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Abstract: In this paper it is presented the use of artificial neural networks to improve the tension fields obtained 
from the finite element discretization method. It was significantly reduced the time needed to reach solutions, with 
accuracy similar to the areas smoothing tensions methods: Superconvergent Patch Recovered (SPR) and Recovery 
by Equilibrium Patches (REP) improved. It is solved two cases that show the comparative advantages in terms of 
time spent by the neural network and the techniques described above for making improvements in the original 
solution: Artificial Neural Networks used only 7% and 70% respectively of the original time spent by the 
smoothing technique in such cases. As bigger is the magnitude of the problem, the greater the difference in the time 
required for the solutions, being better the neural network. Data used for this study come from cases of different 
features: with a smooth solution, a thick wall sphere exposed to inner pressure and one with singularities, a plate 
loaded with a lateral crack.  
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1 Introduction 
Considering that in most of the real problems is not 
possible to calculate analytical solutions, the finite 
element method (FEM) is a good alternative for 
obtaining approximate tension fields. However, 
engineers, in its continuing search for better solutions, 
have managed to improve the calculation of 
continuing tensions, beyond making a simple 
averaging in nodes tensions, considering techniques 
for smoothing areas of tension, among others. This 
technique was initially proposed by Zienkiewicz and 
Zhu [1] and is known as SPR, after several 
improvements have been made on it for two-
dimensional finite elements. Another most recent 
technique proposal by Boroomand and Zienkiewicz 
[2] [3], suggest a procedure known as REP to build 
smooth tensions arising from the finite element 
solution, which requires the fulfillment of balance in 
the patch and does not require previous knowledge 
concerning superconvergence points. One application 
of the SPR improved technique (SPR-R) in two-
dimensional elements can be found in Ródenas [4] 
where in its implementation it is ensured the exact 
compliance of the restrictions imposed on nodes in the 
contour, while hexahedrons implementation of the 

REP and SPR improved techniques are presented in 
Vergara [5]. The advantages of conducting some 
improvements in the originals methods of smoothing 
processes, as well as a series of tests and comparisons 
between the developed SPR-R and REP-R techniques, 
have been the subject of studies in Vergara et al. [6], 
whereas in Vergara et al [7] it is presented a study of 
the combination of these techniques.  
The problem is that, in general, the techniques that 
give good results are complex and computationally 
expensive when the number of elements grows by the 
refinements of adaptive application, so for the analysis 
of complex three-dimensional geometries, the 
execution time becomes even "prohibitive", especially 
considering that it may be a considerably large 
volume of data. 
These techniques provide very good results in terms 
of accuracy, but the time required for obtaining them 
requires the search for new alternatives.  
For making the process of smoothing tensions, this 
paper uses Artificial Intelligence, and in particular the 
Artificial Neural Networks (ANN), which have 
demonstrated effectiveness in problems with very 
diverse nature, as can be seen in Moreno article [8] 
and in some jobs such as those of Möller [9] can be 
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seen the use of neural networks in the finite element 
area and Mahadevan [10] and Wang [11] have used 
other of the artificial intelligence techniques such as 
fuzzy logic.  
In this paper we evaluate the potential of ANN, for 
obtaining improved tension stress (σ *) from those 
obtained by FEM, generating a novel alternative that 
provides accurate and faster solutions than the 
methods used so far for three-dimensional problems. 
This evaluation includes a comparison of the neural 
networks predictions models with the original 
solutions from the FEM and also the smoothing 
techniques of proven accurate: SPR-R and REP-R. 
 
 
2 Experiments development and the 
Improved Tensions Calculation models  
For evaluating the ANN, it was used data from the 
numerical solution of finite element at the gauss 
points (PTG) of linear hexahedrons with complete 
integration for two static problems: Thick wall sphere 
exposed to inner pressure (see Figure 1a) with: 
internal radio (R1), outer radius (R2), inner pressure 
(P). Plate loaded with lateral crack, Figure 1b shows 
the location of each of the variables (a, b, c, d and σ).  
 
2.1 Definition and analysis of the problem  
The problem has been defined as the calculation of a 
set of tensions in the nodes. There are stresses initially 
calculated at the PTG, which are data entry, being 
obtained from the solution by the FEM. The three-
dimensional stress field is a vector which has six 
components: three of normal stress in x, y, z 
directions (σx σy σz) and three shear stress at the xy, 
xz, yz (σxy σxz σyz). Figure 2 shows an assembly node, 
where it is wanted to know the value of stress and 
hexahedrons division that defines the mesh of the 
original geometry. Each element shared by the node 
provides an array of stress for calculating the 
continuous stress. Stress in the PTG vary in a single 
element, so depending on the node is taken either of 
those stress. 
Considering the results of Vergara et al [7], there are 
obtained the smoothed stress fields of SPR-R and 
REP-R techniques using a strategy of refinement by 
subdivision. The calculation of stress field in a node 
depends on the number of different elements that are 
shared, so for the configurations studied there are 
eight different cases for calculating tensions in a node. 
If the node is shared by only a distinct element, then 
that element provides the tension in the PTG for the 
calculation of its smoothed tensional field; if the node 
is shared by two elements (see Figure 3), then both 

bring stress from PTG, and similarly Up to eight. As 
each case has different attributes including the number 
of data that are going to be used for calculations, it 
will be used an ANN model for each case. 
It was used MatLab software [12] and it’s Neural 
Network Toolbox [13] for the development of ANN 
models [14, 15], which are considered multilayer, 
feedforward, with supervised training algorithms. 
Supervised neural networks require a number of 
patterns composed of input variables and desired 
outputs. Entries from the FEM in the PTG for the 
entire mesh are obtained from a commercial finite 
element computer program. Desired outputs are 
obtained from the implantation in  MatLab of the 
smoothing tensions process with the SPR-R and REP-
R techniques. 

 
 

 
Figure 1- a.Sphere exposed to inner pressure, b.  Plate 

with lateral crack 

The main idea is to train the ANN with data obtained 
from the initial solutions of these two techniques for 
smoothing tensions, with the idea that ANN will learn 
the pattern embedded in each one. Then, using data 
that were not known by the network during its 
training, it is evaluated the predictive ability of this 
model for obtaining the improved tensional fields and 
is compared both in accuracy and in time necessary 
for obtaining the solution with those obtained by SPR 
and REP-improved.  
 

 
 

Figure 2- Assembly node in hexahedrons elements  
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Figure 3- Patterns for shared nodes  
 

2.2 Considered Testing Cases  
For the sphere and plate with crack, there are solutions 
at various stages of subdivision, variation in load and 
geometry. 8 cases have been designed to test (with 8 
models based on the number of shares), which are 
detailed on number of nodes in Table 1 and are 
described as:  
Testing Case 1 (TC1). There are considered stress data 
in thick wall spheres exposed to inner pressure, with 
SPR- improved smoothing technique, pressure 
changes and the stage of subdivision (Sd). Data: R1 = 
5 m, R2 = 20 m, E = 1000 2/ mN , ν = 0.3, P = 1 

2/ mN , Sd = 0, 1, 2, 3 and P = 0.5 2/ mN . 
Testing Case 2 (TC2). Like case 1, but with REP- 
improved smoothing technique.  
Testing Case 3 (TC3). There are considered tensions 
data in plates loaded with stress and lateral crack with 
SPR-improved smoothing technique, with variations 
in load and stage of subdivision. Data: a = 0.6 m, b = 
2 m, c = 6 m, E = 107 2/mN ,  ν = 0.333 
(adimensional), σ = 1000 2/ mN : Sd = 0, 1, 2, 3, 4, σ 
= 2000 2/ mN . 
Testing Case 4 (TC4). Like case 3, but with REP- 
improved smoothing technique.  
Testing Case 5 (TC5). There are considered changes in 
loads, geometry and subdivision phase with the SPR-
improved smoothing technique. Data: Combination of 
testing cases 1 and 3. 
Testing Case 6 (TC6). There are considered changes in 
loads, geometry and subdivision phase with the REP-
improved smoothing technique. Data: Combination of 
testing cases 2 and 4. 
Testing Case 7 (TC7). It is considered the crack of 
case 3, but this time with a subdivision phase that was 

never seen by the network during training (Sd = 5), 
with a lot of elements. It is compared the obtained 
models from the testing case 3 with the testing case 5. 
Testing case 8 (TC8). It is considered the sphere of the 
case 1, but this time with a subdivision phase that was 
never seen by the network during training (Sd = 4), 
with a lot of elements. It is compared the obtained 
models from the testing case 1 with the testing case 5.  

 
Table 1. Number of nodes in the considered cases  

 Type of nodes (shared nodes) 
Test 
\Node ONE TWO THREE FOUR SIX EIGHT 
TC1 36 1 577 36 3 500 619 3 500 
TC2 36 2 702 36 3 500 702 3 500 
TC3 96 3 366 0 3 500 242 4 000 
TC4 96 3 086 0 3 500 310 3 500 
TC5 112 1 914 32 7 304 242 8 295 
TC6 112 2 144 32 8 152 344 9 360 

 

3 Design of the Artificial Neural 
Networks  
The selection of models is handle according to the 
possibility of variation of parameters of the ANN, 
such as: The number of hidden layers, the number of 
neurons in each layer, type of activation functions and 
learning algorithm. The ANN architecture is denoted 
by brackets ([]), starting with the number of neurons 
in the input layer and ending with the output layer and 
sequentially for the hidden layers. To reduce the space 
of possibilities, initially, there were done pilot tests for 
reducing the number of parameters to vary.  
It was proved a wide range of training algorithms, but 
the Levenberg-Marquardt and the Broyden-Fletcher-
Goldfarb-Shann were significantly more efficient than 
others. For the choice of models, only two were 
considered, and also it was added the default one used 
by MatLab (backpropagation by the gradient descent, 
momentum and adaptive learning rate). In terms of the 
number of hidden layers, it has been demonstrated in 
[16] that a single layer network  is usually enough for 
approximating almost any type of nonlinear function, 
but it has also been experimented with some 
architectures of two hidden layers for searching better 
results. It was chosen linear activation function for 
neurons of the output layer, since the outputs are not 
bounded and may take positive and negative values. 
For the hidden layers it was used the hyperbolic 
tangent function. Once it is defined the combination 
of parameters that provide the better performance, in 
each case it is evaluated if that answer is satisfactory 
compared with the desired one; for this a graphic 
proof is made with the predicted and desired values 
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building a simple linear regression model for 
comparing the outputs of the ANN and those provided 
by smoothing techniques. 
After showing that ANN can learn the relationship 
between the initial tensions in the PTG and the 
smoothed ones it is made the final test, which is 
comparing directly the ANN with a problematic case 
for the classical smoothing techniques and evaluate 
how good the results with the novel technique are. 
This will use the models obtained and evaluated in the 
test cases 7 and 8. 
 
3.1 Using the ANN model  
One of the ANN advantages is that once trained does 
not need more smoothed stress fields values, so it is 
overcame the execution time problem and computing 
cost associated with solutions that have been obtained 
using the SPR and REP improved techniques. The 
process for obtaining them and their evaluation when 
is better the use of ANN instead of the classic 
techniques, is shown in Figure 4.  

 

Figure 4- Obtaining Improved Stress with ANN 

The training error (E. Train) and testing error (E. test) 
while lower, the better, while the correlation 
coefficient while the nearest to one is best fitted by the 
adjustment. Both measures are used together for 
selection. Time for building the models (t_seg) and 
the number of cycles (cycles), are important 
parameters to observe, and therefore are also 
evaluated, see table 2. 

 
Table 2. ANN model parameters Selection for the 

other type of nodes  

Type Node   cycles  t(seg)  E. Train.  E. test.  Correl. 

1 49 2 0,0001 0,000100 0,9995 

2 55 100 0,00013  0,000360 0,9959 

3 107 51 0,000000  0,000002  0,9999 

4 20 184 0,00005 0,000100  0,9991 

6 101 336 0,000001  0,000002  0,9996 

8 125 772 0,00000  0,000003  0,9999 

 
 
4.1 Best Architecture for Testing cases   
A summary for ANN model parameters election is 
presented in Table 3, where can be seen different 
configurations and their performance measures. Not 
only for the first Testing Case, but for the other and in 
each type of nodes, the "trainlm" learning algorithm 
showed a significantly better performance than the 
"traingdx" and "trainbfg” methods. The above process 
is conducted in similar way for the rest of the cases 
for defining the best architecture. In Table 3 it is 
presented a summary of them.  
 
 
Table 3. Best Architecture for all cases and considered 

parameters  
Test 
\Node 1 2 3 4 6 8 

TC2 
 [6-3-6] 

[12-10-10-
6] 

[18-7-
6] 

[24-
20-6] 

[36-
15-6] 

[48-20-
6] 

TC3 
 [6-6-6] [12-25-6] - 

[24-6-
6-6] 

[36-
9-6] 

[48-12-
6] 

TC4 
 [6-8-3-6] [12-30-6] - 

[24-9-
6] 

[36-
30-6] 

[48-10-
6] 

TC5 
 [6-3-8-6] [12-12-3-6] 

[18-
12-6] 

[24-
10-
10-6] 

[36-
6-6] 

[48-8-3-
6] 

TC6 
 [6-20-6] 

[12-10-10-
6] 

[18-3-
12-6] 

[24-8-
6] 

[36-
15-6] [48-5-6] 

 
 
4.2 Performance Measures and  Graphics 

Tests 
According to the characteristics considered in Table 4 
it is presented for each case the measures of 
performance and graphic evidence for the best 
configurations of ANN obtained. The idea is to 
compare the values obtained with the ANN, compared 
to the FEM and the smoothing methods described 
above. The data are divided into three groups: 
training, validation 1 and validation 2. 
The validation group 1, is used for evaluating the 
ANN once trained, but also during the iterations of the 
training it is calculated the validation error of this 
group, stopping the process if the error over several 
cycles is increased, ie attempts to stop the algorithm at 
the appropriate number of cycles, avoiding 
overtraining. The validation group 2 is used when 
there are insufficient data to further validate the 
model. The idea is that instead of training the ANN 
with too much data, it is preferable having more 
information concerning the quality of the prediction 
for the data unknownby the ANN, which is 
accomplished by creating a second set of validation. 
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Table 4. Considered Characteristics  

Description 
(A) NPE Number of patterns used for training  
(B) NPV1 Number of patterns used for validation and 

that the network used for avoiding over-
training 

(C) t1(seg) Time spent by the network for the 
prediction of the first validation group. 

(D) CC-
RNA1 

Correlation coefficient between the outputs 
produced by the model and the desired 
ones, for the first validation group.  

(E) CC-
MEF1 

Correlation coefficient between the outputs 
initially obtained by the FEM and the 
desired ones, for the first group validation.  

(F) ECM-
RNA1 

Mean square error for the outputs produced 
by the model and the desired ones, for the 
first group validation  

(G) ECM-
MEF1 

Mean square error between the outputs 
initially obtained by the FEM and the 
desired ones, for the first group validation.  

 
 
Testing Case 1 (TC1) 
Table 5 shows the performance of the ANN for the 
types of nodes present. For type TWO, FOUR and 
EIGHT are insufficient data for constructing two 
validation sets. Both results are similar. In all cases 
leads to a significant improvement on the initial FEM 
solution and results are very similar to the technique 
SPR-improved. The time for predicting the largest 
number of nodes, in this case 1500, is 2 seconds. 
 
Table 5. Performance Summary for the ANN in TC1  

Group 1 
Measure 
\Node ONE TWO THREE FOUR SIX EIGHT 

NPE 29 830 29 1 700 526 1 700 

NPV 7 183 7 300 93 300 

t(seg) 1 1 1 1 1 1 
CC-
RNA 0.997 0.995 0.9999 0.9989 0.9996 0.9997 
CC-
MEF 0.970 0.948 0.9972 0.9738 0.9929 0.9967 
ECM-
RNA 0.0008 0.0004 0.000002 0.00009 0.000003 0.00001 
ECM-
MEF 0.0188 0.0060 0.000127 0.00335 0.000047 0.00011 

Group 2 

NPV - 664 - 1 500 - 1 500 

t(seg)   1   2   2 
CC-
RNA - 0.996 - 0.9993 - 0.9997 
CC-
MEF - 0.980 - 0.9821 - 0.9982 
ECM-
RNA - 0.0001 - 0.00005 - 0.00001 
ECM-
MEF - 0.0010 - 0.00212 - 0.00007 

 

The less progress with respect to the initial solution is 
for the group TWO. However, the improvement is 
considerable, as is corroborated in Figure 5, which 
shows predictions and progress as regards the initial 
solution. The settings of the regression model between 
predicted and desired values form a straight line with 
a slope which passes through the origin. The greatest 
progress was seen in group THREE (Figure 6), which 
has an adjustment of 0.99. 
 
 
   

St
re

ss
 f

ie
ld

Stress f ield in Y

Nodes

S. Field FEM
S. Field ANN
S. Field Smoothed
S. Field Theoric 

 
Figure 5- Variable Y of case TWO.  
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Testing Case 2 (TC2) 
Table 6 shows the performance of each type of nodes 
in this test case. For type TWO, FOUR, SIX and 
EIGHT are insufficient data for constructing two 
validation sets, the results remain similar for both. 
 
 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS

Leonardo Ivirma, Mary Vergara, Sebastian Provenzano, 
Francklin Rivas, Anna Perez, Francisco Fuenmayor

ISSN: 1790-0832 876 Issue 5, Volume 6, May 2009



 
 
Table 6. Performance Summary for the ANN in TC2  

Group 1 
Measure 
\Node ONE TWO THREE FOUR SIX EIGHT 

NPE 29 1 814 29 1 700 307 1 700 

NPV 7 186 7 300 77 300 

t_1 (seg) 1 1 1 1 1 1 
CC-
RNA 0.92 0.993 0.9986 0.9993 0.9991 0.9997 
CC-
MEF 0.82 0.930 0.9257 0.9760 0.9927 0.9978 
ECM-
RNA 0.018 0.0006 0.0003 0.0001 0.000008 0.000006 
ECM-
MEF 0.040 0.0072 0.0239 0.0025 0.000087 0.000065 

Group 2 

NPV - 702 - 1 500 318 1 500 

t_2 (seg) - 1 - 3 1 3 
CC-
RNA - 0.995 - 0.9993 0.9997 0.9999 
CC-
MEF - 0.973 - 0.9817 0.9982 0.9921 
ECM-
RNA - 0.0002 - 0.0001 0.000001 0.000004 
ECM-
MEF - 0.0012 - 0.0021 0.000010 0.000032 

 
 
As in the TC1 for all types of node is achieved 
significant improvement over the solutions of FEM 
and the results are very similar to the REP-improved 
smoothing technique. Times required are excellent, 
and for predicting the largest number of nodes (1500) 
it takes just 3 seconds. The result where improvement 
is less is for the group ONE, but as it can be seen in 
the testing graph shown in Figure 7, is significantly 
better than the FEM solution. The greatest progress 
was seen in group SIX, which is also evidenced in the 
test graph of Figure 8 
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Figure 7. Variable YZ of case ONE.  
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Figure 8. Variable X of case SIX 

 
Testing Case 3 (TC3) 
Table 7 shows the behavior of this testing case. For 
nodes of type TWO, FOUR and EIGHT it can be 
constructed two validation sets, due to insufficient 
data. As expected, the results in both groups were 
similar. Again, for all node types are considerably 
improve the solutions obtained by FEM and the 
results are very similar to the technique SPR-
improved. Times are very good, because the most 
time used for a group of data is 1700 nodes is 3 
seconds. The result that seems a solution which least 
approximates the smoothing technique is presented for 
the nodes in TWO, but as is shown in Figure 9, is 
better than the FEM solution. In Figure 10 for SIX 
types of nodes can be noted the high accuracy 
achieved. 
 
Table 7. Performance Summary for the ANN in TC3  

Group 1 
Measure 
\Node ONE TWO FOUR SIX EIGHT 

NPE 77 1.700 1.700 206 1.700 

NPV 19 300 300 36 300 

t_1 (seg) 1 1 1 1 1 
CC-
RNA 0,9992 0,9976 0,9956 0,99997 0,9994 
CC-
MEF 0,9658 0,9853 0,9494 0,99945 0,9959 
ECM-
RNA 683,4 13.994,1 17.741,2 70,6 2.450,7 
ECM-
MEF 29.561,4 234.293,0 321.704,3 1.283,6 17.058,3 

Group 2 

NPV - 1.366 1.500 - 2.000 

t_2 (seg) - 3 3 - 3 
CC-
RNA - 0,9936 0,9889 - 0,9987 
CC-
MEF - 0,9786 0,9383 - 0,9921 
ECM-
RNA - 44.138,1 34.510,1 - 40.855,8 
ECM-
MEF - 384.362,4 229.860,1 - 28.131,8 
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Figure 9- Variable X of case TWO 
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Testing Case 4 (TC4) 
In table 8 it is shown the performance of the different 

nodes in TC4. Nodes for TWO, FOUR and EIGHT are 

used the two groups for validating, where both groups 

had similar results. Again, all the node types 

significantly improved the finite element method 

solutions, which are also very similar to the REP-

improved technique. Regarding the time needed to 

obtain the solution, the maximum value used is 3 

seconds for 1500 nodes. According to data tabulated 

for the nodes type EIGHT, is not improved much the 

initial solution, but as shown in Figure 11 the progress 

is remarkable, with good regression fit. Nodes for the 

prediction of type ONE has the highest degree of 

precision, and this is evidenced in Figure 12. 

Table 8. Performance Summary for the ANN in TC4  

Group 1 
Measure 
\Node ONE TWO FOUR SIX EIGHT 

NPE 77 1.600 1.700 264 1.700 

NPV 19 400 300 46 300 

t_1 (seg) 1 1 1 1 1 
CC-
RNA 0,99999 0,9925 0,9956 0,9999 0,9987 
CC-
MEF 0,99841 0,9517 0,9543 0,9990 0,9974 
ECM-
RNA 5,8 27.082,1 17.879,5 204,7 3.723,1 
ECM-
MEF 1.741,1 427.276,0 208.901,3 2.785,2 7.278,0 

Group 2 

NPV - 1.086 1.500 - 1.500 

t_2 (seg)   2 3   3 
CC-
RNA - 0,9479 0,9821 - 0,9963 
CC-
MEF - 0,9332 0,9495 - 0,9952 
ECM-
RNA - 249.979,5 58.329,7 - 14.052,2 
ECM-
MEF - 953.536,3 197.479,6 - 12.830,7 
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Figure 11. Variable Y of case EIGHT  
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Figure 12. Variable Z of case ONE 
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Testing Case 5 (TC5) 
In this testing case, it is combined the sphere and 

cracking data, the results are shown in Table 9, 

showing that for nodes TWO, FOUR and EIGHT 

there are used the two validation groups because of 

the amount of available data. The ANN model is an 

improvement over the FEM solution, although this 

varies according to the type of node, like the precision 

degree regarding the SPR-improved technique. These 

differences can be noted when comparing figures 13 

and 14, the first is the type of nodes with less 

precision (TWO) and the second is largest (THREE). 

Furthermore, the prediction of more than 6000 nodes 

is done in 8 seconds. 

 

Table 9. Performance Summary for the ANN in TC5  

 Grupo 1 
Measure 
\Node ONE TWO THREE FOUR SIX EIGHT 

NPE 90 1.350 27 1.800 206 1.700 

NPV 22 150 5 200 36 300 

t_1 (seg) 1 1 1 1 1 1 
CC-
RNA 0,99983 0,9969 0,9999 0,9964 0,999998 0,9992 
CC-
MEF 0,99467 0,9819 0,9307 0,9565 0,999990 0,9938 
ECM-
RNA 174,4 2.355,8 0,00001 3.124,6 0,1 951,2 
ECM-
MEF 5.885,4 15.645,0 0,01402 39.024,2 0,9 6.934,6 

Grupo 2 

NPV - 414 - 5.304 - 6.295 

t_2 (seg)             
CC-
RNA - 0,9932 - 0,9910 - 0,9987 
CC-
MEF - 0,9715 - 0,9525 - 0,9929 
ECM-
RNA - 11.013,3 - 7.198,0 - 966,4 
ECM-
MEF - 78.521,4 - 37.766,9 - 2.805,8 
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Figure 13. Variable X of case TWO 
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Figure 14. Variable XZ of case THREE  

 
Testing Case 6 (TC6) 
In this testing case, again it is combined data from 

sphere and cracks for the REP-improved technique, 

the results can be seen in the table 10, where there are 

two validation groups for nodes of type TWO, FOUR 

and EIGHT. The results are very similar to the 

previous case, having less accurately fitness for nodes 

TWO and FOUR, and more for the rest. However, as 

noted in Figures 15 and 16, despite having differences 

in the quality of the prediction, in both cases the 

results are successful. The execution time is still 

interesting because 7 seconds is used to predict more 

than 7000 nodes. 

 

Analysis of the first 6 testing cases  

The results achieved in the first six testing cases have 

been satisfactory, because the ANN have managed to 

calculate very well the pressure fields for nodes not 

included in the training phase. Values with higher 

accuracy are obtained than the finite element solution 

and, in most cases, almost as good as the smoothing 

technique of each case. Furthermore, the time used for 

these calculations have been very small, which is 

consistent with the primary goal of finding new 

solutions. In cases with only spheres (TC1 and TC2), 

measures of performance are very similar for the two 

techniques used for smoothing. Something similar 

happens for the models using only cracks (TC3 and 

TC4). When mixing nodes from cracks and spheres, 
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there are certain types of nodes in which the 

predictions are not so good but still better than those 

of FEM, although in some cases as close to the 

accuracy of the smoothing technique corresponding to 

the case. 

 

 

Table 10. Performance Summary for the ANN in TC6  

Group 1 
Measure 
\Node ONE TWO THREE FOUR SIX EIGHT 

NPE 90 1.440 27 1.800 292 1.700 

NPV 22 160 5 200 52 300 

t_1 (seg) 1 1 1 1 1 1 
CC-
RNA 0,99996 0,993 0,9999 0,986 0,999998 0,9989 
CC-
MEF 0,98557 0,958 0,9906 0,961 0,997385 0,9961 
ECM-
RNA 39,9 8.081,2 0,00003 14.043,5 1,3 845,2 
ECM-
MEF 13.424,9 81.872,0 0,00489 43.485,3 2.450,9 3.116,2 

Group 2 

NPV - 544 - 6.152 - 7.360 

t_2 (seg) - 1 - 5 - 6 
CC-
RNA - 0,980 - 0,991 - 0,9983 
CC-
MEF - 0,939 - 0,963 - 0,9947 
ECM-
RNA - 80.048,2 - 5.911,8 - 3.104,0 
ECM-
MEF - 131.311,5 - 29.345,3 - 2.209,5 
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Figure 15- Variable X of case TWO  
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Figure 16- Variable X of case ONE 

 
 

Testing Case 7 (TC7) 
The idea of this case is testing the best models for 

ANN from the crack test cases 3 and 5, comparing 

these results with the smoothing techniques that have 

problems for calculating the stresses improved due to 

the number of nodes.  

Table 12 shows the performance measures necessary 

for the evaluation task: the total number of patterns 

for each characterization (NTP), the time spent by 

SPR-R technique for performing the smoothing of all 

nodes (tsuav (sec)), the time for preparing the data 

from the FEM to be used by the ANN (t1 (sec)), the 

time used by all ANN for making the predictions (t2 

(sec)), the correlation coefficient between the desired 

output and the FEM (CC - MEF), the correlation 

coefficient between the desired output and the 

prediction of the model obtained for spheres of TC5 

(RNA1-CC), the correlation coefficient between the 

desired output and the resulting model for prediction 

of crack TC3 (CC - RNA2), the ECM between the 

desired output and the MEF (ECM - MEF), the Square 

Mean Errors (ECM) between the desired output and 

the prediction model obtained from TC5 (RNA1-

ECM), the ECM between the desired output and 

prediction model obtained from TC3 (ECM - RNA2). 

Table 11, shows that the results using the ANN model 

for TC5 do not much improve the initial finite 

element, this model includes cracks and spheres with 

the same smoothing technique. However, using 
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models that include only cracks significantly 

improved the FEM solution. This indicates that for 

new problems with cracks, it is preferable to use the 

network models trained only with cracks, instead of 

matching geometries. Rather, it seems that if it is 

proved otherwise with different geometry (like a 

cylinder, for example), the results will be better for 

the models with combined geometries, because they 

are more general. 

Being accurate the results, it is important that it has 

been reduced the time needed for obtaining the 

improved solution for the tensions. The SPR-R 

technique needed 420 seconds for accomplishing this 

task and the artificial intelligence technique did it in 

281 seconds, ie less than 70% of it. And from those 

281 seconds, the network model uses only 19 seconds 

for making the predictions and the remaining time was 

used for preparing the initial data. In the test chart of 

Figure 17 it is shown the results regarding the 

improved initial solution and are almost as good as the 

smoothing technique, but using much less time. 
 

Table 11. Performance Summary for the ANN in TC7  

Measure 
\Node ONE TWO FOUR SIX EIGHT Total 

NTP 8 891 4.892 115 6.670 12.576 

t_suav(seg) - - - - - 420 

t_1 (seg) - - - - - 262 

t_2 (seg) 1 1 5 1 11 19 

CC-MEF 0,99944 0,9809 0,9466 0,99641 0,99310 - 

CC-
RNA_1 0,99908 0,9839 0,9480 0,99999 0,99740 - 

CC-
RNA_2 0,99999 0,9990 0,9919 0,99999 0,99919 - 

ECM-
MEF 1.167,9 724.360,9 617.428,1 17.747,0 45.283,1 - 

ECM-
RNA1 1.518,2 702.763,7 550.875,3 29,3 16.901,7 - 

ECM-
RNA2 49,8 14.378,9 73.576,7 34,2 5.271,9 - 

 

 

Nodes

Stress field in X

St
re

ss
 f

ie
ld

 
 

Figure 17- Variable X of case SIX.  
 

Testing Case 8 (TC8) 
This test is similar to the previous one, but with a very 

refined mesh (33.337 nodes). It should be noted that 

mesh with similar size to this, have produced errors in 

execution time when applying conventional 

smoothing techniques and in those cases it is leaved 

the initial finite element solution as final. 

Table 12 has the performance measures described 

above, emphasizing that the improvements are not so 

great when using models that combine spheres and 

cracks. However, when using models built with only 

spheres, the results are better, it is concluded that for 

the prediction of new spheres is better building a 

model from a number of spheres cases. 

For the model from TC1, the results are quite accurate 

and the employed time difference between the SPR-

improved technique and the ANN are very large. The 

smoothing technique required 45.060 seconds (almost 

13 hours) and the artificial intelligence technique 

3.134 seconds (about 52 minutes), ie only 7% of it. 

Also, the ANN used only 121 seconds to make 

predictions (about 3000 seconds for the preparation of 

the data). 

It may be noted that when it is increased the number 

of nodes, the difference between the required time of 

the techniques are much greater. The test chart of 

Figure 18 shows the progress on the initial solution 

and the closeness to the SPR-improved technique, 
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which requires much more time to achieve a similar 

accuracy. 

 
Table 12. Performance Summary for the ANN in TC8  

Measure 
\Node ONE TWO THREE FOUR SIX EIGHT 

NTP 4 751 4 7 237 393 22 167 

t_suav - - - - - - 

t_1 (seg) - - - - - - 

t_2 (seg) 1 1 1 12 1 105 

CC-
MEF 0.99876 0.9965 0.9979 0.9973 0.9995 0.99993 

CC-
RNA_1 0.99865 0.9950 0.9974 0.9991 0.9996 0.99934 

CC-
RNA_2 0.99999 0.9988 0.9993 0.9998 0.9997 0.99996 

ECM-
MEF 0.000829 0.00026 0.00040 0.00030 0.000003 0.000004 

ECM-
RNA1 0.000112 0.00014 0.00044 0.00004 0.000002 0.000012 

ECM-
RNA2 0.000001 0.00004 0.00014 0.00002 0.000001 0.000001 
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Figure 18- Variable X of case TWO  
 
--------------- 

5 Conclusions   
Artificial Neural Networks have shown an excellent 
ability for performing the calculation of the smoothed 
stress fields, so give evidence of the great potential of 
intelligent algorithms to carry out this process.  
ANN has been able to emulate very accurately both 
SPR-improved and REP-improved, so the prediction 
is considered to be independent of the type of 
smoothing technique used for training the neural 
networks and ANN prediction models are better that 
solutions found using FEM, and as accurate as the 

obtained using smoothed techniques SPR-improved 
and REP-improved, but having a significantly lower 
resolution time.  
The model that combines spheres and cracks has 
provided good solutions. However, for predicting a 
sphere, the best model is built using only data 
concerning spheres and for crack, the model built 
using database of different cracks, rather than the 
model developed with combined data.  
In the complicated cases for the smoothing techniques 
used, ANN greatly reduce the required time for 
founding the solutions. The greater number of nodes, 
the larger the difference in the time taken by each of 
the techniques, being better the artificial intelligence 
technique. In the case of the crack, the ANN employ 
less than 70% of time required by the SPR-improved 
technique employed and for the sphere was only 7%.  
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