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Abstract: - The traditional method of application of remote sensing data for land cover mapping is the use of 
supervised classification and unsupervised classification. Decision tree, showing great advantages in remote 
sensing classification, is computationally fast, makes no statistical assumptions, and can handle data that are 
represented on different measurement scales. Decision tree classification has been successfully applied to many 
classification problems, but rarely applied to mapping of wetlands. In this study, decision tree was proposed to 
extract wetland from Landsat 5/Thematic Mapper (TM) imageries in a wide area of Yinchuan plain. Tasseled 
Cap (TC) transformation was used to identity the different wetland types and normalized difference vegetation 
index (NDVI) was computed to distinguish paddy wetland and lake wetland. Results from this analysis show 
that the decision tree has an outstanding performance compared with the supervised classification in maximum 
likelihood method. The overall accuracy of supervised classification is 64.60%, while that of decision tree 
classification was 83.80%. Besides, it appears that a decision tree combinations different useful knowledge is 
an effective and promising classification method. 
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1 Introduction 
In the current application of remote sensing 
classification, the mainly classification approach are 
artificial interpretation and computer automatic 
interpretation. The advantages of artificial 
interpretation is utilizing the visual of human and 
reasoning skills fully. But interpreting artificially 
performs low efficiency, and the classification 
precision depends largely on the subjectivity and 
personal experience of the investigator. In computer 
automatic interpretation, for most users, traditional 
classification methods-supervised and unsupervised 
classification-are the most choices because of their 
ready availability. However, if any class undefined 
during the process, supervised classification can not 
identify it. Besides, spending lots of time and energy 
to select and evaluate samples is another 
disadvantage in supervised classification. Although 
it is not to select and evaluate samples, it can not 
control the classes and hard to obtain the expected 
classes in unsupervised classification.   

In the recent years, the use of decision tree to 
classify remotely sensed data has increased. This 
technique has substantial advantages for remote 

sensing classification problems because of its 
flexibility, intuitive simplicity, and computational 
efficiency. It has been successfully applied to many 
classification problems. 

 
 

1.1 Decision tree 
A decision tree is a graph or model of decisions 

and their possible consequences. It is a special form 
of tree structure. In their simplest form, decision 
trees successively partition the input training data 
into more and more homogeneous subsets by 
producing optimal rules or decision, also called 
nodes, which maximize the information gained and 
thus minimize the error rates in the branches of the 
tree [1] [2]. Each final leaf is then the result of 
following a set of mutually exclusive decision rules 
down the tree (Fig. 1). Each node includes the 
exclusive and exhaustive logical conditions and 
each condition is like 

    A T<      or      A T>  
for a continuous attribute A, where T is some 
threshold, or 
          A V=     or     A  in  {Vi} 
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for a discrete attribute A, where V is one of its 
possible values and {Vi} is a subset of them. These 
conditions divide the data into different parts to get 
one class.  

 
Fig. 1 A decision tree model. Each box is a node at 
which tests (T) are applied to partition the data into 
successively groups. The labels (A, B, C, D, E) at 
each leaf node refer to the class label assigned to 
each observation. 
 

In order to classify an object, we start at the root 
of the tree, evaluate the test, and take the branch 
appropriate to the outcome. The process continues 
until a leaf is encountered, at which time the object 
is asserted to belong to the class named by the leaf. 
If the attributes are appropriate, it is always possible 
to construct a decision tree which could correctly 
classifies each object in the training data set. The 
decision tree must capture some meaningful 
relationship between a class and its values of the 
attributes. 

Decision tree can be divided into three types: (1) 
univariate decision tree, (2) multivariate decision 
tree, and (3) hybrid decision tree [3]. 

A univariate decision tree (UDT) is a type of 
decision tree in which the decision boundaries at 
each node of the tree are defined by a single feature 
of the input data [3]. The data is split into two or 
more subsets based on a condition of a single 
feature of the input data at each internal node in a 
UDT. In this hierarchical structure, a UDT 
classification proceeds partitioning the input data by 
recursively until a leaf node is reached, and the class 
value associated with the leaf is then assigned to the 
observation. The characteristics of the decision 

boundaries in a UDT are estimated empirically from 
the training data. In the case of continuous data, a 
test of the form xi>c is performed at each internal 
node of the UDT, where xi is a measurement in the 
feature space and c is a threshold estimated from the 
distribution the xi. The value of c maximizes the 
dissimilarity or minimises the similarity of the 
descendant nodes, using one feature at a time. 

Multivariate decision tree (MDT) is similar to 
UDT, but the splitting test at each node may be on 
the basis of more than one feature of the input data. 
The set of allowable splits may consist of linear 
combinations of features. And the linear 
discriminant functions are estimated at each interior 
node of a MDT, with the coefficients for the linear 
discriminant function at each interior node being 
estimated from the training data. MDT is often more 
compact and can also be more accurate than UDT 
[4]. The greater complexity of MDT relative to 
UDT algorithms introduces a number of factors that 
affect their performance. Firstly, any different 
algorithms can be used to estimate the splitting rule 
at internal nodes, and the relative performance of 
these algorithms can differ depending on the nature 
of the data and the complexity of the classification 
problem. Secondly, as the split at each internal node 
based on one or more features, so several different 
algorithms may be used to perform feature selection 
at each node within a MDT [5]. These algorithms 
choose the features to include in each test based on 
the data observed at a particular node, rather than 
selecting a uniform set of features on which tests for 
the entire tree are based. 

A hybrid decision tree (HDT) is a decision tree 
where different classification algorithms may be 
used in different sub-trees of a larger tree. A system 
named the model class selection system (MCS) is 
used to build HDT. MCS can combine as many as 
three commonly used classification algorithms in a 
recursive tree-structured hybrid classifier. The 
candidate algorithms are decision tree, linear 
discriminant functions, and k nearest-neighbor 
classifiers. MCS employs a hill-climbing search 
guided by a set of heuristic rules to estimate a HDT 
by using a set of training data [6]. As part of this 
implementation, MCS applies a heuristic pruning 
procedure based on the same procedure used for 
UDTs and MDTs to ensure that the resulting 
classifier does not overfit the training data at the 
expense of generalization. 

Decision trees have several advantages. They 
easily accommodate data from all measurement 
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scales (i.e., nominal, ordinal, interval, and ratio 
scales) and make no distributional assumptions [7]. 
Besides, decision trees typically outperform other 
classifications in terms of classification accuracies 
[8].  

Decision trees are sometimes more interpretable 
than other classifiers such as neural networks and 
support vector machines because they combine 
simple questions about the data in an understandable 
way. Decision trees naturally support classification 
problems with more than two classes and can be 
modified to handle regression problems. Finally, 
once constructed, they classify new class quickly.  

Mahesh Pal and Paul M. Mather demonstrated 
the advantages of the decision tree for land cover 
classification in comparison with other classifiers, 
like the maximum likelihood method and artificial 
neural networks [3]. Thoreau Rory Tooke and 
Nicholas C. Copps used decision tree to extract 
urban vegetation characteristics, including species 
and condition [9]. Eric C. Brown de Colstoun and 
Michael H. Story had examined the feasibility of 
using a decision tree to instrument to map 11 land 
cover types [10]. Decision tree classification has 
been successfully applied to many classification 
problems, but rarely applied to mapping of wetlands. 

 
 

1.2 Importance of wetland 
Wetland are described both as “the kidneys of the 

landscape”, because of the functions they perform in 
the hydrological and chemical cycles, and as 
“biological supermarkets” because of the extensive 
food webs and rich biodiversity they support. 
Wetland systems directly support millions of people 
and provide goods and services to the world outside 
the wetland [11]. 

Wetlands are dynamic systems, continually 
undergoing natural change due to subsidence, 
drought, sea-level rise, or infilling with sediment or 
organic material. In recent years, direct and indirect 
human activity has considerably altered the rate of 
change of wetlands. Great changes have taken place 
in the area of wetlands. 

In recent years, the dynamic changes of wetlands 
monitoring based on GIS (Geographic Information 
System) and remote sensing technology are deeper. 
Scholars are focusing on the high-resolution and 
high-precision remote sensing image. It has become 
an important issue to obtain high quality wetland 
classification map. 

Considering these situations, it is meaningful to 
analyze wetland using a decision tree, which is a 

new technique for wetland extracting. The objective 
of this study is to develop a decision tree to extract 
wetland from TM imagery in Yinchuan plain. We 
extracted NDVI from TM imagery, had TC 
transformation with TM imagery, and produced the 
spectral characteristic curve of typical classes. Then, 
a decision tree which is used to distinguish the 
different type of wetlands was built. From the TM 
imagery in Yinchuan plain, we gained three types of 
wetlands: river wetland, lake wetland and paddy 
wetland. To assess whether the decision tree 
perform well for wetlands extracting, we evaluated 
the accuracy of results. Compared with supervised 
classifications, decision tree appeared an 
outstanding performance. 
 
 
2   Methods 
The general objectives of this study are (1) to 
present the basic properties of decision tree, (2) to 
build a decision tree model to classify wetland, (3) 
to compare the accuracy of decision tree with that of 
supervised classification in maximum likelihood 
algorithm, and (4) to assess its utility for the purpose 
of wetland mapping from remotely sensing data. 
 
 
2.1 Study area 

 
Fig. 2 Location of Yinchuan plain within the state of 
China. 
 

Yinchuan plain, the southwest of Hetao Plain, 
known as Ningxia plain and Xitao plain, locates at 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Yuan Hui, Zhang Rongqun, Li Xianwen

ISSN: 1790-0832 1000 Issue 6, Volume 6, June 2009



the centre of Ningxia Hui Autonomous Region in 
China (Fig. 2). To the north it faced Shizui Shan, 
just south Loess Plateau, the east border is Ordos 
Plateau, the west Helan Shan. Yinchuan plain 
covers an area of about 7,793 km2, roughly between 
latitudes 37°14′N and 39°23′N and longitudes 
between 105°43′E and 106°51′E. Approximately 
280 km long from south to north and 10~50 km 
from east to west. The elevation in the study area 
ranges from approximately 1000 to 1200 m. 
Because of its climate and the diversity of the 
natural environment, there are many typical wetland 
landscape and abundant wetland tourism resources 
in Yinchuan plain. Wetlands in Yinchuan plain 
mainly belonged to the river wetland and lake 
wetland two categories. Wetland vegetation and 
water birds are variety and distribute widely. In 
recent years, with the investment of State Forestry 
Administration, four provincial natural reserves 
(Qingtongxia reservoir wetland, salt lake wetland, 
Xiji lake wetland and Ningxia ShaHu wetland) have 
been successfully built. 
 
 
2.2 Data acquisition and processing 

Two Landsat 5/TM images were acquired from 
Geographical Science and Natural Resources 
Research, Chinese Academy of Sciences on 
September 12, 1999. The images had a spatial 
resolution of 28.5 m with 7 spectral bands (TABLE 
1). And the scenes covered Path/Row 129/033 and 
Path/Row 129/034 and were delivered registered to 
a Universal Transverse Mercator (UTM) projection 
using a World Geodetic System 1984, Zone 48. 
 
Table 1 Landsat 5 TM Band Descriptions  

Band Wavelength (µm) Spectral Region 

1 0.45 - 0.52 Visible Blue 
2 0.52 - 0.60 Visible Green 
3 0.63 - 0.69 Visible Red 
4 0.76 - 0.90 Reflective Infrared
5 1.55 - 1.75 Mid-Infrared 
6 10.40 - 12.50 Thermal Infrared 
7 2.08 - 2.35 Mid-Infrared 
 

Topographic maps (Scale: 1:100000) published in 
1979, provided by the National Geomatics Center of 
China, was used to extract the vector data of study 
area boundary. 

With the vector data of contour and elevation 
points which were acquired by vectorizing from 
topographic map, a Digital Elevation Model (DEM) 
was produced to calculate slope of Yinchuan plain. 
The area, where slope degree less than 5°, were 
defined as plain. Then the range of Yinchuan plain 
was extracted by vector layer. The two scenes were 
mosaiced together to provide complete coverage of 
the study area. After referencing the slop map of 
Yinchuan plain and the studies by researchers in 
local in Ningxia, a subset of these scenes covering 
the study area were extracted for classification. 
 
 
2.3 Supervised classification 
Following the Ramsar Convention and the fact of 
study area and observing the characteristic of feature 
displayed directly in imagery, such as shape, size, 
hue, shade and texture, we divided wetlands in study 
area into wetland and non-wetland two category. 
Wetland consisted of three types: river wetland, lake 
wetland and paddy wetland. The rest of land cover 
were set as non-wetland.  

Before developing a decision tree, we did the 
traditional supervised classification first. Although it 
was anticipated the supervised classification using a 
maximum likelihood classifier may not produce the 
highest classification accuracy, it was supplied in 
the experiment to establish a decision tree. We also 
could compare the accuracy with the results of 
decision tree classification.  

 
Fig. 3 The result of wetland classification using 
supervised classification. 
 

In supervised classification, we did the 
classification as following steps: 
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(1) Define training data. It is important that these 
classes should be a homogenous sample of the 
respective class. Each training class will be defined 
a Region of Interest (ROI) of the specified colour.  

(2) Evaluate the training data. When the training 
data were selected, it must be evaluated to make 
sure the image is high divisible. It should be 
adjusted if the training data is not satisfactory. 

(3) Select the decision rule. There are many 
different rules which can be applied in a supervised 
classification. In this study, we selected the 
maximum likelihood algorithm as the decision rule. 

(4) Run the classification. 
The result of wetland classification using 

supervised classification method in maximum 
likelihood algorithm was shown in Fig. 3. 
 
 
2.4 Decision tree building and wetlands 
mapping 

 
Fig. 4 The first three channels of TC transformation. 
 

The TC transformation had been used for 
classification to acquire more knowledge about 
wetness (Fig. 4). The tasseled cap transformation 
was presented in 1976 by R.J. Kauth and G.S. 
Thomas. This transform not only provides a 
mechanism for reducing data volume with minimal 
information loss but its spectral features can also be 
directly associated with the wetlands classification. 
The first three features usually account for the most 
variation in an image [12] [13] [14]. These first 
three features have been labelled brightness, 
greenness and wetness, respectively. The third 
feature, wetness, has been shown to be sensitive to 
soil and plant moisture and vegetation structure [15] 
[16]. This correlation improves the separation of 

river and lake wetlands from vegetation and other 
wetland types.  

 

 
Fig. 5 The result map of NDVI 

 
NDVI was computed from the TM image using 

two bands of light, red and near-infrared. Vegetation 
index is often regarded as an effective method to 
enhance the difference among spectral features and 
suppress topographic (Fig. 5). NDVI was expected 
to be helpful to improve wetland classification 
accuracy. 

In our analysis, we selected pixels which were the 
typical classes of wetland in the image after TC 
transformation and NDVI image, computed the 
mean digital number of each pixels (Table 2.). Then 
we drew the spectral signature curve of typical 
features with the mean digital number. Because the 
last two feature of TC transformation has little 
information, we didn’t add them in the signature 
curve (Fig. 6). 
 
Table 2 The mean digital number (DN) of each 
wetland type on each channel of TC transformation 
image and NDVI image. 

 river lake paddy filed

feature 1 205.687 115.043 170.487 

feature  2 0 0 0 

feature  3 97.978 46.44 21.6 

feature  4 15.333 43.833 34.569 

feature  5 0 0.003 0.005 

feature  6 0 0 0 

NDVI -0.124 -0.392 -0.055 
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Fig. 6 The spectral signature curve of typical 
features on TC transformation image. 
 

From the mean digital number of each wetland 
type on TC transformation image, NDVI image and 
the spectral signature of typical features, we could 
realise that: ① the first feature of TC transformation 
had the most information; ② the value of each 
wetland type on the second feature of TC 
transformation image was zero; ③ river had a 
significant higher value in feature 3 than lake and 
paddy field; ④ the mean value of river, lake and 
paddy field on NDVI image all were less than zero, 
and lake wetland was lowest, second is river 
wetland, and paddy wetland was last.  

After understanding the remote sensing data more 
deeply, we explored a decision tree as following 
several steps: (1) select the best split (variable and 
its threshold) at the root node of the tree through the 
examination of each variable, (2) create two child 
nodes, (3) determine the child node into which each 
catchments goes, and (4) repeat recursively the 
process [17].  

 

 
Fig. 7 Decision tree model of 1999 TM image. TC3 
and TC4 represent the third and fourth features. 

 

In our analysis, we sampled the training data form 
the TC image and NDVI image. Observing the 
training data, we found that the digital number of 
pixels which expected to be river wetland classes 
were more than 62. This would help us to 
distinguish river wetland from others wetland easily. 
Repeated contrast the digital number of lake 
wetland and paddy wetland, we detected that the 
lake wetland could be derived by different NDVI. 
Further, because paddy wetland was richer in water 
than non-wetland, it made paddy wetland be 
extracted possible. According to these steps, a 
decision tree was built (Fig. 7). 

Each wetland type was extracted from TM 
imagery step by step (Fig. 8). The area of river 
wetland is relative rich compared with lake and 
paddy field wetland, occupying approximately 110 
km2. The area of paddy wetland and lake wetland is 
105.028798 km2 and 38.075843 km2 (Table 3). 

 
Fig. 8 The wetland classification map using decision 
tree. 
 
 
2.4 Accuracy assessment 

Accuracy assessment was considered to be an 
essential component of the investigation to quantify 
whether one classification method was superior over 
the others. Therefore, accuracy assessment was used 
to prove whether the decision tree built in this study 
was appropriate and superior over maximum 
likelihood method.  

The overall percentage correct and Kappa 
coefficient was computed for error matrix. The 
user’s and producer’s accuracies were calculated for 
each four types. Story and Congalton describe the 
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user’s accuracy as the number of correctly classified 
samples of category X divided by the total samples 
classified to category X (row total), whereas the 
producer’s accuracy is the number of correctly 
classified samples of category X divided by the total 
number of reference samples of category X (column 
total) [18]. User’s accuracy is a measure of 
commission error and producer’s accuracy 
corresponds to the omission error.   

 
Table 3. The area of each wetland class. 

classes pixels Area ( km2) 

River wetland 135496 110.056626 

Lake wetland 46877 38.075843 

Paddy wetland 129306 105.028798 

Stratified random sample plots were 
proportionally allocated to the four land cover types. 
Selected 1000 random sample plots in total in each 
type. The supervised classification in maximum 
likelihood algorithm was selected to determine how 
well an automated classification method would 
perform in identification of wetland. 

Table 4 provides an evaluation of the final 
wetland classification produced from supervised 
classification in maximum likelihood algorithm. The 
overall accuracy of this classification method is 
64.60%. Producer’s and user’s accuracy for the river 
wetland is 96.12% and 99.20%, highest than other 
wetland types. However, the lowest producer’s 
accuracy for non-wetland indicates that there were 
lots of non-wetland were not identified. And for the 
paddy wetland, the user’s accuracy was very low. It 
suggests that a number of non-wetland were 
mistaken as paddy field wetland.  

 
Table 4. Supervised classification Error Matrix of four classes 

Reference Data 
Classified 

Data River  Lake  Paddy field Non- 
wetland total Users 

Accuracy 

River 248 0 0 2 250 99.20% 

Lake 0 159 31 49 239 66.53% 

Paddy field  8 8 130 249 395 32.91% 

Non-wetland 2 0 5 109 116 93.97% 
Column 

Total 258 167 166 409 1000  

Producers 
Accuracy 96.12% 95.21% 78.31% 26.65%   

Overall Classification Accuracy = 64.60% 

 
Table 5. Decision tree classification Error Matrix of four classes 

Reference Data 
Classified 

Data River  Lake  Paddy field Non- 
wetland total Users 

Accuracy 

River 168 0 0 1 169 99.41% 

Lake 4 162 32 9 207 78.26% 

Paddy field  6 55 134 15 210 63.81% 

Non-wetland 9 12 19 374 414 90.34% 
Column 

Total 187 229 185 399 1000  

Producers 
Accuracy 89.84% 70.74% 72.43% 93.73%   

Overall Classification Accuracy =83.80% 
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Table 6. Conditional Kappa for each Category 

Class Name Kappa(Maximum likelihood) Kappa(Decision tree) 

River 0.9892 0.9927 
Lake 0.5982 0.7180 

Paddy field 0.1956 0.5559 
Non- wetland 0.8979 0.8392 
Overall Kappa 

Statistics 0.5476 0.7587 

 
Although the producer’s accuracy for river 

wetland and lake wetland in decision tree was lower 
than that in supervised classification, the overall 
classification accuracies of the decision tree was 
improved to 83.80%(Table5). And river wetland had 
the producer’s and user’s accuracies of 89.84% and 
99.41%. The producer’s accuracy in non-wetland 
was significantly improved to 93.73% and user’s 
accuracy in paddy wetland was improved over 63%. 
It is suggested that paddy wetland was distinguished 
with non-wetland very well. 

The variance of the Kappa coefficient was used to 
perform a significance test on each matrix [19] [20]. 
The classification derived from the decision tree 
was of significantly higher accuracy than those from 
supervised classification (Table 6). Especially in 
paddy wetland, the Kappa coefficient was improved 
from 0.1956 to 0.5559. And the overall Kappa 
statistics in decision tree was higher than that in 
supervised classification. 
 
 
3   Discussions 
The accuracy results demonstrate successful 
extraction of wetland using decision tree. Several 
factors contribute to these results, the most 
important being that the hierarchical structure of 
decision tree. Each class could be extracted one by 
one with this structure from TM imagery. It avoided 
the influence of linear relation observed between 
different classes. The second factor is that decision 
tree could combine the different data. Here, TC 
transformation image and NDVI were brought into 
decision tree together. The wetness feature was 
prominent because of TC transformation. NDVI 
provided assistance to distinguish lake wetland from 
paddy wetland and non-wetland. 

However, the hierarchical structure brings about 
another problem. When a rule test in the node of 
decision tree divides the data into two data sets, the 
error existing in one data set will be brought to the 
next level. When we want extract one class from a 

group data, another class which should be acquired 
at previous level might presents again. To avoid 
these mistakes, we should select the variables 
carefully, decide the rules and conditions in each 
node prudentially and repeat the experiment to find 
an optimal threshold to build a decision tree. 
Another way to resolve this problem is that 
distinguishing the data from present data set, then 
going on building the next level tree, merging all the 
class which belongs to one class at last. This method 
will be troublesome and time consuming when the 
decision tree is complicated. 
 
 
4   Conclusions 

This paper is just attempt to explore a decision 
tree to extract wetland from TM imagery. Highly 
significant increased in overall accuracies and 
Kappa coefficient compared with that of supervised 
classification in maximum likelihood algorithm 
demonstrate the superiority of decision tree.  

The proposed decision tree was successfully 
applied to the remote sensing data. Different 
remotely sensed data integrated together to build the 
decision tree, helped us to classify more exactly. 
Besides, because of the interpretability of decision 
tree, we can examine a decision tree and identify the 
important variables that distinguish wetland classes 
from one another.  

In summary, study presented here demonstrates 
several important and generally properties of 
decision tree classification. It is an efficient and 
robust tool to examine the hierarchical relations 
among the input data. From this study, it appears 
that decision tree is a promising approach to pursue 
in future work, especially for wetland classification. 
Further study should focus on keeping improving 
the decision tree performance, evaluating the 
performance of the proposed model for different 
structures, different data and high-resolution remote 
sensing imagery, and building spectrum knowledge 
bases. 
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