WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Qinghua Feng

Application Of Alternating Group Explicit
Method For Parabolic Equations

Qinghua Feng
School of Science
Shandong university of technology
Zhangzhou Road 12#, Zibo, Shandong, 255049
China
fghua@sina.com

Abstract: - Based on the concept of decomposition,

two alternating group explicit methods are constructed for 1D

convection-diffusion equation with variable coefficient and 2D diffusion equations respectively. Both the two methods
have the property of unconditional stablility and intrinsic parallelism . Numerical results show the two methods are of high

accuracy.
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1 Introduction
Parabolic equations are widely used in describing many
physical phenomena such as fluid flowing, river and
atmosphere pollution and so on. Researches on finite
difference methods for them are getting more and more
popular. Many finite difference methods have been
presented so far [1-4], which are sorted by explicit and
implicit methods in general. As we all know, explicit
methods are easy for computing, but are commonly short
in stability and accuracy. Most of implicit methods are of
good stability, while are not suitable for parallel
computing. Thus the task of presenting finite difference
methods with good stability and property of parallelism is
of important theoretic and practical meaning. D. J. Evans
presented an AGE method in [5] originally. The AGE
method is used in computing by applying the special
combination of several asymmetry schemes to a group of
grid points. Then the numerical solutions at the group of
points can be obtained independently, and the
computation in the whole domain can be divided into
many sub-domains. Furthermore, by alternating use of
asymmetry schemes at adherent grid points and different
time levels, the AGE method can lead to the property of
unconditional stability. The AGE method is soon applied
to convection-diffusion equations in [6]. The AGE method
is widely cared for it is simple for computing,
unconditionally stable,  and suitable for parallelism.
Under the enlightenment of the AGE method, Baolin
Zhang and S. Zhu gave alternating block explicit-implicit
methods in [7-9] , while Rohallah Tavakoli derived a
class of domain-split method for diffusion equations in [10,
11]. Several AGE methods are given for two-point linear
and non-linear boundary value problems in [12-13]. We
notice most of the AGE methods are aimed at constant
coefficient equation and 1D problems. Researches on
variable coefficient equations and 2D problems have been
scarcely presented.

Results about the existence and uniqueness of theoretic
solution for parabolic equations can be found in [14-17]

We organize the paper as follows: First we present a
class of alternating group explicit method for 1D
convection-diffusion equations with variant coefficient in
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section 2, and give stability analysis for it in section 3.
Then we apply the construction of the method to 2D
diffusion equations in section 4, also the stability analysis
is finished. In order to verify the effectiveness of the two
methods, we present numerical results comparing with
other known AGE method [9] and Crank-Nicolson scheme
in section 5. Some conclusions are given at the end of the

paper.

2 The Parallel Alternating Group
Explicit (AGE) Method

In this section, we consider the following convection
-diffusion equation

2
a—“+a(x)a—“=b(x)a—f,os)c51,os:sT,a(x)z% >0,b(x) >0
ot ox ox

1
with initial and boundary value @

{u(o,r) = fi0u(L0) = £,(x), 2

u(x,0)=g(1).

Let & and 7 be the grid step size in the x and ¢
directions respectively. A=1/m, x, =ih(i=0,1.....m),
t,=nt(n=0,1...T/7). The grid point (x;,,) is denoted
by(i,n), and the numerical solution is 4", while the

exact solution is u(x,,z ). Let r=1/i’.

In order to get the solution of (n+1)-th time level
while the solution of n-th time level known, we
present eight basic schemes using the second kind of

saul’yev asymmetry schemes, which will be used in the
construction of the alternating group method. In simple,

let al._rh: i ﬂ: .
4 V2 4 q;
2p, - qu.)ui’fll + (4 + 2ql.)ui”+l
=2qu},, +(4—-6q,)u +(2p, +4q)u’, )

Issue 7, Volume 6, July 2009



WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

(2pl 4ql)un+l+(4+6ql)un+l+(_p[ 2q[)un+1

i+1

= (4 - 2% )uln + (p[ + 2qi )u[—l “4)
(p,—2q, )ul"fll +(4+06g, )u”+1 +(2p,—4q, )u"+l
=(=p,+2q)u,, +(4—-2q)u; ©)

(4424, )u”+1 +(2p,—2g, )u”+1
= (_2p[ + 4qi )u[+1 + (4 - 6q[ )u,n + zqiuf—l (6)

_2qlun+1 + (4+6q, )un+1 +(_2pl 4q[ )unH

i+1

=(2p,+2q,)u},, +(4=2q,)u; 0
(4424, )u”+1 +(—p,—2gq, )u"+1
=(=2p, +4q,)u;,, +(4—6q,)u; +(p, +2q,)u;, (8)

(4424, )u”+1 +(p,—2q, T

i+l

=(=p,+2g)u,, +(4—6q)u; +(p,+4q)u, )

Qp, —4q ) +(4+6g ) —2qu!

i+l
=(4-2q)u’ +(2p,+2q,)u;, (10)
Based on (3)-(10), we present four basic
computing groups as follows:
“G1” group: four grid points are involved, and (3)-(6)
are used at each grid point respectively.

“G2” group: four grid points are involved, and
(7)-(10) are used at each grid point respectively.

“GL” group: four grid points are involved, and
(7)-(8) are used at each grid point respectively.

“GR” group: four grid points are involved, and
(9)-(10) are used at each grid point respectively.
The purpose of the paper is to get the solution of

the (n+1)-th and the (n+2)-th time level with
the solution of the n-th time level known.

Let m-1 =4p, here pis an integer, then the
alternating group method will be presented as
following:

First at the (n+1)-th time level, we will have

p “G1” groups. (3), (4), (5), (6)are used in each

group.
Second at the (n+2)-th time level,

have (p+1) point groups. (7) and (8) are used to

we will

solve ul"*,ul” . (9) and (10) are used to solve
uﬁg ,u:j , while the rest (4p-4) inner grid points

are divided into (p-1) “G2” groups,
(9), (10) are used in each group.

and (7), (8),
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Thus the alternating group method is established
by alternating use of the schemes (3)-(10) in the two
time levels. We notice the computation in each group
can be finished independently.

Let U" =), u,.....,u’ ),
the alternating group explicit method as below
(I+r@)U™ =(1-r6)U" +F",
{(I +r@ " =(1-r6)U™ +F;.
Here

F" =((2p,+49)u,,0,0......0,(2p, , +4q, l)u")y"

then we can denote

)

F"=((2p, +4ql)u"+1 0,0...... 0 (2p,+4q,._ 1)u:fl)

6,
s 61 = Gll
G
L 12 d(m-1yx(m-1)
621
Gzz
32 =
6'217
G
L 2(p+D) | (m=1)x(m—-1)
G _ 6111 Gliz _1
= 6, @ Ji=1l.p
iz Qs

2q(i—1)><4+1 2p(i—1)><4+1 ~2q 1pan
b = —Pi 1)><4+2_2’q(i—1)><4+2 L/
0
112 2p(1 1)x4+2 4q(1 1)x4+2 0
6 - |: -2p, ~x4+3 4q(i1)><4+3j|
1i3 — 0 0

G - 6q(i—1)><4+3
li4 =
_2p(i—1)><4+4 -2q (i—1)xd+4

— |: 2qm—2 pm—2 - 2’qm—Z j|
_2qm—1 6qm—1

6 -2
G, = |: & ql}

2Q(i—1)><4+4

G

2x(p+1)

—p2—2q2 2‘12
G. G,
62i3 621‘4

P 2q (i-2)x4+3

_ Plicapass ~ 24 i-2pars
21 =
—2q (i=2)xd+4

6g (i=2)xd+4

¢ 0 0
2 2p(i—2)x4+4 - 4q(i—2)><4+4 0
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6. - 0 _2p(i—2)><4+5 - 4Q(i—2)><4+5
2i3
0 0
G - 04 ;2yx4+5 —2q ;_ayeas
e “Piicoyxare 2q(z‘—2)><4+6 2q(i—2)><4+6

The alternating use of the asymmetry schemes
(3)-(10) can lead to partly counteracting of truncation
error, and then can increase the numerical accuracy.
On the other hand, grouping computation can be
obviously obtained. Thus computing in the whole
domain can be divided into many sub-domains. So
the method has the obvious property of parallelism.

3 Analysis Of Stability
Lemma 1(Kellogg) " Assume #>0 and (§+6")is non

negative definite real matrix, then (6/+8&)' exists, and
the fallowing inequalities hold

I1+6)"|,<eo7", a2)
1(81-6)(61+86)" |,<1.

Theorem 1 The alternating group method (11) is of
absolute stability.
Proof: From the construction of the matrices (6 +8@")

and (6, +6,"), we can see they are non negative definite
real matrices. Then we have || (/—78)(/+rG, )! IL,<1,
| (/-76,)(/+7G,)"||,<1. Let n is an even number,
then we have U"* =@U" Here @ is growth matrix,
G=(1+r8)"'(1-r6 )(1+rG )" (1-1G,).
Let

@=(I+r€2)6(l+r62)’1 =(I-rG)/+rG) ' (I-r6)(/+rG) .
By Lemma 1, we have p(6)=p(6)<||8,<1.

Therefore, the alternating group method (11) is of
absolute stability.

4 Application Of AGE Method For 2D
Diffusion Equations

Considering the initial boundary value problem of 2D
diffusion equations:
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a_uz 0’u N 0’u

or ox* 9%y’
0<x<1,08y<1,0<¢<T
u(x,y,0)= f(x,y) (13)
u(0,y,0) = g,(y,0),
u(l,y,t) = g,(y,1)
u(x,0,t) = fi(x,1),

u(x,1,t) = f,(x,t)

The domain : [0, 1]x[0, 1]x[0, T]willbe
divided into (m x m x N) meshes with spatial step
size h=Ax=Ay=1/m inx, Yy direction and the time
step size 7=T/N = At. Grid points are denoted by

(Xi, yj, tn)or(i, j, n), x =ih(i=0,1....m),

v, =jh(j=01.om). &, =nt(n=0,1....T/7).

The numerical solution of (20)-(21) is denoted by
u/,, while the exact solution u(x;,y;.t,). r=4 .

We present 16 basic asymmetry schemesby use of
the secend class of saul’yev schemes as follows
(Figure 1-16):

r r
1 1 1
(1 7") In-j# n+ n+ /% n

n n

r
n
ru; i + (- 3r)ui,j + Eui,jﬂ + ?uiﬂ,j
(14)
r n+l n+l n+l r n+l
_Eui,j +(1+ 2r)ui+1,j —TU _Eui+1,j+1

— n r n n r n
=TUL + Eui,‘/‘ + (1 - 2r)ui+1,j +Eui+1,j+1
(15)
+1 S ATS B s
—ruy A (20 ——uls  ——u),

i+2,] b i+3,) D) i+2,j+

r r
_ n _ n Lo s
ST, ot ¢ 2”)”;42,]' + > U ; + 2 Uiz in

(16)
7t n+l 7t _ n
Uy T (I+r )um,‘/ T AU T U
r r
=3y  Hrul, U g Y,

i+4,) 2 i+3,j+1 2 i+2,)

(17)
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n+l 7 nrl n+l
+ (1 + 2}’)”1 Lj+l _Eui-#l,j-#l - rul LJj+2
l 1]+1 + (1 2r)ul L+ + 2 u + 2 ul+1 ,j+H
(18)
r n+1 n+l L n+l
Uy +(1+3r ), gH T > TU i T Ui
n+l
mH—l j+2 2 l+1 . + 2 ul ,J+l +(1 r)uH'l LJ+
(19)
_ Dt n+l + 1+3 n+l o
u1+2/ mi+1,j+1 ( r)u:+2 /+l Z'{i+3,j+1
2 2
n+l
Ui 0 = 2 1+2 J + D) u1+3 L+ +(1 r)uH—Z L+
(20)
_ n+l _r n+l + 1+2 n+l n+l
_ut+3/ Uir jn ( r)uz+3 i U 0
2 2
r
=7 2 l+3j + 2u1+2 J+ +(1 2}’)1/l1+3 L j+ +m1+4 L J+H
€2y
n+l n+l r n+l rz n+l
;_/+1 +(1+2r)u1 ,Jj+2 - 2 ul+l ,Jj+2 Eui,j+3
o
l 1]+2 + (1 27’)”1 LJ+2 + 2 ul+1 J+2 +Eui,j+3
(22)
g 1L _r + 1+3 n+l n+l
mi+1,j+1 2 : /+2 ( r)u:+1 J+2 mz+2 ,J+2
e r
_Equ,jJrS 2 : /+2 +(1 r)u:+1 J+2 + 2u:+1 J+3
(23)
n+l n+l n+l
U T z+1 ]+2 +(1+3l") Ui o~ 2 i+3,/+2
r n+1
5 z+2 LJ+3 (1 r)uH—Z j+2 z+3 J+2 + 2 ul+2,j+3
(24)
r r
n+l n+l n+l n+l
U3 i _E Uiz ji2 +(1+2]") U3 540 _E U 13
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r
=3 2 z+2 2 +(l 27") z+3 ]+2 z+3 ,Jj+3 +I"M
(25)
n+l n+l n+l _
_Eul J+2 +(1+r)u: LJj+3 _Eul“ J+3 ml 1,j+3
+ 2 uz LJ+2 +(1 37")“1 ,Jj+3 + 2 uH—l J+3 +ru1 Ljt+4
(26)
_ n+l r n+1 + 1+2 n+l n+l
Eui+1,‘/‘+2 2 Ui i3 ( I")MM g Ui s
= 2 1+l J+2 + 2 ul LJ+3 +(1 2r)u:+1 LJ+3 +m1+l LJj+4
27)
_ ot +(1+2 )un+l _I n+l
2ut+2 /+2 :+l J+3 r i+2,j43 2ui+3, J+3

r
2 1+2 LJ+2

I
u

+(1-2ru;

_t r n+l
2 i+3,j+2 2 :+2/+3

t+2 /+3 2 1+3 ,j+3 +m1+2 L+
(28)
n+l r n

—u

+(1+I") :+3 /+3 2 43, /42

n n
+ > U,y 3 +(1=3r)u, a3 TH Uy s T U oy
itl, j, n+l
i,j,ntl
Lin
itl, j,n
Figure 1 Figure 2
i+2, j,ntl i+3, 3, n+l
i42,3,n i13,i,n
Figure 3 Figure 4
i, j+l, n+l i+l, j+1.ntl
i, j+l.n itl, j+l,n
Figure § Figure 8
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itZ, 341, mtl

K

3

Figure 7

i, j+Z, ntl

<y

i, jtZn i+l, j+2,n - LT T [
Figure 9 Figure 10
143, J+2, ntl
142, 42, S chtnes

i+2, j+l.n

i+3, j+lntl
1+3, j+1,n
Figure 8

i+l, J+2, ntl

——
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______ EEH Ly

Figure 18 the grouping at n+2 time level

8)

142, 32,1 43, jtZn We present several basic computing groups as below:
Figure 11 Figure 12 ”1 6 . t” L t —-n n n n n T
( point” group ) et ui;=(ulul, U, ul,)
i+1, J+3.nkl n _ n n n n T _
. TR uj+k - (ui,j+k’ui+1,j+k>ui+2,j+k ’ ui+3,j+k) ’ k= 0’1’ 2’ 3
i, 543, -
=" n n n n \T
Fi,./ - (F; 9F}+19F}+29F;‘+3) ’
i . n __ n n n
i+1, 743,n Fl=(rul, +ru,,rul, o,
Figure 13 RN n n n T
Py jqs Uiy TTU; j—l)
s T
142, 343, mHl i+3, j+3, ntl ij’:-l = (rul."_l j+1’0’ 0, ru,."+4 j+1) 5
no _ n n T
Flo =0l ;15,0,0,ru, ;)"
L no _ n n n
142, j#3,n i+, 78 Fy = (U oy 10 TU s
Figure 15 Figure 16

n n n T
rui+2,‘/‘+4’rui+3,j+4 +rui+4,j+3)

Then we debote the ” 16 point” group as follows:

—n+l —n —n
Let m—1=4s+2, s isaninteger. Then we construct (I+rd)ui; =L —rB)ui;+Fi;
the alternating group schemes at the two adherent time (30)
levels as in Figure 17-18: Let

o=yl 2 —y2] o -
C”__—I/Z 2 }C”_L/z 1 }’C”_[o o}’
] NN H 200 i
H q4—_ 0 _]/2} 15_[_ ]’

then it follows

| o
16 : : : All A12
| : : Rx 4 = 4, A A4, ,
""""" H 1 Al4 Al3 AIZ
L AlZ All 16x16
Bll BIZ
Bl =B, B; ,
Figure 17 the grouping at n+1 time level B By
B, B, 16x16
A = |:C11 C13T:| A. = |:C14 0 :|’
11 12—
Cl3 CIZ 0 C14
{A13=1+A” B“:[_{Cu 0}
A4, =24, 0 ¢,
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C (0]
B. = 14
|

("Lx” group)

According to the principle of row first and column second,
(16), (17), (20), (21), (24), (25), (28), (29) are used to
get the solution of the eight grid points as shown in figure
17-18.

:|7 Bl3:Bll_I'

14

—n+l

n+l _p+l ntl o ntINT

Let

Viij —(V Vi Vi Vi)
Vi = Ol k=0,1,2,3
W/ _(Wn Wf+1’W7+2’ /‘+3)T
(mlj 1+””gtl>””2,—1 +m3,)ra
M&l = (m(;l;‘il’ Ty j+1)
an = (ru())l-;l-#Z’ Usy j+2)
W = (rugt; U T gt ru3,j+3) .

then we denote the ”Lx” group as follows:
(I +rd)viy =(I=rB)vi; +w.,

€2))

A2 |:j21 jZZ:| s Bz =|:lz;1 BO :| s
24 _gx8 22 _I8x8
{HCH C} P :[CH Ca }
LG G 7 G I+G,
C112 C14 _ T
A4, :_C14 ]+C12:|’ 4y=4,
A24 — [ZCIZ 214:|’
L 14 12
y =_ (0] O]
2 l2¢, O
("Ly” group)

According to the principle of row first and column second,

(22), (26), (23), (27), (24), (28), (25), (29) are used to

get the solution of the eight grid points as shown in figure
17-18.

("Rx”group)

According to the principle of row first and column second,

(24), (25), (28), (29), (22), (23), (26), (27) are used to

get the solution of the eight grid points as shown in figure
17-18.

("Ry”group)

According to the principle of column first and row second,

(24), (28), (25), (29), (26), (30), (27), (31) are used to

get the solution of the eight grid points as shown in figure
17-18.

("G"group)

(24), (25), (28), (29) are used to get the solution of the

four grid points (1,1),(2,1),(1,2),(2,2) -

("H”group)

(24), (25), (28), (29) are used to get the solution of the

four grid points (m —2,m—2),(m—-2,m-1),
(m—1,m-2),(m-1,m-1)
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The construction of “Ly” group, "Ry’ group, "Rx”
group is similar to ”Lx” group.
According to the groups shownin Figure 17-18 , if we let

—n

—n

—n

—n

—n

u —(u1 Us,Uy

Um—6, Um— 2)

—)1 —n —n —n —n

(ulj,uSJ’ugj’ ...... U m— 6],Um 2]) ]

-n
ya n n n n n n
Un2j = (uW2 NE un#l ,j° u%2 -+ un#l,‘ JH? un#Z,ijZ 4 u%l,» jH2° un#lj+3 4 unrl,‘ /+3) b

—n

um 2—(ulm 2,U5m-2, u9m 2

-n -n T
...... Um—6,m-2 , um—2,m—2)
—n

_ n n n n n
Uim—2 =

(ui,mfz > Z'{i,mfl H qu,mfZ s Z'tiJrl,mfl s Z'ti+2,m72 H Z'ti+2,mfl ’ ui+3‘n172 s Z'ti+3,mfl

—n

n
Um-2,m-2 _(um 2,m— Z’um 2,m—" l’um 1,m—. Z’um 1,m— 1)

Then we denote the alternating group explicit method as
follows:

(I +7rH Yun = (I = rH, ), (32)
(L +7H, Yt = (I = rH, s
Let(m—1)Y=a, 2(m—-3)+4=b,

4(m—-3)+8=c, then

H,
H
H= ,
H
L Hy,
4 2
4
H, = . ’
4
i AL
_A3 -
4
Hy, = :
4
L An_bxb

A3 2

} {Am =B,
Ay Jog 4y = AzzT

{An =4, {A4 =B,
A4, =By, ’ B, =4,
P M 1
M P M
= M P M ’
M P N
L N 0],
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_R EIT -
E B E
p= ) ’
E R E
E R F
L BB .
Q E
Ez Ql EZT
Q=
Ez Ql EzT
E QO F
L F; Qz_bxb
'R B, O O
p P B 0 O
0O O Ry R
_O o PIZ Rl 1646
P21 0 1+q 0]
P2={ } RF[ 2 »
0 P22 0] I+q1

E1,1
E = E1,1
: E1,1 ’
LI J16x16
F1,1
F o= F1,1
l F1,1 ’
L FU 8x8
0 C
0 2C 0 2C
E2=|:O 01’4:| s F‘2:|:O 01’4:| s
88 4x8
0=P, 0,=4,,
M,
M = >
M,

2 lexe

[0 MH}
M, = :
O 0 16x16

Y - 2¢, O
"o 2q, »

b
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N,
N = ’
N,
Nz cxb
le[o N11]3><16
N2=[0 N21]4><g
-1 0 0 o]
Ny, = ’
0 0 -1 0
Cis !
C
N, = 15 c
15
C

15 1gx4

From the construction of the matrices H' and H?, we
can see they are non negative definite real matrices. Then
we have

I +rH) " S ([ =rH )T +rH,) ™ [T
1T +rH) " L,<1s | (=rH ) +rHy) ™ L1

—n-2

Let n is an even number, then we have u =Tu
Here 7=(I+rH,)" (I -rH)(I +rH,)" (I —rH,) is the
growth matrix,

Let H=(I+rH,)T(I+rH,)" =(I—rH,) . Then by
Lemma 1, we have p(T)= p(ﬁ) s||ﬁ IL<1.
Then we have the following theorem:

Theorem 2 The alternating group explicit method
denoted by (32) is unconditionally stable.

5 Numerical Examples

Example 1: Consider the initial-boundary problem of
convection -diffusion equation as below

2
9 g9 9" gcr<r0sis<T,
Jat dx dox (33)
w(0,6)=0,u(l,r) =1,

u(x,0)=0.

The exact solution ® is

eax/b _1
M()C,t) = T+
e’ —1
oo _1 )lnﬂ. _ . _ 2 2
( ) e (x=1)/2b sin(nzx)e [(n7)2b+(a?/4b)]t

= (nm)* + (a/2b)

Let 4.E and P.E denote absolute error and relevant
error respectively. We compare the numerical results of

1222 Issue 7, Volume 6, July 2009



WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

(11) with the Crank-Nicholson scheme in Table 1 and
Table 2.
Table 1: Partly results of comparisons

m=257=10",=10007,a=10,b=10

Qinghua Feng

Table 3: Comparisons with [9] with
r=04,m=19,h=1/19,7=r/361,t =3907,y =16A

A.E 5.150x10”
A.E (C-N) | 5.086x107
P.E 5.361x10°
P.E (C-N) 5.249%107

Table 2: Partly results of comparisons
m=29,7=10",=10007,a=5,b=5

AE 4.776x10°°
A.E (C-N) 4.638%10°
PE 3.100%x107
P.E (CN) 3.012x107

The results in Table 1-2 show the method (11) is of
nearly the same accuracy as the implicit C-N scheme

Example 2:
Considering the following problem:

ot ox? 9%y’

0<x<1,0<y<1L,0<¢t<T
u(x,y,0)=sin(zx)sin(xry)
u(0,y,t)=0,u(l,y,t) =0
u(x,0,¢) =0,u(x,1,1)=0

The exact solutionof the problem is

u(x,y,t)= e 27 K sin(7zx) sin(7y) -

We compare the alternating group method (32) with the
method in [9] and the exact solution.

In Table 3-4, we present part of the comparisons with
r=04,m=19,h=1/19,7=r/361,t=3907,y =16A

ISSN: 1790-0832

X 6h 7h 8h
A.E 1.185x107 | 0.808x1077 | 1.05x107’
P.E 1.506x107" | 9.385x107 | 1.152x107>
A.EVY! | 6.677x107 | 6.488x107 | 7.800x1077
P.E! | 8487x107" | 7.539x107" | 8.562x107"
Exact 7.867x107° | 8.607x107° | 9.111x107°

Table 4: Comparisons with [9] with

r=04,m=19,h=1/19,7=r/361,t =3907,y =16A

X 10h 11h 12h
A.E 0.948x1077 | 1.022x107 | 0.882x107
P.E 1.102x107" | 1.121x10™" | 1.025x10™"
A.EP] | 7.651x107 | 7.099x1077 | 6.520x107
P.E ! | 8168x107" | 7.793x107" | 7.576x10™"
Exact 9.366x107° | 9.111x107° | 8.607x107°

The results in Table 3-4 show the present method (32)

is of higher accuracy than the method in [9].

In Figure 19 we present the comparison between the

numerical results of the present method and the exact
solution with

F=04,m=23,h=1/23,7=r/361,t =390z, y = 16/
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Figure 19 Comparison between numerical
results and exact results with

r=04,m=23,h=1/23,7=r/361,1 =3907,y =16h
From Figure 19 we can see the numerical results is of
high accuracy.

6 Conclusions

In this paper, based on the concept of domain decompo-
sition, we present a class of parallel alternating group
explicit method for convection-diffusion equations,
which is verified to be unconditionally stable. From the
results of Table 1 and Table 2 we can see that the
numerical solution for the method is of nearly the same
accuracy as the implicit Crank-Nicholson scheme.
Furthermore, = we constrcut another alternating group
explicit method for 2D diffusion equations. The method is
also unconditionally stable. The results in Table 3-4 show
the method is superior to the method in [9]. Both of the
two methods are suitable for parallel computing, and the
computing in the whole domain can be divided into many
independent sub domains. So the two alternating group
methods are effective methods in solving large system of
equations.
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