
Computational requirement of schema matching algorithms
PETER MARTINEK, BELA SZIKORA
Department of Electronics Technology

Budapest University of Technology and Economics
Goldman Gy. tér 3., 1111 Budapest

HUNGARY
martinek@ett.bme.hu

Abstract: - The integration of different data structures e.g. relational databases of information systems is a current issue
in the area of information sciences. Numerous solutions aroused recently aiming to achieve a high accuracy in
similarity measurement and integration of schema entities coming from different schemas. Researches usually properly
evaluate the capabilities of these approaches from the point of view of accuracy. However the computational
complexity of the proposed algorithms is hardly ever examined in the most of these works. We claim that efficiency of
a solution can only be judged by taking into account both the accuracy and the computational requirements of
participating algorithms. Since there are many known measurement methods and metrics for the evaluation of
accuracy, the focus is set for the analysis of their computational complexity in this paper. After the problem
formulation the main ideas behind our method are presented. Various approximation techniques and methods of
applied algorithm theory are used to evaluate the different approaches. Three specific approaches were also selected to
present the work of our method in details on them. Experiments run on several test inputs are also included.

Key-Words: - Computational complexity, Schema matching, Approximation techniques in computational requirement
estimation

1 Introduction
Integration of different software systems and
corresponding data structures is a certain need in
information technology. The field of its applications is
various starting from medical systems to enterprise
application integration through E-commerce and E-
government. Because system integration is hardly
separable from the mapping of different data structures,
the schema matching problem i.e. comparing and
aligning of entities of schemas to each other is a current
issue as well.

The aim of schema matching algorithms is to identify
the semantic relevance between the entities of different
data representation structures coming from different
systems. Most of the proposals contain a similarity
measure component, which returns the connection
strength between two objects in the form of a number
between 0 and 1. Pairs of entities having a value near to
1 probably represent the same real world concepts.
Hence they must be connected during the schema or
application integration task. On the other hand, entities
described by lower values are out of interest from the
point of view of integration. Similarity measurement
methods can save a lot of human efforts this way. Thus
preventing the necessity of the presence of a human
expert during the schema matching task is also a
reasonable goal by developing different approaches and
methodologies.

There are 3 basic types of schema matching
approaches today:

• Linguistic approaches examine the naming similarity
of entities using different string comparing functions
for example searching for sub-strings or
concatenations. Usually they are also extended by
(domain specific) dictionaries and taxonomies to be
able to detect the similarities in the meaning of
schema concepts as well.

• Structural methods are based on the comparing of
paths connected to the given entities leading to the
leaves, children or to the root element. The main idea
behind this approach is, that two entities of two
different schemas probably represent the same real
world entity if their structural neighborhood is built
similarly e.g. the two paths leading to the root
element are similar. Path similarities are mainly
measured by defining indicators for similar node
correspondence, node order, etc.

• Combining the two approaches above and applying
more specific algorithms within solid frameworks
results in a solution called combined approach.
Because of its robustness and effectiveness, most of
the presented solutions are from this category in
current literature. However algorithm complexity and
computational costs are hardly taken into account.

There are many possible area of application e.g. aligning
of service interfaces in a SOA based integration
scenario, where schema matching algorithms should be
performed quite often during the everyday work. In this
case, it is important to have an algorithm, which is able
to be executed in an acceptable time. Therefore analyzes

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Peter Martinek, Bela Szikora

ISSN: 1790-0832 1412 Issue 8, Volume 6, August 2009

and prediction of algorithms’ runtime is at least as
essential as the evaluation of the accuracy of their
results.

This paper presents mathematical methods and
techniques to predict computational costs and hence
execution run-time of schema matching approaches. The
structure of the paper is as follows: the next chapter
summarizes works related to ours. In chapter 3 we
present the problem of computational requirement
estimation and describe our solution. Chapter 4 contains
experimental results validating our method. Chapter 5
briefly describes algorithm accuracy and finally chapter
6 concludes the achieved results.

2 Related work
There are numerous researches in literature about
comparison and evaluation of different data sources and
their schemas [1, 5, 8, 11, 15, 16, 17,18, 19].

An automated schema matching solution working on
XML schemas is presented in [14]. The described
method combines linguistic and structural similarity
extended with the evaluation of data type
compatibilities. Within the linguistic part abbreviations
and acronyms are also identified while prepositions and
articles are disregarded due to domain-specific
dictionaries constructed for the examined schemas.

A special approach, called similarity flooding is
presented in the work [12], which is hard to be identified
upon the classification of schema matching approaches
introduced above. The main idea behind the similarity
flooding is that the similarity of two given entities can be
measured by the similarity of their neighborhoods. The
paper also presents detailed analyzes and comparison of
results to other approaches. However this is performed
only from the point of view of accuracy and the paper
lacks any kind of estimation of run-time costs. This
algorithm is described in details and compared with our
approach later in chapters 3 and 4.

The authors in [4] present a conventional example of
a combined approach. The evaluation starts with a
linguistic analyzes based on the open dictionary called
WordNet[6], but the main added value is the
comprehensive structural method performed on the
schema trees. Unfortunately this paper also lacks of
computational complexity estimation.

Although this requires the handling of functions
working also on graphs, matrices and other ordered data
structures, our solution is able to predict the
computational requirement also for this approach – see
later in chapters 3 and 4.

The presented approach called Cupid in [9] also uses
a wider set of techniques including discovering
mappings based on their names, data types, constraints
and schema structure. The authors constitute that most of

the useful information can be found in the leaves of
schemas. Thus the similarity of the leaf context is highly
weighted in the calculations. The number of one to one
comparisons is decreased by a separately clustering of
concepts into categories at an early stage of the method.
Otherwise the different implementations e.g. the
structural similarity evaluation of this approach are quite
similar to the previous one preventing me from the
further description and comparison of them with other
approaches. Furthermore we can also judge approaches
against two other proposals (DIKE[14] and MOMIS[2])
indirectly, because Cupid definitely outperforms both of
them.

In [13] the authors present a schema matching
method working on XML schemas. Similarly to the
approach Cupid the evaluation starts with the clustering
of schemas into various groups. The syntactic similarity
measurement is performed in 3 steps namely
preprocessing, data mining and postprocessing while a
specific graph representation called dendogram
facilitates the generalization and specialization processes
of the clusters to develop an appropriate schema class
hierarchy. Unfortunately the analysis of the results is
restricted to the parameterization of the presented
approach and is only presented in the unique metrics of
the paper. This hinders the comparison with other
approaches including mine. However taking into account
the size of evaluated schemas and the values of applied
efficiency indicators the performance should be at the
same level as the methods in [12] and [9].

The authors of [3] propose an algorithm based on tree
similarity matching methods in a multi agent
environment for a classical buyer-seller scenario. The
similarity algorithm itself is implemented as a recursive
functional program in a language called Relfun.
Although this may save some computational costs in the
run-time, an additional transformation step of classical
XML based inputs i.e. the XML serialization in Object-
Oriented RuleML is needed. Because there are no
experiments on schemas of realistic sizes presented, the
exact comparison of this approach with others would
require enormous amount of work. Taking into account
the applied structural algorithm and comparing it with
other approaches the performance of this approach can
be similar (or maybe slightly better in run-time) to the
methods in [12] and [9].

A generic schema matching tool called COMA++ is
presented in [7]. It provides a library of individual
matchers realizing a flexible platform for a combined
matcher. The application of different matching strategies
and the decomposition of large schemas with a
fragment-based matcher into smaller sets ensure high
scalability for the presented schema matching solution.
The approach is also evaluated on schemas from various
sizes (containing a number of nodes between 27 and 843

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Peter Martinek, Bela Szikora

ISSN: 1790-0832 1413 Issue 8, Volume 6, August 2009

and a number of possible paths between 34 and 26228)
and it is also compared with other proposals extensively.
However the focus is mainly set on accuracy comparison
while it a proper and detailed analyzes of run-time cost
is still missing.

3 Algorithm complexity of approaches
Besides of the expected accuracy of the results the run
time cost of an algorithm is also a key aspect by finding
a solution for the schema matching problem. More
accurate solutions may require much more resources
(e.g. computational performance) to provide results. This
can lead to enormous long run-time in the given
hardware configurations which can not be accepted by
some system e.g. online, real time systems or even by a
solid development environment.

The costs of an algorithm are strictly connected with
the complexity of the given method. We have proved
that complexity is proportional by the expected number
of the steps at the execution. Because there is a (single)
computer operation in the background of each performed
step, the actual run-time of given computer
configurations can also be predicted for given schemas
this way. Hence the number of the expected steps is
calculated by our method. In the next few paragraphs we
present the main tasks and tools of our method. For
better understanding tasks of real schema matching
solutions are also described and evaluated.

3.1 Examples for schema matching approaches
The proposal similarity flooding is based on the
following idea: if a graph is constructed where nodes
represent entities like complex types or attributes and
edges represent relationship among them like containing,
inheritance or association, the relation between two
given entity of the schemas is determined by the relation
of their neighborhood. In other worlds, if the nodes close
to entity A in the fist schema are semantically related to
corresponding nodes close to entity B in the second
schema, then entity A and entity B are probably
semantically related and vice versa [4].

The key point of the approach is the algorithm for
similarity flooding, where similarity of the nodes is
distributed among the neighbors. This is performed for
all nodes in a specially constructed pair wise
connectivity graph (PCG). Furthermore this is an
iterative step, which is stopped by reaching a stable state
or a given number of ran iterative steps. The results
(similarity values of entities creating common nodes in
the PCG) are directly readable after flooding is stopped.

The next presented approach - called WordNet in our
article- has a strong structural analyzer part but relies on

the values of a dictionary based matcher, the WordNet
[4, 6]. After the initial values of similarity between
entities is evaluated based on the WordNet, a complex
structural matching algorithm determines the relations
between the entities reconstructed in directed acyclic
graphs (DAGs).

We have also developed a schema matching solution
in our former work [10]. The approach determines
similarity values on three partial similarity functions.
The name, connected term and attribute context
similarities give the returning values by a weighted sum.
The algorithm was designed to also perform well in
everyday problem solutions. Hence its computational
complexity is intended to be much lower than using
other approaches. On the other hand its accuracy is also
not lower so this approach – called NTA in the rest of the
paper – definitely outperforms other presented
algorithms, see later.

Every main steps of every approach will be presented
and analyzed from the point of computational
complexity in the next few sub-chapters.

3.2 Complexity of simple comparisons and

constructional tasks
This section presents the computational complexity of
some simpler tasks upcoming for example in the
approach NTA.

By evaluating the linguistic correspondence between
the naming of different complex types of schemas we
use function , which is a single one-step
operation – function substring. So the number of steps of
function is 1 for a given evaluation of two
different complex types.

),(ji GCN

), ji GC(N

Calculating the similarity based on attached terms uses
the function . This compares all attached
concepts of evaluated couples what results

),(ji GCT

)G(jTerm)C(Term i ∗ number of steps, where)C(Terms i

is the number of terms connected to complex type . iC
The correspondence between the attributes of

complex types is calculated by the function .
Within this every attribute of the local schema is
compared with every attribute of the global schema
resulting number of steps

),(ji GCA

)jG(Attr)C(Attr i ∗ where

)C(Attr i
 represents the number of attributes connected

to complex type . iC
By the comparisons of two whole schemas all

functions depicted above should be calculated to all pairs
of the complex types of the schemas. This means

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Peter Martinek, Bela Szikora

ISSN: 1790-0832 1414 Issue 8, Volume 6, August 2009

)G(Attr)C(Attr)G(Term)C(Term1

)G,C(Steps

jiji
j,i

Perform_NTA

∗+∗+=

=

∑

steps for schemas C and G.
These expressions should be applied for every simple

comparing steps of every schema matching approaches
e.g. the retrieving of the similarity values from the
dictionary in proposal Wordnet or by the creation of
initial values between the OIM graph nodes in the
similarity flooding.

Most of the algorithm requires some preparation e.g.
constructing trees from complex types before its
execution. This requires the processing of all complex
types with their all attributes which costs

)G(TermG)C(TermC

GC)G(Attr)C(Attr)G,C(Steps

ji

j
j

i
iepairPr_NTA

∗+∗+

++++= ∑∑ ,

where C is the number of the complex types in the first
schema and G denotes the number of complex types in
the second schema. So similar to the computational
requirements of preparation in approach NTA, every
preparation steps of every matching algorithms should
be estimated with the expression above.

By the similarity flooding an open information model
(OIM) based graph is constructed both from the local
schemas. Similarly to initial graph construction by the
NTA approach this step requires

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+++++

++
∗=

∑∑
3YYGC

)G(Attr)C(Attr
2)G,C(Steps

GC

j
j

i
i

OIM
,

where () is the number of existing data types in
the first schema (second schema respectively) and the
constant value of 3 is the insertion cost of the tree
special category node (complex type, attribute, and
attribute type) at the end of the expression.

cY GY

The computational complexity of tree construction
step of the approach Wordnet can also be predicted this
way. So the first step of approach Wordnet requires

GC)G(Attr)C(Attr)G,C(Steps

j
j

i
iTreeConstr +++= ∑∑

computational steps.
The second task of approach Wordnet should be
mentioned here as well. Semantic relevance of entities of
both schemas is retrieved from the Wordnet database in
a number of steps as follows:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∗⎟
⎠

⎞
⎜
⎝

⎛
+=

∑

∑

j
j

i
iWordNET

)G(Attr_SimpleG

)C(Attr_SimpleC)G,C(Steps

(1)
(5)

3.3 Complexity of special graph traversals

An initial mapping between the nodes of the two
OIM graphs is calculated in approach similarity
flooding. This will represent a rough starting value for
the similarity of nodes (used later by the initializing of
the flooding algorithm at the PCG). The generated
number of nodes to each complex type is 2 (1 for the
entity and 1 for its name). Similarly, all attributes and
possible range types will also be presented by 2 nodes in
the OIM. Hence the number of generated nodes is 2
times the number of complex types plus 2 times the
number of attributes plus 2 times the number of data
types existing in the given schema.

(2)

Besides, there are exactly 2 nodes generated to every
complex type and 3 initial nodes for signing complex
type, attribute and data type category nodes. During the
creation of initial mapping every node of the 2 generated
OIM schemas must be compared to every node of the
other schema. Thus the number of the steps
(comparisons) performing in this section is the
following:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++∗

∗⎟
⎠

⎞
⎜
⎝

⎛
+++=

∑

∑

G
j

j

i
cimap_Init

Y2)G(Attr2G23

Y2)C(Attr2C23)G,C(Steps
 (6)

(3)

So the required steps of comparisons were calculated by
determining the nodes created in each steps of the graph
construction. This kind of deductions can also be used
by analyzing of various matchers containing special
graph-based structures.

Another typical example for this could be the
evaluation of the PCG graph creation step by the
similarity flooding approach. The pair wise connectivity
graph (PCG) is created along the same type of edges of
the two schemas. (The type of edges can be type, name,
and other relation like attribute and data type). To do so,
every edge of the same type from the two schemas is
evaluated. Without presenting the detailed deduction
here, the number of expected execution steps of the PCG
creation is calculated by expression (7) as follows:

(4)

∑∑∑∑

∑∑

∗+∗+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++∗⎟

⎠

⎞
⎜
⎝

⎛
++=

j
j

i
i

i
j

i
i

j
Gj

i
CiPCG

)G(Attr_Simple)C(Attr_Simple)G(Attr)C(Attr

Y)G(AttrGY)C(AttrC2)G,C(Steps

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Peter Martinek, Bela Szikora

ISSN: 1790-0832 1415 Issue 8, Volume 6, August 2009

To the estimation of the steps of the flooding itself we
need to know the exact number of the nodes in the PCG
graph. A deduction similarly to the above presented
cases leads to expression (8):

⎟
⎠

⎞
⎜
⎝

⎛
++∗⎟

⎠

⎞
⎜
⎝

⎛
++∗= ∑∑ C

i
iC

i
iPCG Y)C(AttrCY)C(AttrC2)G,C(Nodes

Thus the flooding itself is performed on each node of the PCG
the required number of its computational steps is as follows:

∑ ∑∑

∑

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
++∗⎟

⎠

⎞
⎜
⎝

⎛
++∗=

==

steps
C

i
iC

i
i

steps
PCGFlooding

Y)C(AttrCY)C(AttrC2

)G,C(Nodes)G,C(Steps

where signs that this must be performed for all

iterative steps.

∑
steps

(...)

3.4 Complexity of structure comparisons
The structural similarity of graph nodes is calculated by
3 aspects by the approach Wordnet. The ancestor, child
and leaf context all contribute to the final value of the
similarity.
The ancestor similarity is calculated as follows:

)G,C(LS)P,P(PS)G,C(Sim ji21jiancest ∗= ,

where is the path similarity function for the
path starting from entities (respectively) to the
root element of the given trees and function
represents the result of WordNet request for and .
Because the values of LS are already available only the
two paths should be found. Because the computational
complexity of the functions contained by the path
similarity are in order , the a number of steps in
this task is estimated as follows (11):

)P,P(PS 21

iC

)2

jG

)G,C(LS ji

iC jG

n(O

)P(length)P(length)G,C(Steps 21jiancest ∗= ,

Where function length() returns the number of nodes in a
given path.

For the overall method of the calculation of ancestor
context this must be performed for all possible pairs of
complex types of the two schemas. However we face a
serious problem by evaluating the expression above for
real schemas: the length of the path is different value for
every node of the tree. To be able to solve the problem,
the length of paths within a schema is estimated by a
constant value. For this we have chosen the average
lengths to the root calculated as follows:

i
i

irootiroot C/)P(length)C(length_AVG ∑= .

Using this value within the expression above the overall
computational cost of the ancestor context calculation
can already be predicted.

Based on our experiments we claim that this
approximation method be a good estimation for all kind
of algorithms where path analyzing (comparing)
functions are used.

For example it is also applicable by the calculation of
the leaf similarity. Due to the specification of the
Wordnet approach, the path similarity (PS) must be
calculated to all paths leading to (descendants) leaves of
the given pair of concepts originating from the 2
different schemas. The computational cost of the
evaluation of two entities is as follows:

(9)

∑ ∗=

)G(leaf)C(leaf
21jipaths_leaves

ji

)P(length)P(length)G,C(Steps , (13)

where similarly to the ancestor calculation the length is
estimated with an average value of paths to the leaves.

The child context is also based on the function LS.
However it requires no path similarity functions because
only the set of associated children nodes are compared in
this step.

(10)

3.5 Computational complexity of sorting lists
There are many situations where a simple sorting of a
list of values is required by a task of a schema matching
algorithm. The algorithm theory has all the necessary
results which should be adopted here. However we
should not forget about the exact type of applied
ordering method. In our implementation we used a kind
of quick-sort algorithm whose computational cost can be
estimated by the following average value:

nlog39,1nSteps 2sort_quick ∗∗=
By the calculation of the exact value of child and leaf

similarities only the highest 25% (or 50%) of the above
presented functions must be taken into account. This
requires the sorting of the results, which is

(14)

()

())G(child)C(childlog39,1

)G(child)C(child)G,C(Steps

ji2

jijichild_sorting

∗∗

∗∗≈
(15)

for the child context and

)G(leaf)C(leaflog39,1

)G(leaf)C(leaf)G,C(Steps

ji2

jijileaves

∗

∗≈
 (16)

for the leaf context.

(12)

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Peter Martinek, Bela Szikora

ISSN: 1790-0832 1416 Issue 8, Volume 6, August 2009

3.6 Number of expected steps of the approaches
In this paragraph we present the expected number of
steps of each analyzed approach in a complex form
without detailed explanation. Deductions and detailed
expressions can be constructed based on the
specification of the approaches and the expressions and
methods presented above.

)G,C(Steps)G,C(Steps)G,C(Steps eparPr_NTAPerform_NTANTA +=

)G,C(Steps)G,C(Steps
)G,C(Steps)G,C(Steps)G,C(Steps

FloodingPCG

map_InitOIMFlooding_Sim

++

++=

∑ +++

++=

j,i
jileavesjichildjiancest

WordNETTreeConstrCombined

)G,C(Steps)G,C(Steps)G,C(Steps
)G,C(Steps)G,C(Steps)G,C(Steps

In the next section the calculation complexity of the
different approaches is evaluated on multiple test cases.

4 Experiments
To estimate and analyze working cost i.e. number of run-
time steps for different schemas more samples was
implemented. As the reader could see in the previous
chapter, calculation of the expected number of run-time
steps is not an easy method especially for custom (e.g.
real-life) scenarios. On the other hand computational
costs of real schemas can also be estimated with that of
some artificial schemas of the right size. Thus specific
samples were created so that the required parameters e.g.
average path length to the root, or to the leaves can be
easily calculated. These schemas conform to strict rules
as follows:
• every intern node (complex type having at least one

attribute with a range complex type as well) has the
same number of children (i.e. the same number of
attributes with a complex range),

• every node has the same number of attributes (in
other worlds, the summary of complex and simple
attributes for every nodes is constant),

• all leaves of the tree can be found at the same level
(in other words, the distance of complex types having
only simple attributes from the root element is
always the same) and

• every complex type has the same number of attached
terms.

4.1 Implemented test schemas
Upon the rules described above the complexity of the
used sample schemas can be described by the following
parameters:

• the number of branches represents the number of
children nodes for intern complex types,

• the number of deepness shows the distance of leaf
nodes from the root,

• concept attribute is the number of attributes
connected to complex types and

• terms depicts the number of associated terms of
complex types.

The implemented test schemas have the following
parameters, see table 1.

Table 1 Parameters of implemented test schemas

 Brances Deepness Attributes Terms
Sample 1,33 1,375 5 4
Example1 2 2 7 5
Example2 3 4 9 6
Example3 5 5 12 8

A more practical representation of schemas is the graph
representation. Figure 1 shows the graph of the test
schema Example1. Example2 and Example3 are built up
and can be presented similarly. The test data called
Sample was implemented differently. It is not conformed
to the strict rules described above but its small size
facilitates to define the necessary parameters to the
calculations. Furthermore this not “standardized” test
data may also validate the usage of other artificial
schema examples by showing expected values in run-
time steps and actual run-time measurements. Figure 2
shows the graph representation of test schema called
Sample.

Fig. 2. Graph representation of test schema Sample

To be able to calculate the number of expected steps the
following values were also approximated:
• number of different simple types and flooding

iterations for approach similarity flooding and

(17)

(18)

(19)

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Peter Martinek, Bela Szikora

ISSN: 1790-0832 1417 Issue 8, Volume 6, August 2009

Hence the number of overall steps of the NTA approach
for these schemas is:

• average number of children and leaves, and average
length of path to the root and to the leaves for
calculating the steps of the combined matcher
(approach WordNet).

13751275100)G,C(Steps Sample_NTA =+= . (22)

 The next presented approach was the similarity flooding.

The steps to create the OIM graph representation of both
schemas is as follows:

The test cases were defined as all possible combination
of schema pairs. Including also the evaluation of the
same schemas this means 10 test-cases from different
complexity. The next sub-chapter presents the
calculations detailed for the evaluation of schema
Sample with test schema Sample. Please remember, that
from the point of view of computational complexity and
required run-time costs it is not important that the
schema is actually compared with itself.

() 1503665555552

3YYGC)G(Attr

)C(Attr
2)G,C(Steps

GC
j

j

i
i

OIM

=+++++∗+∗∗

=
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+++++

+

∗=
∑

∑

(23)

where values and should have been estimated. These
are data types e.g. string, boolean, integer, float, date
and time, so the number of existing data types both in
the global and the local schema and is estimated now
with 6 for this sample.

4.2 Detailed calculation of a given example
The calculation of similarity values of complex types for
test schemas Sample (consisting of 5-5 complex types)
means

The steps for the initial mapping is calculated as follows:
1004545555555)G,C(Steps eparPr_NTA =∗+∗+++∗+∗= (20)

() 562562552523

Y2)G(Attr2G23

Y2)C(Attr2C23)G,C(Steps

2

G
j

j

i
cimap_Init

=∗+∗∗+∗+=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++∗

∗⎟
⎠

⎞
⎜
⎝

⎛ +++=

∑

∑

steps of preparation, and

(24) 12755525552525)G,C(Steps Perform_NTA =∗∗+∗∗+= (21)

steps of similarity calculation for this estimated size of
schemas.

Fig. 1 Graph representation of Example1

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Peter Martinek, Bela Szikora

ISSN: 1790-0832 1418 Issue 8, Volume 6, August 2009

The PCG graph creation costs

() () () 36582121555565552

)G(Attr_Simple

)C(Attr_Simple)G(Attr)C(Attr

Y)G(AttrGY)C(AttrC2)G,C(Steps

2

j
j

i
i

i
j

i
i

j
Gj

i
CiPCG

=∗+∗∗∗++∗+=

=∗

∗+∗

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++∗⎟

⎠

⎞
⎜
⎝

⎛
++=

∑

∑∑∑

∑∑

where the overall number of simple type attributes was
simply counted for the given test schema. (Note, that this
counting was supported by appropriate implementation
used mainly by the estimation of computational
requirements of the WordNet approach, see later)

Based on the statements in the corresponding paper of
the similarity flooding [12] 6-8 iterative steps are needed
to evaluate final results at the flooding (this number is
dependent on the selected convergence formula and
input and output schema complexity) at schemas at these
sizes. Hence we set the number of iterative steps to equal
7. Based on these estimated values and substituting the
average number of the attributes of complex types and
the number of complex types from our example, the
computational cost of the flooding can be calculated as
follows:

()() 18144655527
Y)G(AttrG

Y)C(AttrC2

)G,C(Nodes)G,C(Steps

2

steps
G

j
j

C
i

i

steps
PCGFlooding

=+∗+∗∗=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++∗

⎟
⎠

⎞
⎜
⎝

⎛
++∗

=

==

∑
∑

∑

∑

The total number of steps can be calculated as follows:

275771814436585625150

)G,C(Steps)G,C(Steps

)G,C(Steps)G,C(Steps)G,C(Steps

FloodingPCG

map_InitOIMFlooding_Sim

=+++=

=+

++=

The last presented approach was the so called WordNet
approach. Substituting the values of our example into the
equations for the steps of the initial tree construction and
retrieving WordNet we get the following results:

60555555

GC)G(Attr)C(Attr)G,C(Steps
j

j
i

iTreeConstr

=++∗+∗=

=+++= ∑∑

and

() 676215)G(Attr_SimpleG

)C(Attr_SimpleC)G,C(Steps

2

j
j

i
iWordNET

=+==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∗⎟
⎠

⎞
⎜
⎝

⎛
+=

∑

∑

The rest of the calculations are the evaluation of
similarities in the ancestor, child and leaf context. Thus
the average length of the path from the given node till
the root should be estimated. Unfortunately this depends
strongly on the given schemas and can not be estimated
based on the number of complex types in the schema and
average number of connected attributes per complex
type. However some values can be assigned to our
example. Suppose that the maximal depth in our schema
forest is 4 and there is 1 complex type at distance 3, 2
complex types at distance 2 from the root element and 1
complex type is the root element itself. So the average
length of path is estimated by 2,4 and the average for the
expected number of steps for evaluating the ancestor
similarity of two given complex types is:

(25)

(30) 76,54,24,2)G,C(Steps jiancest =∗≈

To be able to estimate the computational complexity of
the calculation of child context similarity the average
number of children of complex types should be set. For
both the local schema tree and the global schema tree
this is exactly 5, because every complex type has 5
attributes in our example.
Hence the number of steps for calculating child context
similarity is:

()
() ()

374,186)55(log39,1)55()55(

)G(child)C(childlog39,1)G(child)C(child

)G(child)C(child)G,C(Steps

2

ji2ji

jijichild

=∗∗∗+∗=

=∗∗∗+

+∗≈
 (26)
(31)

The leaf similarity can be calculated in a number of steps
as follows:

() 858,20496,10log39,16,1096,26,10

)G(leaf)C(leaflog39,1)G(leaf)C(leaf

)P(length)P(length)G,C(Steps

2
2

222

ji2ji

)G(leaf)C(leaf
21jileaves

ji

=∗+∗=

=∗∗

+∗≈ ∑

where)C(leaf i and)G(leaf j were estimated with

the average number of leaves under the nodes in our
sample tree, which is:

6,10
5

591821)G(leaf)C(leaf ji =
+++

≈=

and the average length of the paths to the leaves is
estimated with:

96,2
591821

55)45(4)945(3)34455(2
)P(length)P(length 21

≈
+++

∗++∗+++∗+++++∗
≈

≈= .

(27) (32)

(33) (28)

(34) (29)

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Peter Martinek, Bela Szikora

ISSN: 1790-0832 1419 Issue 8, Volume 6, August 2009

These calculations were also facilitated by appropriate
implementations also mentioned above of course.

Substituting the estimated number of steps of
preparations and calculating ancestor, child and leaf
context to each node into expression 1.47 the overall
performance is approximated as follows:

56786)858,2049374,18676,5(5567660

)G,C(Steps)G,C(Steps)G,C(Steps
)G,C(Steps)G,C(Steps)G,C(Steps

j,i
jileavesjichildjiancest

WordNETTreeConstrCombined

=++∗∗++

=++

++=

∑

So comparing the results for the 3 different approaches
we get the following order:

)56786)G,C(Steps(

)27577)G,C(Steps()1375)G,C(Steps(

Sample_Combined

Sample_gSimFloodinSample_NTA

≈<

<=<=

where one can see, that the estimated cost of our
approach called NTA is significantly smaller than the
cost of other approaches.

After the estimation of the number of required
computational steps the results were also validated by
the actual measurement of steps by running the specific
implementations. The measured numbers of steps are
shown in Table 2.

Table 2 Measured number of run-time steps for Sample
NTA Sim. Flood WordNet
1375 18827 54256

As the reader can see the measured numbers are close to
the estimated results validating our method.

Finally the connection between the number of required
computational steps and actual run-time is evaluated.
Unfortunately this test scenario – comparing test schema
Sample with itself – was not complex enough to result in
real differences among the run-time costs: the run times
were close to zero (signaling only the sampling
frequency of the time measuring function) in all cases.
Therefore the differences in run-time will be evaluated in
the case of more complicated test scenarios – see in
Chapter 4.3 later.

4.3 Overall evaluation
The estimated number of run-time steps for every
approach is presented in table 3.

Table 3 Estimated number of run-time steps
Test scenario NTA Sim. Flood WordNet
Sample vs Sample 1375 19801 56981
Example1 vs Sample 2451 33663 95619
Example1 vs Example1 4396 57335 252207

Example2 vs Sample 59471 495365 5865024
Example1 vs Example2 91809 847019 12086636
Example2 vs Example2 1921843 16930913 610377358
Example3 vs Sample 2152256 20763658 361249806
Example1 vs Example3 3882655 35530560 609118736
Example2 vs Example3 81375634 1204698630 37622299563
Example3 vs Example3 3448208988 50469880392 2,31949E+12

To validate the correctness of our approximation method
specific step counters were placed into the
implementation of the algorithms. The number of steps
measured during the execution is shown in table 4.

Table 4 Measured number of run-time steps
Test scenario NTA Sim. Flood WordNet
Sample vs Sample 1375 18827 54256
Example1 vs Sample 2451 32837 113933
Example1 vs Example1 4369 57371 240700
Example2 vs Sample 59471 483215 5821611
Example1 vs Example2 91809 847037 12024888
Example2 vs Example2 1921843 16930931 622136464
Example3 vs Sample 2152256 20255808 380147160
Example1 vs Example3 3882655 65530578 790026787
Example2 vs Example3 81375634 N/A N/A
Example3 vs Example3 3448208988 N/A N/A

The measured values have successfully validated our
approximation method. Not surprisingly by the approach
NTA the same values were returned by the test, because
neither average calculation nor any other approximations
were applied there. But the measured values of other
approaches are also close to our estimations. The “N/A”
symbol stands for not successful execution of the given
test scenarios. Because of the size of these scenarios and
the higher complexity of algorithms they can not be
executed on regular hardware configurations e.g. on
personal computers or the run-time is enormous long.

Based on our calculations the order of the actual
execution is also predictable. However without knowing
the exact capacity of run-time configuration and
execution of some simpler scenarios for achieving some
reference measurements more accurate estimation of
execution time is not possible. On the other hand, fully
accurate run times are not need in most of the cases, only
the correct order of magnitude is important. Our
measured execution times are shown in table 5.

Table 5 Measured execution times of the tests (seconds)
Test scenario NTA Sim. Flood WordNet
Sample vs Sample 0,03 0,06 0,08
Example1 vs Sample 0,03 0,06 0,08
Example1 vs Example1 0,03 0,08 0,11
Example2 vs Sample 0,08 0,63 1,00
Example1 vs Example2 0,08 1,11 1,95
Example2 vs Example2 0,92 25,94 98,23
Example3 vs Sample 3,56 41,91 91,88
Example1 vs Example3 2,52 206,48 159,06
Example2 vs Example3 40,52 N/A N/A
Example3 vs Example3 2264,84 N/A N/A

(35)

(36)

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Peter Martinek, Bela Szikora

ISSN: 1790-0832 1420 Issue 8, Volume 6, August 2009

5 Short evaluation of accuracy
As already mentioned above by evaluating schema
matching approaches both accuracy and required
computational cost should be taken into account.
Although the aim of this paper was a detailed analyzes
of run-time cost the results of our accuracy
measurements are also presented in table 6. As
measurement methods and units the mostly used
parameters were adapted from current literature [4, 12].
These are the followings:

• The precision returns a value comparing the number

of correctly found pairs with the number of all
proposed pairs. (Correctly found pairs are both part
of the ideal matching and evaluated algorithm result.)
The precision is calculated as follows:
Precision = Correctly found pairs / All proposed pairs

• The recall returns a value comparing the number of
correctly found pairs with the number of all existing
pairs in the ideal matching. The recall is calculated as
follows:
Recall= Correctly found pairs/ All pairs of the ideal
matching

• The F-measure is a combined indicator originated
from the previous two:
F-measure= 2*Precision*Recall/(Precision+Recall)

Table 6 Algorithm accuracy of different approaches

Scenarios: Scenario 1

Scenario 2

Scenario 3

Indicators NTA SF WN NTA SF WN NTA SF WN
Precision 0,8 0,25 1 0,46 0,53 0,21 0,55 0,33 0,31
Recall 1 1 0,75 0,55 0,73 0,82 0,86 0,86 0,71
F-Measure 0,89 0,4 0,86 0,5 0,61 0,33 0,67 0,48 0,43

Our previously developed schema matching algorithm
(called NTA) performed quite well comparing to others.
Taking also into account its much lower computational
requirement it clearly outperforms other approaches.

6 Conclusion
The computational cost of schema matching approaches
were analyzed and estimated by different mathematical
methods and techniques. This is useful by designing and
comparing of schema matching solutions willing to be
used in everyday work or at critical on-line systems. The
presented approach is applicable for various kinds of
matching approaches; typical computational tasks of
linguistic, structural and combined matchers were all
covered. As a demonstration, we have also successfully
validated our method on three different approaches. Our
experiments showed that the estimated values are
correct, and the required run-time complexity and the
order of magnitude of the actual execution times are also
predictable based on our returned results.

References:
[1] I. Astrova, A. Kalja, A novel approach to mapping

SQL relational schemata to OWL ontologies, WSEAS
Transactions on Information Science and
Applications, Vol. 3, Issue 11, 2006, pp. 2215-2222.

[2] Bergamaschi, S., S. Castano, and M. Vincini:
Semantic Integration of Semistructured and
Structured Data Sources, SIGMOD Record, Vol. 28,
Issue 1, 1999, Pp. 54-59.

[3] V. C. Bhavsar, H. Boley, L. Yang, A weighted-tree
similarity algorithm for multi-agent systems in E-
business, Computational Intelligence, Vol. 20, Issue
4, pp. 584-602.

[4] Aida Boukottaya, Christine Vanoirbeek, Schema
Matching for Transforming Structured Documents,
Proceedings of the 2005 ACM symposium on
Document engineering, 2005, pp. 101-110.

[5] D. Buttler, A Short Survey of Document Structure
Similarity Algorithms, Proceedings of the 5th
international conference on internet computing,
2004.

[6] Cognitive Science Laboratory, WordNet - a lexical
database for the English language, at
http://wordnet.princeton.edu/

[7] Hong-Hai Do, Erhard Rahm, Matching large
schemas: Approaches and evaluation, Information
Systems, Vol. 32, Issue 6, 2007, pp. 857-885.

[8] Buhwan Jeong, Daewon Lee, Hyunbo Cho, Jaewook
Lee, A novel method for measuring semantic
similarity for XML schema matching, Expert Systems
with Applications, Vol. 34, Issue 3, 2008, pp. 1651-
1658.

[9] J. Madhavan, P. A. Bernstein, E. Rahm, Generic
Schema Matching with Cupid, Proceedings of the
27th International Conference on Very Large Data
Bases, 2001, pp. 49-58.

[10] Martinek P., Szikora B, Detecting semantically
related concepts in a SOA integration scenario,
Periodica Polytechnica, 2008. – in press.

[11] Peter Martinek, Balazs Tothfalussy, Bela Szikora,
Implementation of semantic services in enterprise
application integration, WSEAS Transactions on
Computers, Vol. 7, Issue 10, 2008, pp. 1658-1668.

[12] S. Melnik, H. Garcia-Molina, E. Rahm, Similarity
Flooding: A Versatile Graph Matching Algorithm
and its Application to Schema Matching,
Proceedings of the 18th International Conference on
Data Engineering, 2002, pp. 117-128.

[13] Richi Nayak, Wina Iryadi, XML schema clustering
with semantic and hierarchical similarity measures,
Knowledge-Based Systems, Vol. 20, Issue 4, 2007,
pp. 336-349.

[14] Palopoli, L. G. Terracina, and D. Ursino: The
System DIKE: Towards the Semi-Automatic
Synthesis of Cooperative Information Systems and

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Peter Martinek, Bela Szikora

ISSN: 1790-0832 1421 Issue 8, Volume 6, August 2009

http://wordnet.princeton.edu/

Data Warehouses, Lecture Notes in Computer
Science, Vol. 2282, 2002, pp. 228-276.

[15] Khalid Saleem, Zohra Bellahsene, Ela Hunt,
Performance Oriented Schema Matching, Lecture
Notes in Computer Science, Vol. 4653, 2007, pp.844-
853.

[16] A. Salguero, et. al, Ontology based framework for
data integration, WSEAS Transactions on
Information Science and Applications, Vol. 5, Issue
6, 2008, Pp. 953-962.

[17] H. Quyet Thang, V. Sy Nam, XML Schema
Automatic Matching Solution, International Journal
of Computer Systems Science and Engineering, Vol
4., Num. 1, pp. 68-74.

[18] Yu J., Zhou G., SG: A structure based Web
Services matching framework, WSEAS Transactions
on Information Science and Applications,
Vol. 4, Issue 4, 2007, Pp. 669-673.

[19] Wu X., Feng J., A framework and implementation
of information content reasoning in a database,
WSEAS Transactions on Information Science and
Applications, Vol. 6, Issue 4, 2009, pp. 579-588.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Peter Martinek, Bela Szikora

ISSN: 1790-0832 1422 Issue 8, Volume 6, August 2009

https://www.scopus.com/source/sourceInfo.url?sourceId=144808
https://www.scopus.com/source/sourceInfo.url?sourceId=144808

