P(length)C(length_AVG ∑= . 

 
Using this value within the expression above the overall 
computational cost of the ancestor context calculation 
can already be predicted.  

Based on our experiments we claim that this 
approximation method be a good estimation for all kind 
of algorithms where path analyzing (comparing) 
functions are used. 

For example it is also applicable by the calculation of 
the leaf similarity. Due to the specification of the 
Wordnet approach, the path similarity (PS) must be 
calculated to all paths leading to (descendants) leaves of 
the given pair of concepts originating from the 2 
different schemas. The computational cost of the 
evaluation of two entities is as follows: 

(9) 

 
∑ ∗=

)G(leaf)C(leaf
21jipaths_leaves

ji

)P(length)P(length)G,C(Steps , (13) 

 
where similarly to the ancestor calculation the length is 
estimated with an average value of paths to the leaves. 

The child context is also based on the function LS. 
However it requires no path similarity functions because 
only the set of associated children nodes are compared in 
this step. 

(10)  
 

3.5   Computational complexity of sorting lists 
There are many situations where a simple sorting of a 
list of values is required by a task of a schema matching 
algorithm. The algorithm theory has all the necessary 
results which should be adopted here. However we 
should not forget about the exact type of applied 
ordering method. In our implementation we used a kind 
of quick-sort algorithm whose computational cost can be 
estimated by the following average value: 

nlog39,1nSteps 2sort_quick ∗∗=  
By the calculation of the exact value of child and leaf 

similarities only the highest 25% (or 50%) of the above 
presented functions must be taken into account. This 
requires the sorting of the results, which is 

(14) 
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∗∗
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for the child context and  
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∗
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for the leaf context. 

(12) 
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3.6   Number of expected steps of the approaches 
In this paragraph we present the expected number of 
steps of each analyzed approach in a complex form 
without detailed explanation. Deductions and detailed 
expressions can be constructed based on the 
specification of the approaches and the expressions and 
methods presented above. 
 

)G,C(Steps)G,C(Steps)G,C(Steps eparPr_NTAPerform_NTANTA +=  
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In the next section the calculation complexity of the 
different approaches is evaluated on multiple test cases. 
 
 
4   Experiments 
To estimate and analyze working cost i.e. number of run-
time steps for different schemas more samples was 
implemented. As the reader could see in the previous 
chapter, calculation of the expected number of run-time 
steps is not an easy method especially for custom (e.g. 
real-life) scenarios. On the other hand computational 
costs of real schemas can also be estimated with that of 
some artificial schemas of the right size. Thus specific 
samples were created so that the required parameters e.g. 
average path length to the root, or to the leaves can be 
easily calculated. These schemas conform to strict rules 
as follows:  
• every intern node (complex type having at least one 

attribute with a range complex type as well) has the 
same number of children (i.e. the same number of 
attributes with a complex range),  

• every node has the same number of attributes (in 
other worlds, the summary of complex and simple 
attributes for every nodes is constant), 

• all leaves of the tree can be found at the same level 
(in other words, the distance of complex types having 
only simple attributes from the root element is 
always the same) and 

• every complex type has the same number of attached 
terms.  

 
 

4.1   Implemented test schemas 
Upon the rules described above the complexity of the 
used sample schemas can be described by the following 
parameters: 

• the number of branches represents the number of 
children nodes for intern complex types, 

• the number of deepness shows the distance of leaf 
nodes from the root, 

• concept attribute is the number of attributes 
connected to complex types and 

• terms depicts the number of associated terms of 
complex types. 

 
The implemented test schemas have the following 
parameters, see table 1. 

 
Table 1 Parameters of implemented test schemas 

 Brances Deepness Attributes Terms 
Sample 1,33 1,375 5 4 
Example1 2 2 7 5 
Example2 3 4 9 6 
Example3 5 5 12 8 

 
A more practical representation of schemas is the graph 
representation. Figure 1 shows the graph of the test 
schema Example1. Example2 and Example3 are built up 
and can be presented similarly. The test data called 
Sample was implemented differently. It is not conformed 
to the strict rules described above but its small size 
facilitates to define the necessary parameters to the 
calculations. Furthermore this not “standardized” test 
data may also validate the usage of other artificial 
schema examples by showing expected values in run-
time steps and actual run-time measurements. Figure 2 
shows the graph representation of test schema called 
Sample. 
 

Fig. 2. Graph representation of test schema Sample 
 
To be able to calculate the number of expected steps the 
following values were also approximated:  
• number of different simple types and flooding 

iterations for approach similarity flooding and 

(17) 

(18) 

(19) 
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Hence the number of overall steps of the NTA approach 
for these schemas is: 

• average number of children and leaves, and average 
length of path to the root and to the leaves for 
calculating the steps of the combined matcher 
(approach WordNet). 

13751275100)G,C(Steps Sample_NTA =+= . (22) 

 
 The next presented approach was the similarity flooding. 

The steps to create the OIM graph representation of both 
schemas is as follows: 

The test cases were defined as all possible combination 
of schema pairs. Including also the evaluation of the 
same schemas this means 10 test-cases from different 
complexity. The next sub-chapter presents the 
calculations detailed for the evaluation of schema 
Sample with test schema Sample. Please remember, that 
from the point of view of computational complexity and 
required run-time costs it is not important that the 
schema is actually compared with itself. 
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where values   and  should have been estimated. These 
are data types e.g. string, boolean, integer, float, date 
and time, so the number of existing data types both in 
the global and the local schema and is estimated now 
with 6 for this sample. 

 
 
4.2   Detailed calculation of a given example 
The calculation of similarity values of complex types for 
test schemas Sample (consisting of 5-5 complex types) 
means  

The steps for the initial mapping is calculated as follows:  
1004545555555)G,C(Steps eparPr_NTA =∗+∗+++∗+∗=   (20) 

( ) 562562552523
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steps of preparation, and 
 

(24) 12755525552525)G,C(Steps Perform_NTA =∗∗+∗∗+=  (21) 
 
steps of similarity calculation for this estimated size of 
schemas.   
  

 
Fig. 1 Graph representation of Example1 
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The PCG graph creation costs 
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where the overall number of simple type attributes was 
simply counted for the given test schema. (Note, that this 
counting was supported by appropriate implementation 
used mainly by the estimation of computational 
requirements of the WordNet approach, see later) 
 
Based on the statements in the corresponding paper of 
the similarity flooding [12] 6-8 iterative steps are needed 
to evaluate final results at the flooding (this number is 
dependent on the selected convergence formula and 
input and output schema complexity) at schemas at these 
sizes. Hence we set the number of iterative steps to equal 
7. Based on these estimated values and substituting the 
average number of the attributes of complex types and 
the number of complex types from our example, the 
computational cost of the flooding can be calculated as 
follows: 
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The total number of steps can be calculated as follows: 
 

275771814436585625150
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The last presented approach was the so called WordNet 
approach. Substituting the values of our example into the 
equations for the steps of the initial tree construction and 
retrieving WordNet we get the following results: 
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and 
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The rest of the calculations are the evaluation of 
similarities in the ancestor, child and leaf context. Thus  
the average length of the path from the given node till 
the root should be estimated. Unfortunately this depends 
strongly on the given schemas and can not be estimated 
based on the number of complex types in the schema and 
average number of connected attributes per complex 
type. However some values can be assigned to our 
example. Suppose that the maximal depth in our schema 
forest is 4 and there is 1 complex type at distance 3, 2 
complex types at distance 2 from the root element and 1 
complex type is the root element itself. So the average 
length of path is estimated by 2,4 and the average for the 
expected number of steps for evaluating the ancestor 
similarity of two given complex types is: 

(25) 

 
(30) 76,54,24,2)G,C(Steps jiancest =∗≈  

 
To be able to estimate the computational complexity of 
the calculation of child context similarity the average 
number of children of complex types should be set. For 
both the local schema tree and the global schema tree 
this is exactly 5, because every complex type has 5 
attributes in our example. 
Hence the number of steps for calculating child context 
similarity is: 
 

( )
( ) ( )

374,186)55(log39,1)55()55(
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(31) 

 
The leaf similarity can be calculated in a number of steps 
as follows: 
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where )C(leaf i and )G(leaf j  were estimated with 

the average number of leaves under the nodes in our 
sample tree, which is: 
 

6,10
5

591821)G(leaf)C(leaf ji =
+++
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and the average length of the paths to the leaves is 
estimated with: 
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591821
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(27) (32) 

(33) (28) 

(34) (29) 
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These calculations were also facilitated by appropriate 
implementations also mentioned above of course. 
 
Substituting the estimated number of steps of 
preparations and calculating ancestor, child and leaf 
context to each node into expression 1.47 the overall 
performance is approximated as follows: 
 

56786)858,2049374,18676,5(5567660
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∑
 

So comparing the results for the 3 different approaches 
we get the following order: 
 

)56786)G,C(Steps(

)27577)G,C(Steps()1375)G,C(Steps(
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where one can see, that the estimated cost of our 
approach called NTA is significantly smaller than the 
cost of other approaches. 
 
After the estimation of the number of required 
computational steps the results were also validated by 
the actual measurement of steps by running the specific 
implementations. The measured numbers of steps are 
shown in Table 2. 
 

Table 2 Measured number of run-time steps for Sample 
NTA Sim. Flood WordNet 
1375 18827 54256 

 
As the reader can see the measured numbers are close to 
the estimated results validating our method. 
 
Finally the connection between the number of required 
computational steps and actual run-time is evaluated. 
Unfortunately this test scenario – comparing test schema 
Sample with itself – was not complex enough to result in 
real differences among the run-time costs: the run times 
were close to zero (signaling only the sampling 
frequency of the time measuring function) in all cases. 
Therefore the differences in run-time will be evaluated in 
the case of more complicated test scenarios – see in 
Chapter 4.3 later. 
 
 
4.3   Overall evaluation 
The estimated number of run-time steps for every 
approach is presented in table 3. 
 

Table 3 Estimated number of run-time steps 
Test scenario NTA Sim. Flood WordNet 
Sample vs Sample 1375 19801 56981 
Example1 vs Sample 2451 33663 95619 
Example1 vs Example1 4396 57335 252207 

Example2 vs Sample 59471 495365 5865024 
Example1 vs Example2 91809 847019 12086636 
Example2 vs Example2 1921843 16930913 610377358 
Example3 vs Sample 2152256 20763658 361249806 
Example1 vs Example3 3882655 35530560 609118736 
Example2 vs Example3 81375634 1204698630 37622299563 
Example3 vs Example3 3448208988 50469880392 2,31949E+12 

 
To validate the correctness of our approximation method 
specific step counters were placed into the 
implementation of the algorithms. The number of steps 
measured during the execution is shown in table 4. 
 

Table 4 Measured number of run-time steps 
Test scenario NTA Sim. Flood WordNet 
Sample vs Sample 1375 18827 54256 
Example1 vs Sample 2451 32837 113933 
Example1 vs Example1 4369 57371 240700 
Example2 vs Sample 59471 483215 5821611 
Example1 vs Example2 91809 847037 12024888 
Example2 vs Example2 1921843 16930931 622136464 
Example3 vs Sample 2152256 20255808 380147160 
Example1 vs Example3 3882655 65530578 790026787 
Example2 vs Example3 81375634 N/A N/A 
Example3 vs Example3 3448208988 N/A N/A 

 
The measured values have successfully validated our 
approximation method. Not surprisingly by the approach 
NTA the same values were returned by the test, because 
neither average calculation nor any other approximations 
were applied there. But the measured values of other 
approaches are also close to our estimations. The “N/A” 
symbol stands for not successful execution of the given 
test scenarios. Because of the size of these scenarios and 
the higher complexity of algorithms they can not be 
executed on regular hardware configurations e.g. on 
personal computers or the run-time is enormous long. 

Based on our calculations the order of the actual 
execution is also predictable. However without knowing 
the exact capacity of run-time configuration and 
execution of some simpler scenarios for achieving some 
reference measurements more accurate estimation of 
execution time is not possible. On the other hand, fully 
accurate run times are not need in most of the cases, only 
the correct order of magnitude is important. Our 
measured execution times are shown in table 5. 
 

Table 5 Measured execution times of the tests (seconds) 
Test scenario NTA Sim. Flood WordNet 
Sample vs Sample 0,03 0,06 0,08 
Example1 vs Sample 0,03 0,06 0,08 
Example1 vs Example1 0,03 0,08 0,11 
Example2 vs Sample 0,08 0,63 1,00 
Example1 vs Example2 0,08 1,11 1,95 
Example2 vs Example2 0,92 25,94 98,23 
Example3 vs Sample 3,56 41,91 91,88 
Example1 vs Example3 2,52 206,48 159,06 
Example2 vs Example3 40,52 N/A N/A 
Example3 vs Example3 2264,84 N/A N/A 

 
 

(35) 

(36) 
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5   Short evaluation of accuracy 
As already mentioned above by evaluating schema 
matching approaches both accuracy and required 
computational cost should be taken into account. 
Although the aim of this paper was a detailed analyzes 
of run-time cost the results of our accuracy 
measurements are also presented in table 6. As 
measurement methods and units the mostly used 
parameters were adapted from current literature [4, 12]. 
These are the followings: 
 
• The precision returns a value comparing the number 

of correctly found pairs with the number of all 
proposed pairs. (Correctly found pairs are both part 
of the ideal matching and evaluated algorithm result.) 
The precision is calculated as follows: 
Precision = Correctly found pairs / All proposed pairs 

• The recall returns a value comparing the number of 
correctly found pairs with the number of all existing 
pairs in the ideal matching. The recall is calculated as 
follows: 
Recall= Correctly found pairs/ All pairs of the ideal 
matching 

• The F-measure is a combined indicator originated 
from the previous two: 
F-measure= 2*Precision*Recall/(Precision+Recall) 

 
Table 6 Algorithm accuracy of different approaches 

Scenarios: Scenario 1 
 

Scenario 2 
 

Scenario 3 

Indicators NTA SF WN NTA SF WN NTA SF WN
Precision 0,8 0,25 1 0,46 0,53 0,21 0,55 0,33 0,31
Recall 1 1 0,75 0,55 0,73 0,82 0,86 0,86 0,71
F-Measure 0,89 0,4 0,86 0,5 0,61 0,33 0,67 0,48 0,43

 
Our previously developed schema matching algorithm 
(called NTA) performed quite well comparing to others. 
Taking also into account its much lower computational 
requirement it clearly outperforms other approaches. 
 
 
6   Conclusion 
The computational cost of schema matching approaches 
were analyzed and estimated by different mathematical 
methods and techniques. This is useful by designing and 
comparing of schema matching solutions willing to be 
used in everyday work or at critical on-line systems. The 
presented approach is applicable for various kinds of 
matching approaches; typical computational tasks of 
linguistic, structural and combined matchers were all 
covered. As a demonstration, we have also successfully 
validated our method on three different approaches. Our 
experiments showed that the estimated values are 
correct, and the required run-time complexity and the 
order of magnitude of the actual execution times are also 
predictable based on our returned results. 
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