A Graphical Method of Detecting Pneumonia Using Chest Radiograph

 NORLIZA MOHD. NOOR[∞], OMAR MOHD. RIJAL*, S. A. R. ABU-BAKAR **, MOHD. IQBAL*, GAN CHEW PENG*
[∞]Dept. of Elect. Eng., College of Science and Technology, Universiti Teknologi Malaysia, MALAYSIA
* Institute of Mathematical Science, University of Malaya, MALAYSIA
**Faculty of Elect. Eng., Universiti Teknologi Malaysia, MALAYSIA
**Faculty of Elect. Eng., Universiti Teknologi Malaysia, MALAYSIA
norliza@ic.utm.my, omarrija@um.edu.my, syed@fke.utm.my, igbal1510@gmail.com, ganchewpeng@yahoo.com

Abstract:- An important ingredient of health care is the correct initial diagnosis of chest ailments using images of chest radiograph. This paper develops a simple graphical method to aid the initial screening and discrimination of pneumonia patients (PNEU) from pulmonary tuberculosis (PTB) patients, lung cancer (LC) patients and normal healthy individuals (NL). Approximate confidence regions using principal component methods on selected texture measures detect and discriminate PNEU from PTB, LC and NL. A brief simulation study indicates that the probability ellipsoid is robust to mild deviation from normality with the presence of two outliers. The main result of this study is that the PNEU-ellipsoid when applied to test data is capable of detecting pneumonia in the sense that 100% of NL, 85% of LC and 65% of PTB will be rejected when using contrast texture measures. Using the combination of twelve features gives similar results. Membership of PNEU-ellipsoid obtained from the chest radiograph image can be used as a useful first stage detection of pneumonia.

Keywords:- Image manipulation and recognition, medicine, texture measures, statistical methods

1 Introduction

Despite rapid advances in medical imaging technology, the conventional chest radiograph is still an important ingredient in the diagnosis of lung ailments [1, 2, 3]. In Malaysia, government hospitals perform the diagnosis using radiograph films simply out of economic considerations.

The chest X-ray of a patient is frequently used as the initial indicator of the existence of lung diseases. It is well-known that diseases like pulmonary tuberculosis and lung cancer may also be detected from the chest Xray by the experienced medical practitioner who is normally a consultant. The efficiency of detection clearly depends on the ability of the medical practitioner to differentiate the three major lung diseases; pneumonia (PNEU), pulmonary tuberculosis (PTB) and lung cancer (LC), and hence, image based detection methods have been developed [4, 5, 6].

Respiratory infections are the most common of all infections. The most serious respiratory infection, pneumonia, carries the highest mortality rates amongst all infectious diseases and is the sixth leading cause of death in people over 65 years of age [7]. In 2004, 58,564 people died of pneumonia in the United States of America, [8].

About one million new cases of lung cancer have been detected annually [9] and two million deaths worldwide are due to tuberculosis every year [10]. Tuberculosis hinders socioeconomic development; 75% of people with tuberculosis are in the economically productive age group of 15-54 years. Ninety five percent of all cases and 99% of deadly cases occur in developing countries [11]. In Malaysia, the tuberculosis problem is making a comeback partly due to the failure in diagnosing PTB patients seeking treatment for continuous cough [12].

From [6, 13], a graphical method based on the use of the Andrews Curve was proposed for initial screening. For a given chest X-ray, a region of interest (ROI) (Fig. 1) is selected from which a set of line profiles are chosen. Each line profile may be interpreted as a signal (Fig. 2) which in turn is subjected to the Daubechies 4 transformation. The average of these signals in the form of a vector of Daubechies coefficients represents the ROI. This average vector is then represented as an Andrews' Curve. Given two patients, hence two average vectors, we will have two Andrews' Curves is equivalent to the Euclidean distance between the two average vectors. Fig. 3 shows that for a given t value (along horizontal axis) three distinct clusters is clearly seen and henceforth the probability of classification for each disease type may be estimated.

This graphical method [13] was shown to have 85% chance of correct detection when discriminating between PTB, LC and NL (see Fig. 3). However, the inclusion of a sample of pneumonia patients resulted in significant overlapping of the Andrews' curve representing the pneumonia patients with PTB samples, (see Fig. 4).

To remedy this problem of overlapping of Andrews' curve, a new approach using probability ellipsoids of texture measures is proposed in the next section. The combined use of texture measures and principal components method has been used in other application but is novel in this study, [14].

Fig.1: Line profiles taken on the region of interest of a PTB patient (Source: Malaysian Institute of Respiratory Medicine).

Fig. 2: A Line profile: A two-dimensional light intensity function f(x, y), where x and y denotes spatial coordinates.

Fig. 3: Andrews' curve 20 normal lung (NL), 40 pulmonary tuberculosis (PTB) patients and 30 lung cancer (LC) patients plot over the range of -0.5 to 0.5.

Fig.4 The above plot illustrate Andrews Curve for LC (red curve), pneumonia (green curve), PTB (blue curve) and normal lung (black curve).

2 Methodology

Cases that arrived at the IPR may be considered a random sample since an individual case may come from any of the Malaysian hospitals or clinics. The chest X-ray films from IPR were then digitized into DICOM format using the X-ray Film Scanner Kodak LS 75.

A sample of one hundred images were concurrently read and interpreted for the presence of either PNEU only, PTB only and LC only (no other secondary medical condition) by two independent pulmonologists who are trained to apply the WHO guideline, and the affected region (ROI) was identified (Fig. 5). This process was repeated for the normal sample of another thirty individuals and each member of the sample was identified as a healthy individual.

Each of the ROI were subjected to the two dimensional Daub4 wavelet transform, (Fig. 6). The wavelet transform convert the image into four subsets, labeled LL, LH, HL and HH representing the trend, horizontal, vertical and diagonal detail coefficients.

Twelve texture measures in each of LL, LH, HL and HH yields 48 descriptors or features that will be used to detect pneumonia, [5, 15, 16, 17]. The twelve texture measures used were;

- (i) Mean Energy
- (ii) Entropy
- (iii) Contrast
- (iv) Homogeneity
- (v) Standard deviation of value
- (vi) Standard deviation of mean of energy

- (vii) Maximum wavelet coefficient value
- (viii) Minimum wavelet coefficient value
- (ix) Maximum value of energy
- (x) Maximum row sum energy
- (xi) Maximum column sum energy

(xii) Average number of zero-crossings

Appendix I give the definitions of the above texture measures.

Fig. 6 (a) Region of interest, (b) the transformed image where four image subset was formed

For a given texture measure (example entropy), one value of entropy was calculated for each of LL, LH, HL and HH. Therefore each ROI for a given individual may be represented by a four dimensional feature vector. A sample of PNEU patients ($n_1 = 30$), PTB patients ($n_2 =$ 40), LC patients $(n_3 = 30)$, and a sample of normals $(n_4$ = 30) yields 130 four-dimensional vectors. Principal component analysis was carried out on each of the samples separately, whereby a biplot of the first two principal components was derived (see, Fig.7(a)-(e)). The proportion of explained variance for the first two principal components was at least 80%. Each bivariate sample of principal component was tested and shown to be normally distributed. Without loss of generality, let $\underline{x} \sim N_2(\mu, \Sigma)$ represent the bivariate normal distribution for one of the group. Let,

 $y = (\underline{x} - \mu)^T \Sigma^{-1} (\underline{x} - \mu) ,$

then y has a univariate chi-square distribution, [18]. Further, the equation y = c is the equation of an ellipsoid (ellipse in two dimension) where the value c may be selected from the chi-square table. In particular when P(y < c) = 0.95, then y = c may be called the 95% confidence ellipse.

Two of the texture measures, minimum value and the combination of twelve texture measures showed ellipsoids non-overlapping for the pneumonia samples (Fig. 7(d) and 7(e)). However, Fig. 7(b) and 7(c) suggests minimal overlap between PNEU and LC, and PNEU and PTB, respectively. This promising observation will only be useful if the probability ellipsoids are robust. In the next section, robustness of the ellipsoid will be investigated for effects of nonnormality, small samples and outliers.

3 Investigation of Robustness of the Confidence Ellipse

In practice, given a random sample $\underline{x}_1, \underline{x}_2, \dots, \underline{x}_n$, the parameters $\underline{\mu}$ and Σ are estimated by \overline{x} and S/(n-1) where

 $S = \sum_{r=1}^{n} (\underline{x}_r - \underline{x}) (\underline{x}_r - \underline{x})^T$

$$\overline{\underline{x}} = \frac{1}{n} (\underline{x}_1 + \dots + \underline{x}_n) \tag{1}$$

(2)

and

Let

$$y^* = (\underline{x} - \underline{\overline{x}})^T \left(\frac{1}{n-1}S\right)^{-1} (\underline{x} - \underline{\overline{x}})$$
(3)

Then the ellipsoid $y^* = c$ defines a confidence region.

The following simulation study investigates whether y^* has a good approximation to the chi-squared distribution taking into consideration effects of sample size, outlier and deviations from normality of <u>x</u>. A sample of y^* will be generated (simulated) and its distributions tested using the Kolmogorov-Smirnov test for a given set of condition (example small sample size), [19, 20]. An explanation of the Kolmogorov-Smirnov test is given in Appendix II. When the Kolmogorov-Smirnov test states that y^* is distributed as the univariate Chi-squared distribution, we consider the required approximation to be a good one. Henceforth, $y^* \le c$ may be used as the required confidence region.

4 Simulation Study

CASE 1 Investigating the Effect of Sample Size for Normal Data

Given two populations \prod_j , $\underline{x} \sim N_2(\underline{\mu}_j, \Omega_j)$, j = 1,2where \prod_1 denote the pneumonia population and \prod_2 denote the population of normal healthy individuals. Applying a linear transformation $\underline{x} \rightarrow A\underline{x} + \underline{b} = \underline{w}$ converts both distribution into canonical form given as follows:

 $\prod_1 : \underline{w} \sim N_2(\mu, D)$ and $\prod_2 : \underline{w} \sim N_2(\underline{0}, I)$

where $D = \text{diag}(d_1, d_2)$, *I* is the identity matrix, $\underline{0} = (0, \dots, 0)^T$ and μ is a bivariate vector.

A proof of this result is given in [21].

Since the focus is on the robust properties of the distribution of a diseased group, for example, pneumonia, therefore only the probability ellipse for the pneumonia will be generated.

This result implies that each component of \underline{w}_j (j = 1, ..., n) can be generated separately since *D* implies independence of the vector components.

The choice of parameter values are as follows;

(i) *n*=15,20,21,22,23,24,25,26,27,28,29,30,35,40

(ii)
$$\underline{\mu} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

(iii) $D = \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix}$

The choice of (i) is to verify the validity of using n=30. Using zero means in (ii) is simply stating that the center of the ellipse is treated as the origin. The choice for (iii) investigates some effect of different variances.

CASE 2 Investigating Effect of Non-normality

A random bivariate sample $\underline{x}_1, \underline{x}_2, \dots, \underline{x}_n$, is generated from a sample with known measure of skewness (β) or kurtosis (γ). This is achieved by generating random variables from a mixture distribution. Suppose, $f(x) = \lambda N(a,b) + (1-\lambda)N(-a,bc)$ where N(.,.) denote the univariate normal distribution. It can be shown that

when
$$\lambda = 0.5$$
, $E(x) = 0$, $E(x^2) = a^2 + \frac{b}{2}(1+c)$.

$$\mathrm{E}(x^3) = \frac{3ab}{2}(1-c)$$

and
$$E(x^4) = a^4 + 3a^2b(1+c) + \frac{3b^2}{2}(1+c^2)$$
.

Henceforth we calculate

$$\beta = \frac{\mathrm{E}(x^3)}{[\mathrm{E}(x^2)]^{3/2}}$$
 and $\gamma = \frac{\mathrm{E}(x^4)}{[\mathrm{E}(x^2)]^2}$.

The choice of parameter values are shown in Table 1(a)-(b). A graphic illustration of changing γ and changing β is given in Fig. 8 and Fig. 9.

Table 1(a) Changing γ when $\beta = 0.0$

a=0.0	b=1.0	c=1.0	γ=3.0
<i>a</i> =0.0	<i>b</i> =0.667	<i>b</i> =2.0	γ=3.33
<i>a</i> =0.0	<i>b</i> =1.450	<i>c</i> =0.379	γ=3.61
<i>a</i> =0.633	<i>b</i> =0.600	c=1.0	γ=2.66

Table 1(b) Changing β when $\gamma = 3.0$

		•	
<i>a</i> =0.0	<i>b</i> =1.0	c=1.0	$\beta = 0.0$
<i>a</i> =0.512	<i>b</i> =0.952	c=0.550	$\beta = 0.33$
a=0.589	<i>b</i> =0.936	<i>c</i> =0.395	$\beta = 0.5$
a=0.509	<i>b</i> =0.529	c=1.800	$\beta = -0.32$

The values a=0.0, b=1.0 and c=1.0 implies the normal case.

CASE 3 Investigating Effect of Non-normality and Outliers

The experiments in case 2 was repeated but outliers where added as follows;

(i)
$$x_0 = \begin{pmatrix} 4\sqrt{\mathrm{E}(x^2)} \\ 0 \end{pmatrix}$$

(ii) $x_0 = \begin{pmatrix} 5\sqrt{\mathrm{E}(x^2)} \\ 0 \end{pmatrix}$

(iii) use (i) and (ii).

5 Estimated Misclassification Probability

As a measure of overlap for the confidence ellipses, we estimate the misclassification probability of the form P(A|B) where A and B are two different disease types. Without loss of generality estimation of P(PNEU|PTB) requires counting the number of PTB patients that fall into PNEU confidence ellipse. This estimation process is repeated for all diseases in a pair-wise manner.

Since the focus of the study is on detecting PNEU, three error probabilities P(PNEU|NL), P(PNEU|PTB) and P(PNEU|LC) were estimated as follows;

(i) Given a random sample of PNEU represented as vectors of principal components $\underline{x}_1, \underline{x}_2, \dots, \underline{x}_n$,

define the PNEU-ellipsoid as $D(\underline{x}) = c$ (see Fig. 7) where

$$D(\underline{x}) = (\underline{x} - \overline{\underline{x}})^T \left(\frac{1}{n-1}S\right)^{-1} (\underline{x} - \overline{\underline{x}}).$$

The definition of $\overline{\underline{x}}$ and *S* is given in equation (1) and equation (2). The set of vectors $\underline{x}_1, \underline{x}_2, \dots, \underline{x}_n$ are the control data.

- (ii) Let a random sample of NL be represented as vectors of principal components $\underline{w}_1, \underline{w}_2, \dots, \underline{w}_q$.
- (iii)Let a random sample of PTB be represented as vectors of principal components, y_1, y_2, \dots, y_m .
- (iv) Let a random sample of LC be represented as vectors of principal components $\underline{z}_1, \underline{z}_2, \dots, \underline{z}_k$.

Note that $\underline{w}_1, \underline{w}_2, \dots, \underline{w}_q, \underline{y}_1, \underline{y}_2, \dots, \underline{y}_m$, and $\underline{z}_1, \underline{z}_2, \dots, \underline{z}_k$ are the test data.

Henceforth, without loss of generality P(PNEU|NL) may be estimated by counting the proportion of times $D(\underline{w}_j) < c$. Therefore estimates of P(PNEU|PTB) and P(PNEU|LC) are similarly derived.

Table 2 shows the estimates of the three error probabilities for all texture measures considered.

6 Results and Discussion

The Andrews' curve has several disadvantages, the main being the inability to detect and differentiate pneumonia from PTB and LC, [10]. Also the feature vectors do not represent the whole ROI, and decisions have to be made before selecting the line profiles. Finally a suitable *t*value for the Andrews' curve must be selected before performing discrimination, making the use of Andrews' curve difficult. As such a new method involving texture measures is proposed.

The probability ellipsoid of individual texture measures showed two cases where the pneumonia ellipsoid does not overlap with the other disease type. Table 2 shows the misclassification probability when the PNEU-ellipsoid were considered.

The simulation exercise investigates the robustness of the ellipsoid. The effect of sample sizes, nonnormality and presence of outliers on the Chi-square approximation was investigated. Table 3 showed that when data is normal without any outliers, a sample size as small as fifteen guarantees that the approximation is good. Increasing skewness (without outliers) appears to have no effect on the Chi-square approximation (Table 4). Increasing kurtosis, generally give the same results as for skewness except for the case n=26, gamma = 3.61.

For most cases considered either one or two outliers do not seriously affect the approximation (Table 5 and Table 6).

The significant effect of kurtosis was only observed for the case n=43, gamma=3.61, where the approximation was rejected when both previous outliers were present.

The simulation results above strongly suggest that the patients when represented by its principal components will fall inside the probability ellipsoid, and Fig. 7 tends to support this remarks.

7 Conclusion

The texture ellipsoids clearly appear to be better than the Andrews' curve in its ability to detect pneumonia. The PNEU-ellipsoid is capable of detecting pneumonia in the sense that 100% of NL, 85% of LC and 65% of PTB will be rejected when using contrast texture measures. Using the combination of twelve features gives similar results followed closely by minimum value texture measure. Membership of PNEU-ellipsoid obtained from the chest radiograph image can be used as a useful first stage detection of pneumonia.

The simulation study shows that the choice of a sample size of thirty (n=30) ensures that the confidence ellipse is reliable in the sense that two non-overlapping confidence ellipse strongly suggest two well separated groups. These remarks also hold in the presence of mild skewness and kurtosis. However, the presence of outliers can make the Chi-square approximation unacceptable.

Even though the ellipsoids allow the detection of PNEU, they are not capable of detecting PTB and LC. In practice the following detection method is recommended; firstly investigate for PNEU using the ellipsoids, and if the patient is not identified as PNEU then use the Andrews' curve to investigate for PTB and LC.

Acknowledgements

We would like to acknowledge the contribution from Datin Dr. Hjh Aziah Ahmad Mahyuddin, Director of The Institute of Respiratory Medicine, Kuala Lumpur. This research was funded under an E-Science Fund from the Malaysian Ministry of Science, Technology, and Innovation, and Universiti Teknologi Malaysia.

References

- [1] B. Ginnekien, B. M ter H. Romeny, and M. A. Viergever, Computer Aided Diagnosis in Chest Radiography: A Survey. *IEEE Trans. Medical Imaging*, vol. 20, no.12, 2001, pp. 1228-1241.
- [2] Middlemiss, H., Radiology of the future in developing countries, *British Journal of Radiology*, 55, 1982, pp. 698-699.
- [3] B.M. Moores, Digital X-ray Imaging, IEE Proceedings, Vol. 134, part A, Number 2, Special Issues On Medical Imaging, 1987.
- [4] K. Le, Lung X-ray Image Analysis For Automated Detection of Early Cancer and Tuberculosis, WSEAS Transactions on Information Science and Applications, 3(12), pp. 2347-2354, 2006.
- [5] L. L.G. Oliveira *et al*, Computer-aided diagnosis in chest radiography for detection of childhood pneumonia, *Int. J. Med. Inform.* (2007), doi:10.1016/j.ijmedinf.2007.10.010, 2007.
- [6] O. M. Rijal, N. M. Noor, A. Hussin, E. L. Ong. Discriminant Functions and Multiresolution Analysis (MRA) For Disease Detection, WSEAS Transactions on Mathematics, 5(5), pp. 605-608, 2006.
- [7] Centers for Disease Control and Prevention, National Center for Health Statistics: Preliminary Data for 2005. September 2007. USA.
- [8] Improving Life, One Breath at a Time, Lung Disease Data: 2008, American Lung Association, New York. pp 68, 2008.
- [9] WHO, International Agency for Research on Cancer. Edited by B.W. Steward and P. Kleihues. (2003).World Cancer Report. Geneva: WHO.

- [10] WHO, The global plan to stop TB 2006-2015: Action for life towards a world free of tuberculosis. Geneva:WHO.
- [11] L. Knight, Tuberculosis and sustainable development. Geneva, World Health Organization, (document WHO/CDS/STB/2000 4: Stop TB Initiatives Series).
- [12] TB a Problem Once Again. New Straits Time article, 29 March 2008.
- [13] Rijal OM, Noor NM, Hussin A, Yunus A, Ong EL, Using Statistical Features to Verify the Gold Standard for Pulmonary Tuberculosis Detection, *Inter. Journal of Comp. Assisted Radiology and Surgery*, 3(1):S426-428, 2008.
- [14] K. A. Wang *et al*, Implementation Of An Image Retrieval System Using Wavelet Decomposition And Gradient Variation, WSEAS Transactions on Computers, 7(6), pp. 724-734, 2008.
- [15] M. Unser, Texture classification and segmentation using wavelet frames, *IEEE Trans. Image Proc.*, *vol. 4*, no.11, 1995, pp. 1549-1560.
- [16] A. Sengur, I. Turkoglu, M. C. Ince, Wavelet packet neural networks for texture classification, *Expert Systems with Application*, 32(2007) 527-533.
- [17] M. F. A. Fauzi and P. H. Lewis, Automatic texture segmentation for content-based image retrieval application, *Pattern Analysis Application*, Springer, 9:307-323, 2006.
- [18] R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis. 6th Ed. (New Jersey: Prentice Hall, pp. 149-209, 2007).
- [19] J. Murdoch and J. A. Barnes, *Statistical Tables*, 4th Ed., (New York, pp.28, 1998).
- [20] R.V. Hogg and E. A. Tanis, *Probability and Statistical Inference*, (New York: MacMillan, 1977, pp. 281-285).
- [21] C. P. Gan, Detection of Pneumonia Using Principal Component Analysis, unpublished M. Sc. Project Thesis, University of Malaya, 2009.

Appendix I: Definition of Texture Measures Considered

Suppose the matrix (C_{jk}) represent any of LL, LH, HL and HH, then twelve texture measures are defined as follows;

(i) Mean Energy,
$$E = \frac{1}{N} \sum_{j} \sum_{k} |C_{jk}|^2$$

Mean of energy is the average of energy or power spectrum of the wavelet coefficients.

(ii) Entropy =
$$-\frac{1}{N^2} \sum_{j} \sum_{k} |C_{jk}|^2 \log |C_{jk}|^2$$

where $\mu = \frac{1}{N^2} \sum_{j} \sum_{k} C_{jk}$ is the mean.

(iii) Contrast =
$$\sum_{j} \sum_{k} (j-k)^2 C_{jk}$$

where a high value for contrast means coarse texture and a low value for contrast means less coarseness of the texture.

(iv) Homogeneity,
$$H = \sum_{j} \sum_{k} \frac{C_{jk}}{1 + |j - k|}$$

(v) Standard deviation of value

$$STDV = \sqrt{\frac{1}{N^2} \sum_{j} \sum_{k} (C_{jk} - \mu)}$$

(vi) Standard deviation of mean of energy

$$STDE = \sqrt{\frac{1}{N^2} \sum_{j} \sum_{k} (C_{jk} - \mu)^2}$$

- (vii) Maximum wavelet coefficient value $\max = \max(C_{ik})$
- (viii) Minimum wavelet coefficient value min = min(C_{ik})

$$E_{\max} = \max\left(\sum_{j}\sum_{k}|C_{jk}|^2\right)$$

`

$$Maxrse = \sum_{k}^{P} |C_{jk}|^2$$

(xi) Maximum column sum energy

$$Maxcse = \sum_{j}^{p} |C_{jk}|^2$$

(xii) Average number of zero-crossings

Appendix II: Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov Test statistic is defined by

$$D_n = \sup_{x} [|F_n(x) - F_o(x)|]$$

where

$$F_n(x) = \begin{cases} 0, \ x < y_1 \\ \frac{k}{n}, \ y_k \le x < y_{k+1} \\ 1, \ y_n \le x \end{cases}, \ k = 1, 2, \dots, n-1.$$

and $y_1 < y_2 < \cdots < y_n$ are the order statistics of a random sample x_1, x_2, \cdots, x_n . Clearly the empirical distribution $F_n(x)$ is to be compared or tested against the assumed distribution $F_o(x)$. The Appendix Table VII in [20] list critical values of D_n .

Appendix III: Example of Increasing Skewness and Kurtosis

Fig.8 An illustration of increasing kurtosis.

Fig. 9 An illustration of increasing skewness.

Texture			
Measure	P(PNEU NL)	P(PNEU PTB)	P(PNEU LC)
Mean of			
Energy	0	0.55	0.3
Entropy	0	0.65	0.3
Stdev Value	0	0.65	0.2
Stdev Energy	0	0.65	0.2
Max. Value	0	0.4	0.25
Min. Value	0.05	0.45	0.35
Max Energy	0	0.45	0.25
Maxrse	0	0.55	0.25
Maxcse	0	0.65	0.25
Zero-Crossing	0	0.65	0.55
Contrast	0	0.35	0.15
Homogeneity	0	0.6	0.25
12Features	0	0.45	0.1

Table 2 Probability of misclassifying NL, PTB or LC asPNEU using test data

Table 3 Kolmogorov-Smirnov test for Chi-squared approximation when data is normal.

	$ \underbrace{\underline{x} \sim N_2(\underline{\mu}, \Sigma), \underline{\mu} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \Sigma = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} }_{\underline{X} \sim N_2(\underline{\mu}, \Sigma), \underline{\mu} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \Sigma = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix} $					
		sample		sample		
n	critical value	KS Statistic	decision	KS Statistic	decision	
15	0.338	0.1407	Accept	0.1694	Accept	
20	0.294	0.1151	Accept	0.137	Accept	
21	0.27 <x<0.294< td=""><td>0.1048</td><td>Accept</td><td>0.1112</td><td>Accept</td></x<0.294<>	0.1048	Accept	0.1112	Accept	
22	0.27 <x<0.294< td=""><td>0.1107</td><td>Accept</td><td>0.1962</td><td>Accept</td></x<0.294<>	0.1107	Accept	0.1962	Accept	
23	0.27 <x<0.294< td=""><td>0.141</td><td>Accept</td><td>0.1059</td><td>Accept</td></x<0.294<>	0.141	Accept	0.1059	Accept	
24	0.27 <x<0.294< td=""><td>0.0851</td><td>Accept</td><td>0.1116</td><td>Accept</td></x<0.294<>	0.0851	Accept	0.1116	Accept	
25	0.27	0.0901	Accept	0.127	Accept	
26	0.24 <x<0.27< td=""><td>0.1372</td><td>Accept</td><td>0.0943</td><td>Accept</td></x<0.27<>	0.1372	Accept	0.0943	Accept	
27	0.24 <x<0.27< td=""><td>0.1221</td><td>Accept</td><td>0.1416</td><td>Accept</td></x<0.27<>	0.1221	Accept	0.1416	Accept	
28	0.24 <x<0.27< td=""><td>0.1748</td><td>Accept</td><td>0.1078</td><td>Accept</td></x<0.27<>	0.1748	Accept	0.1078	Accept	
29	0.24 <x<0.27< td=""><td>0.0717</td><td>Accept</td><td>0.1763</td><td>Accept</td></x<0.27<>	0.0717	Accept	0.1763	Accept	
30	0.24	0.1675	Accept	0.0899	Accept	
35	0.23	0.1111	Accept	0.1539	Accept	
40	0.215	0.0853	Accept	0.0845	Accept	

Table	4	Kolmogorov-Smirnov test for Chi-square approximation
		when data is skewed (non-normal) with one outlier

Table 5 Kolmogorov-Smirnov test for Chi-squared approximation when data is skewed (non-normal) with 2 outliers

outlier $= \left(\begin{array}{c} \end{array} \right)$	$\begin{pmatrix} d \\ 0 \end{pmatrix}$, $d_1 =$	$= 4 * \sqrt{a^2 + \frac{b}{2}}$	$(1+c)$ d_2	= 5 * .	$\sqrt{a^2 + \frac{b}{a}}$	$\frac{b}{2}(1 + c)$
		KS Statistic for			KS Statistic	
n + outlier d	heta	n + d	critical value	Decision	for $n + d_{2}$	Decision
16	0	0.2570	0.328	Accent	0 2194	Accent
10	0.33	0.1292	0.520	Accept	0.1412	Accept
	0.55	0.2196		Accept	0.0921	Accept
	-0.22	0.2180		Accept	0.0331	Accept
21	-0.32	0.1040	0 27/2/0 204	Accept	0.1073	Accept
21	0.22	0.1373	0.27 \ \ \ 0.2 54	Accort	0.1874	Accept
-	0.55	0.1259		Accept	0.1857	Accept
	0.3	0.1330		Accept	0.1109	Accept
22	-0.32	0.1335	0.27<×<0.204	Accept	0.1157	Accept
22	0	0.1421	0.27 <x<0.294< th=""><th>Ассерг</th><th>0.1830</th><th>Accept</th></x<0.294<>	Ассерг	0.1830	Accept
	0.33	0.0821		Accept	0.2203	Accept
	0.5	0.1544		Accept	0.1536	Accept
	-0.32	0.1262		Accept	0.1372	Accept
23	0	0.1143	0.2/ <x<0.294< th=""><th>Accept</th><th>0.1590</th><th>Accept</th></x<0.294<>	Accept	0.1590	Accept
	0.33	0.0730		Accept	0.2144	Accept
	0.5	0.1071		Accept	0.1381	Accept
	-0.32	0.1119		Accept	0.1197	Accept
24	0	0.2212	0.27 <x<0.294< th=""><th>Accept</th><th>0.0980</th><th>Accept</th></x<0.294<>	Accept	0.0980	Accept
	0.33	0.0937		Accept	0.1734	Accept
	0.5	0.1410		Accept	0.1144	Accept
	-0.32	0.0958		Accept	0.1270	Accept
25	0	0.1033	0.27	Accept	0.2810	Reject
	0.33	0.0923		Accept	0.1315	Accept
	0.5	0.1430		Accept	0.1537	Accept
	-0.32	0.1149		Accept	0.1188	Accept
26	0	0.2689	0.24 <x<0.27< th=""><th>Reject</th><th>0.1443</th><th>Accept</th></x<0.27<>	Reject	0.1443	Accept
	0.33	0.1141		Accept	0.2076	Accept
	0.5	0.1543		Accept	0.1457	Accept
	-0.32	0.0770		Accept	0.1397	Accept
27	0	0.2416	0.24 <x<0.27< th=""><th>Reject</th><th>0.2995</th><th>Reject</th></x<0.27<>	Reject	0.2995	Reject
	0.33	0.0863		Accept	0.2273	Accept
	0.5	0.1301		Accept	0.1424	Accept
	-0.32	0.1370		Accept	0.0910	Accept
28	0	0.1677	0.24 <x<0.27< th=""><th>Accept</th><th>0.2165</th><th>Accept</th></x<0.27<>	Accept	0.2165	Accept
	0.33	0.1046		Accept	0.2065	Accept
	0.5	0.1835		Accept	0.1538	Accept
	-0.32	0.1471		Accept	0.1024	Accept
29	0	0.1689	0.24 <x<0.27< th=""><th>Accept</th><th>0.1089</th><th>Accept</th></x<0.27<>	Accept	0.1089	Accept
	0.33	0.0755		Accept	0.1466	Accept
	0.5	0.0506		Accept	0.2047	Accept
	-0.32	0.1533		Accept	0.1375	Accept
30	0	0.1235	0.24	Accept	0.1954	Accept
	0.33	0.0876		Accept	0.1534	Accept
	0.5	0.1327		Accept	0.1310	Accept
	-0.32	0.1203		Accept	0.1207	Accept
31	0	0.1274	0.23 <x<0.24< th=""><th>Accept</th><th>0.1917</th><th>Accept</th></x<0.24<>	Accept	0.1917	Accept
	0.33	0.1039		Accept	0.2453	Reject
	0.5	0.0763		Accept	0.1539	Accept
	-0.32	0.2066		Accept	0.1247	Accept
36	0	0.1788	0.2267	Accept	0.1029	Accept
	0.33	0.0903		Accept	0.1020	Accept
	0.5	0.0898		Accept	0.1460	Accept
	-0.32	0.1069		Accept	0.1004	Accept
41	0	0.1011	0.2124	Accent	0,1785	Accept
	0.33	0.1820		Accept	0.1018	Accept
	0.5	0.1040		Accept	0.1113	Accept
	-0 32	0.0913		Accent	0 1/26	Accent
	-0.52	0.0312		лисери	0.1420	лиері

	(-	- \
		$a^2 + \frac{b}{c}(1+c)$	$5* a^2 + b(1+a)$.]
	$d_3 = \uparrow \rangle$	$2^{(1+c)}$	$\int \sqrt{a} + 2(1+c)$	
		0	0	
n + outlier		KS Statistic for		
<i>a</i> ₃	beta	n + a ₃	critical value	Decision
17	0	0.1240	0.318	Accept
	0.33	0.0813		Accept
	0.5	0.0993		Accept
	-0.32	0.1930	0.07.00.004	Accept
22	0	0.1377	0.27 <x<0.294< th=""><th>Accept</th></x<0.294<>	Accept
	0.33	0.0730		Accept
	0.5	0.1256		Accept
22	-0.32	0.1268	0.274440.204	Accept
23	0 22	0.2045	0.27 <x<0.294< th=""><th>Accept</th></x<0.294<>	Accept
	0.33	0.0953		Accept
	0.5	0.0733		Accept
24	-0.32	0.1730	0 27 < x < 0 201	Accept
24	0 33	0.1200	0.27~^~0.234	Accept
	0.55	0.0072		Accort
	0.3	0.0877		Accept
25	-0.52	0.1039	0.27	Accept
25	0.22	0.1804	0.27	Accept
	0.33	0.0317		Accept
	-0.32	0.2237		Accept
26	0.52	0.1240	0.24<×<0.27	Reject
20	0.33	0.1038	0.24\X\0.27	Accent
	0.55	0.1345		Accent
	-0.32	0.1215		Accept
27	0	0 1354	0 24 <x<0 27<="" th=""><th>Accept</th></x<0>	Accept
	0 33	0 1714	0121 37 30127	Accept
	0.5	0.1236		Accept
	-0.32	0.1273		Accept
28	0	0.1045	0.24 <x<0.27< th=""><th>Accept</th></x<0.27<>	Accept
	0.33	0.1462		Accept
	0.5	0.1191		Accept
	-0.32	0.1156		Accept
29	0	0.1407	0.24 <x<0.27< th=""><th>Accept</th></x<0.27<>	Accept
	0.33	0.1229		Accept
	0.5	0.1242		Accept
	-0.32	0.1418		Accept
30	0	0.1745	0.24	Accept
	0.33	0.0591		Accept
	0.5	0.0992		Accept
	-0.32	0.0740		Accept
31	0	0.2665	0.23 <x<0.24< th=""><th>Reject</th></x<0.24<>	Reject
	0.33	0.0965		Accept
	0.5	0.1367		Accept
	-0.32	0.1131		Accept
32	0	0.1133	0.23 <x<0.24< th=""><th>Accept</th></x<0.24<>	Accept
	0.33	0.1088		Accept
	0.5	0.1326		Accept
	-0.32	0.1584		Accept
37	0	0.2289	0.220621133	Reject
	0.33	0.1232		Accept
	0.5	0.1290		Accept
	-0.32	0.1503		Accept
42	0	0.1316	0.207398056	Accept
	0.33	0.1135		Accept
	0.5	0.1359		Accept
	-0.32	0.1493		Accept

Table 6 Kolmogorov-Smirnov test for Chi-squared approximation when data has kurtosis (non-normal) with 2 outliers

	4*.	$a^{2} + \frac{b}{(1+c)}$	$5*.a^2+$	$\frac{b}{(1+c)}$
$d_3 =$	=	$0^{2^{(1+c)}}$, ⁵ y ^a i	$2^{(1+c)}$
	-			
n + outlier		KS Statistic		
d ₃	gamma	for $n + d_3$	critical value	Decision
12	3	0.1484	0.375	Accept
	3.33	0.1440		Accept
	2.68	0.1066		Accept
17	2.00	0.2455	0 318	Accept
17	3 33	0.0975	0.510	Accept
	3.61	0.0906		Accept
	2.68	0.1195		Accept
22	3	0.1817	0.27 <x<0.294< td=""><td>Accept</td></x<0.294<>	Accept
	3.33	0.1179		Accept
	3.61	0.0924		Accept
	2.68	0.2367		Accept
23	3	0.1047	0.27 <x<0.294< td=""><td>Accept</td></x<0.294<>	Accept
	3.33	0.2008		Accept
	3.61	0.1194		Accept
	2.68	0.1396		Accept
24	3	0.2700	0.27 <x<0.294< td=""><td>Accept</td></x<0.294<>	Accept
	3.33	0.1391		Accept
	3.61	0.1536		Accept
	2.68	0.1914		Accept
25	3	0.1631	0.27	Accept
	3.33	0.2483		Accept
	3.61	0.1050		Accept
	2.68	0.1099		Accept
26	3	0.1044	0.24 <x<0.27< td=""><td>Accept</td></x<0.27<>	Accept
	3.33	0.2047		Accept
	3.01	0.1047		Accept
27	2.00	0.1108	0.244440.27	Accept
27	2 2 2 2	0.1370	0.24~X~0.27	Accept
	3.55	0.2494		Accept
	2.68	0.1308		Accept
28	3	0.1221	0 24 <x<0 27<="" td=""><td>Accept</td></x<0>	Accept
	3.33	0.1685		Accept
	3.61	0.1200		Accept
	2.68	0.1114		Accept
29	3	0.2034	0.24 <x<0.27< td=""><td>Accept</td></x<0.27<>	Accept
	3.33	0.1858		Accept
	3.61	0.2417		Accept
	2.68	0.1887		Accept
30	3	0.1546	0.24	Accept
	3.33	0.1390		Accept
	3.61	0.1709		Accept
	2.68	0.0966		Accept
31	3	0.1396	0.23 <x<0.24< td=""><td>Accept</td></x<0.24<>	Accept
	3.33	0.2040		Accept
	3.61	0.1483		Accept
	2.68	0.1051		Accept
32	3	0.2227	0.23 <x<0.24< td=""><td>Accept</td></x<0.24<>	Accept
	3.33	0.1948		Accept
	3.61	0.1417		Accept
20	2.68	0.1765	0.220624422	Accept
38	3	0.2216	0.220621133	Keject
	3.33	0.1281		Accept
	3.01	0.1118		Accept
12	2.08	0.1205	0 207202054	Accept
40	2 2 2	0.1431	0.207396030	Accept
	3.55	0.0000		Reject
	2.68	0.1084		Accent