
Digital Ecosystem Access Control Management

ILUNG PRANATA AND GEOFF SKINNER
Faculty of Science and information Technology

University of Newcastle
University Drive, Callaghan, NSW, 2308

AUSTRALIA
Geoff.Skinner@newcastle.edu.au , ilung.pranata@studentmail.newcastle.edu.au

Abstract: - The newly emerging concept of Digital Ecosystem (DE) has played a significant role in today’s
technology, especially for Small and Medium Enterprises (SMEs) to adopt Information and Communication
Technology (ICT) inside their businesses. DE reveals the opportunities to enhance the productivity and efficiency of
each business transaction. Therefore, it will further contribute to the success of the enterprise’s businesses. Along with
the advancement of DE technology, security has emerged as a vital element in protecting the resources and
information for the interacting DE member entities in particular. However, current developments of such security
mechanisms for protecting these resources are still in their infancy. This paper proposes a distributed mechanism for
individual enterprises to manage their own authorization processes and information access permissions with the aim of
providing rigorous protection of enterprise resources.

Key-Words: - information management, authorization, authentication, access permissions, distributed resource
protection

1 Introduction
Since its first introduction in 2002, the newly emerging
concept of Digital Ecosystem (DE) has received
increasing attention from researchers, businesses, ICT
professionals and communities around the world. The
DE concept is aimed at achieving a set of predetermined
goals that resulted from a Lisbon summit in March 2000.
The derived objectives primarily focus on dynamic
formation of knowledge based economies [1]. Further, it
was proposed that a knowledge based economy will lead
to a creation of more jobs and a greater social inclusion
in sustaining the world economic growth [2].
 DE is a multi-dimensional concept that encompasses
several current technology models such as collaborative
environments [3], distributed systems [4], and grid
technology [5]. The combination of concepts from these
models provides the DE environment the ability to
deliver an open, flexible and loosely coupled resource
sharing environment. However, this combinational
configuration also produces a number of complicated
security issues. Such security problems need to be
addressed before the full implementation of a DE
concept can be realised. Unfortunately, after review and
evaluation of the current literature on the DE security
dimensions, a number of deficiencies in DE security
architecture, particularly in protecting the enterprise
resources and information, are apparent. As such, there
is a need for a comprehensive resource protection
solution. The solution must be able to provide a strong
and rigorous mechanism for safeguarding the DE critical
resources from unauthenticated entities in addition to

reducing the possibility of information leaking to
unauthorized DE member entities.
 A key challenge for enterprises that are involved and
participating in a DE environment is to determine the
right entities or users whom are able to access the
services, resources, knowledge and information hosted
in the DE by member enterprises. There are several key
reasons why this challenge is particularly difficult to
address. Firstly, the occurrences of multiple resources
published and shared by each enterprise in a DE
environment and secondly, the situation where various
clients are able to access each individual resource. Due
to these reasons, enterprises and more importantly DE’s,
to ensure their increasing uptake and utility, urgently
need a mechanism that effectively manages their clients’
access control and authorization permissions with the
aim to protect their respective resources. In this paper,
we attempt to deliver a comprehensive framework
allowing enterprises to protect their resources and
information from any unauthorized use. In turn, as
displayed by previous similarly security enhanced
environments behaviours; provision of improved
protection will contribute towards sustaining the
credibility, integrity and availability of enterprise
resources and information in an evolving DE
environment.
 The reminder of the paper is structured in the
following manner: section 2 lists all key definitions used
throughout this paper and our work, while section 3
discusses the background and related work. Section 4
presents the details of our proposal for addressing the

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ilung Pranata, Geoff Skinner

ISSN: 1790-0832 926 Issue 6, Volume 6, June 2009

security challenges identified in DE environments,
section 5 discusses results and evaluation of testing the
proposed solution, and finally section 6 provides a brief
conclusion of the work contained in the paper.

2 Preliminary Definitions
Before entering into a detailed explanation of the
proposed framework, a list of key terminologies used
throughout this paper is presented below:
1. Resources: any services, knowledge, or information

which is published, shared, or registered by an
enterprise in a DE environment.

2. Resource provider: any entity or enterprise who
provide resources in a DE environment.

3. Client: any user or enterprise who request for a
specific resource provided by a resource provider.

4. Client profile: the identity of a client which provides
the information about the client and the purpose of
requesting a specific resource.

5. Permission: a special authorization rule which
govern how a resource is being accessed by the
client.

6. Capability: a mechanism that contains resource
access permissions which is entitled to each client
profile.

.
3 Background and Related Work
Protecting enterprise resources requires the resource
provider ability to explicitly know which clients are
accessing what resources at all times. Information about
a client and about the purpose of a client in accessing a
specific resource is critical for a resource provider to
assess whether it is safe to allow a client to access the
resources. Furthermore, a resource provider uses this
information to perform client authorization and
authentication analysis before granting and assigning the
resource access permissions to each client. The
authorization and authentication processes are extremely
important, especially for new resource providers who are
integrating and sharing their resources, in a DE
environment.
 Unfortunately, the current state of development for a
DE environment is still unable to provide a reliable
client authentication and authorization process over the
shared resources. The current proposals focus on
managing client identities by implementing a distributed
identity management framework [6]. In this framework,
client’s identities are stored in an Identity Provider (IdP)
or Credential Provider which is trusted in the DE
environment, and the authentication process is enforced
by the means of this Identity Provider. Current
technology standards such as Liberty Alliance [7] and

SAML [8] are utilized inside the framework to provide
the identity federation and certificate token
transformation for authentication purposes. The other
similar mechanism is Credential Server (CRES)
repository framework [9] where client credentials can be
stored in both local and remote servers, resembling the
Grid Security Infrastructure (GSI) MyProxy Credential
[10]. Generally, the authentication process of these
mechanisms solely takes place in a credential
provider/server where the certificate token is produced
for the authenticated client, and this certificate is sent to
the resource provider. A client will not be authenticated
again in the resource provider as a trust relationship is
built between the resource provider and the credential
provider/server.
 While a few mechanisms have been proposed to
manage and authenticate the clients’ identities, there are
limited frameworks that have been proposed for
managing the authorization process of client’s
permissions. A number of currently popular
authorization frameworks for collaborative
environments (CE’s), include the Community
Authorization Service (CAS) [11] and Akenti [12]. Both
of which could be adapted and employed in a DE
environment. This is due to the fact that both
collaborative environments and Digital Ecosystems have
a similarity in function and purpose: to encourage a
collaboration and interaction between their components
[1]. Both CAS and Akenti utilize an authorization policy
server which is responsible for managing access
permissions of all clients. However, a significant
difference can be drawn from both frameworks. Akenti
uses a pull method where a resource server authenticates
the client first and then query the access decision to
Akenti server, while CAS utilize the push method where
access decisions and rights are being pushed together to
the resource server [13].
 Although the mechanisms discussed previously work
practically well, there are some apparent issues that may
limit the ability of resource providers in providing a
strong protection for their resources. Firstly, the current
mechanisms store all identities and information about
the clients in a central server where the authentication or
authorization process is performed. This server is prone
to a single failure which would greatly affect the whole
environment. In a case that the server fails to perform
the clients’ authentication or authorization process, no
other mechanisms are in place to provide the process.
This is in turn can contribute to having all environment
resources becoming prone to malicious attacks.
Although, it is possible to replicate the central server,
the replication process will bring increase administrative
issues and in addition to higher chances for
compromising the resources considering the huge
amount of data to be replicated.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ilung Pranata, Geoff Skinner

ISSN: 1790-0832 927 Issue 6, Volume 6, June 2009

 Secondly, a centralized authorization server faces
various challenges when it comes to assigning the access
permissions to each DE client. This is due to the fact that
a huge amount of resource providers are actively
involved in a DE environment, and each resource
provider is able to host and publish more than one
resource. This condition becomes even more challenging
as a single resource could be associated with multiple
different access permissions, and each client may have
different access permissions assigned to him. Therefore,
in order to correctly assign the access permissions to
each client, the authorization server must be able to
answer at least the following questions: On which
resource provider is the requested resource located?;
What access permissions are defined for this resource?;
Is the client allowed to access this resource?; and What
access permissions are associated to this client for the
requested resource?
 A single authorization server will most certainly face
a heavy burden in assigning multiple various and diverse
permissions correctly to each individual client. For a
simplistic scenario example, assume that there are only
30 resource providers providing their resources in a DE
environment and each resource provider hosted 30
dissimilar resources which are registered and published
in a DE environment. Further, each resource has 30
different access permissions associated with it. If there is
only a single authorization server responsible to assign
the resource access permissions to each DE client, this
server must handle at least 900 different resource access
permissions in its own repository. Further, the server
must also understand the association links between the
access permissions and each resource provider as well as
the association links between resources and the resource
providers. Therefore, it is very laborious and complex
for a single server to effectively manage those
permissions and assign them correctly to multiple
clients. Furthermore, as a DE environment grows in size
and diversity, more and more clients and resource
providers participate and interact in the environment due
to the potential benefits that they can achieve. A central
server will be increasingly experiencing serious
administrative issues in trying to manage all client and
resource providers’ accounts and permissions even with
the possible use of super computers or grid collections
of computers.
 Due to the identified issues on the current
mechanisms from the literature, we argue that the
resource protection mechanism in a DE environment
must be a distributed process rather than a centralized
process. The distributed process is implemented by
allowing each resource provider to perform its own
clients’ authorization and authentication process, and
further facilitating the resource provider to assign the
resource right permissions to its clients. To fulfil these

requirements, we propose a Distributed Resource
Protection Mechanism (DRPM). DPRM could
effectively perform the authorization process and
manage clients’ permissions in a DE environment. In the
following section, we present and discuss a detailed
explanation of our propose DRPM framework.

4 Distributed Resource Protection
Mechanism
Inside the DRPM framework, the concept of client
profiles is used to identify and keep clients’ information.
A new client who makes a request for a specific resource
is required to provide their information which will then
be stored in a client profile. Once a client profile is
created, the resource provider will grant the resource
access permissions to the client based on a list of
permissions defined inside a capability [14]. This
capability will always be used every time a client
request for the same resource occurs.

4.1 Client Identification
In the present mechanism for service discovery inside a
DE environment, a client searches for resources by
utilizing a semantic discovery portal through their
browsers or rich applications [15]. The discovery portal
lists all client intended resources which are provided by
DE resource providers. Once the client finds the
resource that they want, they then contact the resource
provider and requests for the resource. At this stage, the
resource provider does not know any information about
the client and their intended purpose on the resource.
This may put the resource at risk as the resource
provided by a resource provider may contain highly
sensitive information which must be protected from any
misuse and malicious act. Therefore, it is crucial for a
resource provider to understand a requesting client’s
information before any access to their resources is
granted.
 Taking this into consideration, we adopted a method
of creation for a client profile that aims to capture all
required, but voluntarily provided, information about a
client. The information which is contained in a client
profile provides necessary data about who the client is
and about their intentions and purpose for using the
requested resources. The aim of implementing a client
profile is to ensure the resource provider that resources
are not going to the wrong entities and further impose
the confidentiality and integrity of the resources. The
use of client profiles also facilitates the auditing process
of the clients accessing a resource. For example, there
may be a situation where a resource provider needs to
make a trace back to determine which client was
delegated access to the resource in case there was an

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ilung Pranata, Geoff Skinner

ISSN: 1790-0832 928 Issue 6, Volume 6, June 2009

incident involving a dispute or counterfeiting of the
resource in question.
 In order to fully implement the client profile, it is
necessary that a client registration portal is employed in
our framework. A client profile is generated through this
registration portal. It is built on the HTML language so
that it can be universally accessed through a clients’
browser. Further, resource providers are able to
customize the registration portal to contain only the
information which is important to them. New clients
wishing to access a specific resource are initially
redirected into this portal. If they wish to access the
resource, they must continue to fill in all the necessary
information required by the resource provider to produce
a client profile. Once it is produced, the client profile is
stored in the resource provider repository and can be
used for authenticating the client. On future access
requests on the same resource, the client will provide
their credential and it will be mapped to their client
profile. If it is matched, the client will be granted
another access to the resources. Utilisation of this
functional procedure and process provides an additional
and enhanced method for determining who is accessing
a particular resource at a particular time within a DE.

4.2. Enforcing Access Permission
It is a challenge to enforce client access permissions on
resources available within a DE environment. As
discussed previously, a DE environment comprises
various clients, and these clients could make the same
request for a particular resource either at the same or at
different time. Through our own investigations and as
the literature indicates it is apparent that resource
providers who publishes DE resources are having
difficulties in managing the resource access permissions
of the multiple and diverse range of DE clients. A
further complication to the problem is that a resource
provider is able to have multiple resources registered
and published in a DE environment. This situation
creates a complex and hard to define set of resource
access permissions for each client. Therefore, a strong
mechanism for managing the access permission of each
client and their intended requested resource is crucial.
This access permission mechanism must provide the
ability for a resource provider to know which clients
have the permission to access which resources.
 To solve this issue, we utilize and evolve the concept
of capability introduced by the CAS server used in a
Collaborative Environment. In CAS, capability is used
to store all access rights of a user which are determined
by a community policy. However, the implementation of
the capability in our framework is slightly different to
the capability implementation in a CAS server. In our
framework, capability contains all the necessary right
permissions for each client to perform a set of operations

on a particular resource. This capability is produced by
the resource provider on which a particular resource is
hosted. This capability is used by the resource provider
to grant the client access to the resources and further
provide the authorization process for the clients. After a
new client profile is created, the resource provider
generates a capability for this client profile that defines
all resource access granted to the client. The capability
limits the resource access of a particular client by listing
all permissions which are granted to the client. Further,
this capability is sent to the requesting client and will be
used for future requests on the same resource. Every
time a client makes a request to the resource provider for
the same resource, the client sends back its initial
configured capability to the resource provider. The
resource provider then authenticates the provided
client’s capability and grants the access permissions
based on the permissions stored inside the client’s
capability. Permissions and policies languages in a
capability are expressed by using SAML Authorization
Assertions [16]. Further, Public Key Infrastructure (PKI)
[17] can be implemented in order to protect the
capability by using the resource provider private key to
sign the capability.

4.3. Client Profile and Capability Token
Management
Using a combination of a client profile with a capability
seems to solve the problems associated with accurately
identifying the clients who make resource requests in
addition to be able to grant access permissions on a
particular resource to a specific client. However, an
administrative problem is faced by a resource provider
in managing multiple client profiles and diverse
capability tokens. This is again due to the ability of a
resource provider to host more than one resource in a
DE environment while the clients’ access permissions
on these resources are distinct.
 In order to address this administrative challenge, we
propose an association model between the capability
tokens and client profiles. As a client profile contains the
general information about a client and is going to be
used for accessing multiple resources hosted by a single
resource provider, we propose that this client profile is
only issued once. It is issued when the client request for
the resource at occurs for the first time. Once issued, a
client profile can be used to access all resources with the
condition that these resources are hosted by the same
resource provider. Therefore, it promotes a single
registration for all resources and reduces the potentially
overwhelming client registration process required every
time a client requests as different resources. In a further
step, a capability token which contains all access
permissions of a particular client on a single resource

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ilung Pranata, Geoff Skinner

ISSN: 1790-0832 929 Issue 6, Volume 6, June 2009

has an association of one too many relationships with
each client profile that it represents. This relationship
means that each client profile may have more than one
capability token in accessing different resources
provided by a single resource provider. The
implementation is showed in figure 1.
 As shown in figure 1, each capability represents a list
of access permissions of a particular client profile on a
particular resource. Capability that is owned by different
client profiles can be applied on the same resources
within the same resource provider e.g. Capability 1 and
3 of client profile A and capability 5 and 6 of client
profile B can be applied on the same resources
respectively. However, those capability tokens that are
associated with a particular client profile could not be
applied on the same resources e.g. all capability tokens
owned by client A/B are not applied on the same
resource (capability 1 applied on resource 1, capability 2
applied on resource 2, and so on). For a further
identification process of each capability on the resource
that it represents, we register a resource manifest ID on
each capability. In current DE technology, a service is
identified by a service manifest which contains a unique
ID representing a service [18]. The registered manifest
ID will allow the client to send the correct capability
token when requesting for a specific resource.
Therefore, the association between client profile and
capability allows the resource provider to specifically
know who has access permission on a particular
resource and what kind of permission is allowed on that
resource. This approach, further address the hectic
administrative issue associated with managing the client
profiles and capability tokens.

Fig. 1: Classification hierarchies of client profiles and

capability tokens

4.4 Registration and Authentication Process
On every authentication process, a client is required to
provide his own certificate or credential to the resource
provider. Resource provider then retrieves client
information from the certificate and maps this
information with their own client profile. A certificate or
credential can be obtained by a client in two possible
methods: 1) a certificate issued by external party or 2) a
certificate issued by a proxy credential server. The
clients may have already implemented their own
certificates issued by their Trusted Third Party (TTP) or

Certificate Authority (CA), such as VeriSign [19],
TrustAlert [20], etc. This certificate is required to be
used for each and every online transaction. Additionally,
a proxy credential server [21] could also be implemented
in a DE environment to provide the certification services
for the clients. In order to cope with those methods, the
certificates issued by either external parties or a proxy
certificate can be accepted as long as a trust relationship
is built between the certificate issuer and the resource
provider. A client is responsible for requesting a X.509
certificate [22] from his own CA or X.509 proxy
certificate [23] from the proxy credential server. Further,
the client must send this certificate to the resource
provider for authentication on each time they make a
request for a specific resource.
 However, as a primary focus of DE is to promote ICT
to the Small and Medium Enterprise (SMEs) [24], there
is a strong possibility that such SMEs do not have any
certificate issuing party. Therefore, a solution for these
types of environments needs to take into consideration
and facilitate the authentication process of their clients.
The combination of username and password is the
simplest way to provide the authentication to the clients.
Although this method has several disadvantages such as
the difficulty for the clients to manage multiple
usernames and passwords [25], it is still the cheapest and
easiest method to provide the authentication for the
clients before accessing the resources. The authors also
note that username/password methods of authentication
are also deemed the least secure. However, the focus of
this paper is the improvement of the DE authentication
and authorization process, not the strength of the
methods used.

Fig. 2: New client requesting for resource

4.5 The Workflow Process

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ilung Pranata, Geoff Skinner

ISSN: 1790-0832 930 Issue 6, Volume 6, June 2009

Having discussed all major components of our DRPM
framework, we present two workflow process scenarios
for when a resource is being requested. The first
scenario shows a request process for those new clients
who have never requested and consumed any resources
provided by a resource provider. The second scenario
presents the request process for those clients who have
previously requested or consumed resources from a
resource provider.

Scenario 1: A new client request for a specific resource
Figure 2 shows the workflow process model for a new
client who has never requested or consumed any
resources before.
1. A new client attempts to access a specific resource

by making a request to the resource provider where
the resource is hosted.

2. Resource provider asks for client certificate and
resource capability token. Once client send the
certificate, the resource provider will match the
certificate with the client profiles stored in its
repository. If the client profile is not found, the
client will then be redirected to a registration portal.
On this portal, the client is required to fill in his
information.

3. Registration portal sends back the client information
to the resource provider. Resource provider
generates a client profile based on the information
provided by the portal. Further, resource provider
assigns the resource access permissions and policies
of a requesting client into a capability token.

4. Resource provider stores the client profile and its
capability inside its repository for future resource
request. Further, the capability token is signed by
the resource provider by using its private key and it
is sent back to the client.

5. The client is granted the access to the requested
resource based on the newly created capability
token.

Fig. 3: Existing client requesting for resource

Scenario 2: A registered client request for a specific
resource

Figure 3 shows the workflow process model for a client
who have ever requested and consumed any resource
provided by a resource provider.
1. A client who makes a request for a specific resource
will retrieve his certificate from his own Certificate
Authority (CA) or a proxy credential server who resides
in DE environment.
2. CA or proxy credential server authenticates the client
and sends his encrypted certificate back. Then, Client
looks at his repository for the associated capability token
of the requested resource.
3. Client will then send both certificate and capability
token to the resource provider. Thereafter, the following
steps are occurred:

3.1 The resource provider verifies and
authenticates the client certificate and further matches
client information with the client profile stored in its
repository. If the certificate information does not match
with the client profile, client will not be allowed to
access the resource.

3.2 The resource provider decrypts and
authenticates the capability token sent by the client.

3.3 Resource provider will then authorizes the
client and grants the access control to the resource based
on the permissions defined in client’s capability token.
4. In a case that a client does not have the capability
token for the resource as he has not previously consume
this resource, client will only send his certificate to the
resource provider. Thereafter, the following steps are
occurred:

4.1 The resource provider verifies and
authenticates the client certificate and further matches
client information with the client profile stored in its
repository. If the certificate information does not match
with the client profile, client will not be allowed to
access the resource.

4.2 The resource provider then assigns all
resource access permissions and policies of the client on
the requested resource. These access permissions are
stored in a capability token. Then, this capability token
will be signed using resource provider’s private key and
sent to the client.

4.3 The resource provider then authorizes the
client and grants the access control to the resource based
on the access permissions defined on client’s capability
token.

4.6 Granting Access to Different Entities
As discussed previously, once a capability token is
created by a resource provider, this token is sent to the
requesting client. Further, this capability token is stored
inside the client repository and is presented by the client
on future requests for the same resource. This
mechanism may be dubious as a question may arise on
why there is a need to send the capability token back to

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ilung Pranata, Geoff Skinner

ISSN: 1790-0832 931 Issue 6, Volume 6, June 2009

the client while this capability token can be stored in the
resource provider repository and used when the same
client make the request on the same resource. Therefore,
we attempt to provide a further explanation and
discussion in addressing this question.
 In a DE environment, there is a strong possibility that
a client, which in this case could be an enterprise, is able
to allow a number of its employees to request and
consume the published resources using its client’s
profile. These employees are trusted by their enterprise,
and they are representing the enterprise in doing online
business negotiations and transactions. Although
multiple employees use the same client profile, different
access restrictions on the resources must be set
accordingly. This is due to the fact that the enterprise as
the owner of client profile has different policies
specifying who should able to access which resources.
Therefore, a number of cases show that an enterprise
may want to grant different resource access to different
employees based on its own policies. For example,
enterprise allows employee A to use its client profile for
accessing resources 1 and 2 on resource provider I
however, enterprise only allows employee B to use its
client profile for accessing resources 2 on resource
provider I.
 By sending the capability token to the client, it allows
the client to allocate specific resource access to each
employee. A client can further decide by itself which
employee is able to access which resources by allocating
the right capability tokens to the right employees instead
of letting all employees access all resources using its
generic client profile. The workflow process for the
employee to access the specific resource using his
enterprise client profile is detailed as follows: once an
enterprise has granted and allocated the capability
tokens to their employees respectively, an employee
who wants to access the specific resource from the
resource provider must ask for the capability token from
his enterprise and send this token together with the
enterprise certificate to the resource provider. Then the
resource provider grants the resource access for the
employee based on the received capability token.

5 Framework Testing and Evaluation

5.1 Enforcing Strong Access Limitation on the

Resources to Multiple Resource Consumer
The testing process ensures only the authorized clients
that are allowed to access the resources. In a resource
sharing environment, it is essential for the resource
provider to provide a limitation of access on their
resources. Resource provider must only allow the
authenticated and authorized clients to access the

resources while prohibit the unauthorized clients from
gaining access to the resources. Therefore, the aim of
this testing process is to ensure that the framework
enforces this strong access limitation on the resources.
We developed a structure scenario to facilitate the
testing process. We developed a resource provider which
hosts two resources in its server. Further, we constructed
two clients who attempted to access both resources. The
first client is authenticated and recognized by the
resource provider as it has gone through the registration
process. Therefore, the resource provider has the
corresponding client profile in its repository. The second
client is a new resource consumer who has not been
authenticated or registered by the resource provider.
Access permission on the first resource was given to
first client; however, the client was not given any access
permission to access the second resource. Moreover, the
second client has not been given any authorization
permissions to access any of the resources.
 In this testing process, we would verify whether the
framework allow the clients to access both resources.
We would investigate which of clients is authorized to
access the resources. Further, we would provide the
validation on which of resources can be accessed by the
authorized client. We conducted the testing on our
prototype implementation based on the previous
scenario. The first test was getting both clients to request
for the first resource hosted by the resource provider.
The testing process resulted that the first client was able
to request for the resource. Further, the access
permissions of the first client are showed on the page.
However, the second client was directly redirected to the
registration page without have any access on the
resource. The first screenshot showed that the company
or client 1 successfully accessed the resources while the
second screenshot showed that the company or client 2
was redirected to the registration page. The next testing
was getting both clients to access the second resource.
This testing resulted that both clients did not able to
access the resource. For the second client, the client was
still redirected to the registration page. However, the
first client was not redirected to the registration page. It
was redirected to the failed authorization page.
 The evaluation on the previous testing proved
successful for resolving one of our main identified
research issues. In the first testing process, the first
client was allowed to access the resources due to this
client has been authenticated by the resource provider.
Further, this client has the validated authorization
permissions to access the resources. On the other hand,
the second client was not given an access on the
resource as it was not recognized by the resource
provider. The second client was redirected to the
registration page. To conclude, this testing process
provides the validation that only to those clients that

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ilung Pranata, Geoff Skinner

ISSN: 1790-0832 932 Issue 6, Volume 6, June 2009

have been registered and authenticated by the resource
providers and hence are able to access the resource.
 The result of second testing process shows that only
the authorized clients are permitted to access the
resources. Although the first client has been registered
and authenticated by the resource provider, this client
has permission only to access the first resource. He has
no access permissions toward the second resource.
Therefore, the resource provider denies the access of the
client to the second resource. The results of our
extensive testing on the prototype have proved that the
DRPM framework enforces a strong access limitation on
the resources to multiple clients. Further, this framework
also successfully limits the access of each client on
multiple resources.

5.2 Defining and Enforcing the Access

Permissions of Each Resource Consumer
In this testing process, we are investigating the
mechanism whereby the resource provider could clearly
define the access permissions of each resource consumer
on its resources. As discussed in chapter 4, a trivial issue
is identified for managing multiple clients’ access
permissions. In a DE environment, it is common that
each client is assigned with unique access permissions.
Further, a huge number of clients who are accessing the
resource generate complexity for the resource provider
to strictly enforce the unique permissions assigned to
each client. Thus, the aim of this testing process is to
investigate the ability of the framework to define the
unique client access permissions, and further force these
unique permissions during the resource access.
 In order to conduct this testing process, we assigned
two clients with different access permissions on the
same resource. The assignment of different access
permissions were enforced by assigning different roles
to the two clients. This role assignment to the client
further implements the RBAC concept. The first client
was assigned with ‘Executive client’ roles which gave
him the read, update and modify access permissions on
the resource. Further, we assigned the second client with
‘Common client’ role which would only give him read
access permission on the resource.
 The testing process would provide a verification and
validation of managing the unique clients’ access
permissions. The investigation would be carried out to
look at the ability of framework to enforce the correct
access permissions to each resource consumer. The
testing result presented on the next section will be
reviewed and evaluated. The testing process is
conducted based on the previous discussed scenario in
our prototype implementation. The result of the testing
process showed that the first client was able to access

the resource. Further, this client has read, update and
modify access permission on the resource.
 The second client was able to access the resource as
well however, the resource access permissions given to
this client was only read access permission. Figure 6.4
presents the access permissions granted to the second
client. The result has proved that DRPM framework is
able to define the unique access permissions to
individual resource consumer. The first client was
successfully given all three permissions for accessing
the resource. Further, the second client was only given a
read permission for accessing the resource. The testing
process has validated the framework ability in defining
individual client access permissions. Unique access
permissions are strictly given and enforced to each
client.

5.3 Identifying the Accessing Clients and Their

Purposes in Accessing the Resources
This testing process ensures that a new resource
consumer which has not been authenticated to use the
resource is redirected to a registration page. As
discussed, once a client certificate is validated from the
retrieved HTTP request message, resource provider
extracts the client unique username from his certificate
and capability token. This username is mapped with the
client profiles that are stored inside server database to
check whether the client is authorized to access the
resource.
 We implement a database to store the client profiles.
Resource provider creates a query to retrieve all their
client profiles and further, it validates the received
username from HTTP request message with the client
profiles. When resource provider could not find the
matched client profiles, resource consumer is redirected
automatically to a registration page. Resource consumer
must provide his details for further resource access.
Further, a client or resource consumer must state his aim
of accessing the resource. This information is essential
for the resource provider to understand the intended
purpose of accessing the resource before granting the
permission to access the resource.Once the resource
consumer successfully registered with the resource
provider, resource provider then creates a client profile
based on the information provided. This client profile is
stored inside resource provider database.

6 Conclusion
In this paper we have highlighted the needs for
protecting enterprise resources from any unauthorized
use in a DE environment. Further, we have discussed the
issues faced by the current available and proposed
security mechanisms for DE’s in providing this

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ilung Pranata, Geoff Skinner

ISSN: 1790-0832 933 Issue 6, Volume 6, June 2009

protection. From our analysis and research work in this
area we have proposed the use of the Distributed
Resource Protection Mechanism (DRPM). The DRPM
can be classified as a new approach to facilitate the
authorization process for enterprises who request
specific resources or information. DRPM emphasizes
decentralised authorization mechanism performed by
individual resource providers. It is achieved by utilizing
the client profile and capability token.
 The utilization of client profile provides the ability
for a resource provider to garner a better understanding
of its clients before any access to the resources is given.
In addition, it provides the means to allow resource
provider to trace back to a specific client access
transaction in case any malicious attacks may have
occurred. Enforcement of the authorization permissions
is achieved by implementing the capability token. A
capability token list contains all the permissions granted
to a particular client on a particular resource and are
defined by SAML technology. The capability token
further allows an enterprise to delegate the resource
access permissions to each of its employees.
 As the authors have conducted extensive research
into the related fields of collaborative environments [26,
27, 28] potential limitations of the solution have been
identified. Going forward, the future work for the
research project is to address these limitations. Some
identified limitations of our proposed current solution
are the following:
1. User ought to login to a DE through their
browser or rich client which means that registration is
needed to a DE environment and there should be a single
server containing user registration. How if this server is
down? is the DE registration really needed? DE
promotes the flexibility and transparency to use the
ecosystem, why the user needs to register first?
2. Current solution offers an identity
provider/credential provider who provides the identity of
user and authenticates the user to service provider. The
trust must be established between the service provider
and identity provider. However, it makes the centralized
approach of identity management. The question to be
answered is: How if the current identity provider is
down??
3. From the current solution, the service provider
will only get the certificate token mentioning that the
user is identified and authenticated to use a particular
service. The question is: how if the service provider
would like to know the detail information of the user
who uses its service?
4. There is no delegation ability to trace which
user uses which resources and what kinds of permissions
are allowed to use the resources?
5. DENIAL OF SERVICE Attacks

References:
[1] F. Nachira, P. Dini, and A. Nicolai, "A network of

digital business ecosystems for Europe: roots,
processes and perspectives," European Commission,
Bruxelles, Introductory Paper, 2007.

[2] P. Dini, M. Darking, N. Rathbone, M. Vidal, P.
Hernandez, P. Ferronato, G. Briscoe, and S.
Hendryx, "The digital ecosystems research vision:
2010 and beyond," European Commisssion,
Bruxelles, Position Paper, 2005.

[3] I. L. Ballesteros, "New Collaborative Working
Environments 2020," European Commission, Report
on industry-led FP7 consultations and 3rd Report of
the Experts Group on Collaboration@Work 2006.

[4] M. van Steen, P. Homburg, and A. S.
Tanenbaum, "Globe: a wide area distributed system,"
IEEE Concurrency vol. 7, pp. 70-78, 1999.

[5] K. Czajkowski, C. Kesselman, S. Fitzgerald, and I.
Foster, "Grid Information Services for Distributed
Resource Sharing," in 10th IEEE International
Symposium on High Performance Distributed
Computing (HPDC-10 '01), 2001.

[6] H. Koshutanski, M. Ion, and L. Telesca,
"Distributed Identity Management Model for Digital
Ecosystems" in International Conference on
Emerging Security Information, Systems and
Technologies (Securware’07) Valencia, 2007.

[7] L. Alliance, "Liberty Alliance Project."
http://www.projectliberty. org/.

[8] OASIS, "Security Assertion Markup Language
(SAML)," 2005. http://www.oasis-
open.org/committees/security/.

[9] J. M. Seigneur, "Demonstration of security through
collaborative in digital business ecosystem," in
Proceedings of the IEEE SECOVAL Workshop,
IEEE, Athens, Greece, 2005.

[10] J. Novotny, S. Tuecke, and W. V, "An online
credential repository for the Grid: MyProxy," in
Proceedings of the IEEE Tenth International
Symposium on High Performance Distributed
Computing (HPDC-10), San Fransisco, California,
2001.

[11] L. Pearlman, V. Welch, I. Foster, C. Kesselman,
and S. Tuecke, "A community authorization service
for group collaboration," in Proceedings of the Third
International Workshop on Policies for Distributed
Systems and Networks (POLICY’02) California,
USA, 2002.

[12] M. Thompson, W. Johnston, S. Mudumbai, G.
Hoo, K. Jackson, and A. Essiari, "Certificate-based
access control for widely distributed resources," in
Proceedings of the 8th conference on USENIX
Security Symposium, Wshington, DC, 1999.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ilung Pranata, Geoff Skinner

ISSN: 1790-0832 934 Issue 6, Volume 6, June 2009

[13] K. Keahey and V. Welch, "Fine-Grain
Authorization for Resource Management in the Grid
Environment," Lecturer Notes in Computer Science,
vol. 2536, pp. 199-206, 2002.

[14] S. J. Mullender and A. S. Tanenbaum, "The design
of a capability based distributed operating system,"
The Computer Journal, vol. 29, pp. 289-299, 1984.

[15] J. Kennedy, "Distributed infrastructural service," in
Digital Ecosystem Technology, F. Nachira, P. Dini,
A. Nicolai, M. Le Louarn, and L. R. Leon, Eds.:
European Commission: Information Society and
Media, 2007.

[16] J. Hughes and E. Maler, "Security Assertion
Markup Language (SAML) V2.0 Technical
Overview," OASIS, Working Paper 2005.

[17] J. Weise, "Public key infrastructure overview," Sun
Microsystem, Sun BluePrints Online 2001.

[18] T. Kurz and T. J. Heistracher, "Simulation of a self-
optimising digital ecosystem," in Inaugural IEEE-
IES Digital EcoSystems and Technologies
Conference Cairns, Australia, 2007, pp. 165-170.

[19] VeriSign, "Verisign Security."
http://www.verisign.com/.

[20] TrustAlert, "TrustAlert Security."
http://www.trustalert.com/.

[21] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke,
"A security architecture for computational grids," in
Proceedings of the 5th ACM conference on
Computer and communications security, San
Francisco, California, 1998, pp. 83-92.

[22] R. Housley, W. Polk, W. Ford, and D. Solo,
"Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile," RFC
3280, IETF 2002.

[23] I. Foster, V. Welch, C. Kesselman, O. Mulmo, L.
Pearlman, S. Tuecke, J. Gawor, S. Meder, and F.
Siebenlist, "X. 509 Proxy Certificates for Dynamic
Delegation," in Proceedings of the 3rd Annual PKI
R&D Workshop, Gaithersburg MD, USA, 2004.

[24] F. Nachira, E. Chiozza, H. Ihonen, M. Manzoni,
and F. Cunningham, "Towards a network of digital
business ecosystems fostering the local
development," Bruxelles, Discussion Paper 2002.

[25] D. Agarwal, M. Lorch, M. Thompson, and M.
Perry, "A New Security Model for Collaborative
Environments," in Proceedings of the Workshop on
Advanced Collaborative Environments, Edinburgh,
Scotland, 2003.

[26] Skinner, G., "Making A CASE for PACE:
Components of the Combined Authentication
Scheme Encapsulation for a Privacy Augmented
Collaborative Environment," WSEAS
TRANSACTIONS on COMPUTERS, Issue 1,
Volume 7, January 2008.

[27] Skinner, G., "A Privacy Augmented Collaborative
Environment (PACE)," PROCEEDINGS of the 7th
WSEAS INTERNATIONAL CONFERENCE on
APPLIED COMPUTER SCIENCE (ACS’07),
Venice, Italy, November 21-23, 2007.

[28] Skinner, G., "Shield Privacy: A conceptual
framework for Information Privacy and Data Access
Controls," WSEAS TRANSACTIONS on
COMPUTERS, Issue 6, Volume 5, June 2006, pp.
1375-1384.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Ilung Pranata, Geoff Skinner

ISSN: 1790-0832 935 Issue 6, Volume 6, June 2009

