
Management and Object Behavior of Statecharts through
Statechart DNA

BENJAMIN DE LEEUW
Ghent University

Department of Pure Mathematics
and Computer Algebra
Gent B-9000, Belgium

benjamin.deleeuw@ugent.be

ALBERT HOOGEWIJS
Ghent University

Department of Pure Mathematics
and Computer Algebra
Gent B-9000, Belgium

albert.hoogewijs@ugent.be

Abstract: We propose composed strings called ”statechart DNA” as essential building blocks for a new statechart
(sc) abstraction method. We define the simplified statechart (ssc) and show that our definition covers the UML 2.0
sc model, by matching it to all model elements of the StateMachine package of the UML 2.0 metamodel and to the
OCL constraints on these model elements. A Model Driven Architecture (MDA) is defined, inspired by a PIM-to-
PIM model transformation procedure between UML sc models and ssc models. We discuss the rationale behind
action abstraction in ssc models. This framework is used to isolate sc DNA, first in ssc models, then in UML sc
models. We show how sc DNA, a compaction of sc construction primitives, can be used to define behavior model
metrics and more generally, to manage and maintain evolving object behavior. State machine versioning is an
important application of statechart DNA to manage industrial model repositories.

Key–Words: Statecharts, UML, Model checking, State machine versioning

1 Introduction

The Unified Modeling Language (UML) is a visual
language to specify all sorts of systems, on an abstract
level [2]. UML offers several diagrams to model dif-
ferent aspects of a (software) system. Each kind of
diagram shows its own viewpoint on this system. This
paper studies one particular viewpoint on object ori-
ented systems, namely the statechart (sc), which rep-
resents object behavior, similar to automata. In [14]
Hunyadi et al. argue ”although UML facilitates soft-
ware modeling, its object-oriented approach is ar-
guably less than ideal for developing and validating
conceptual data models with domain experts”. To
overcome this problem, we will study the benefits of
abstracting the UML action language for statecharts
into a very basic one, consisting only of event throw-
ing actions, and memory reads and writes. We define
a homomorphic mapping (similar to Levendovszky et
al. in [16]) which transforms standard UML state-
charts to so-called simplified statecharts, statecharts
with abstracted actions (Sec. 3). We show how this
abstraction allows us to propose a mathematical defi-
nition of statecharts, similar to automata (Sec. 2) and
introduce a grammar and language, called statechart
DNA. Relying on graph rewriting principles as intro-
duced in [16] we get a statechart construction process
(Sec. 4) and define a formal as well as practical way

to scalably manage complexity (Subsec. 5.1) and ob-
ject behavior (Subsec. 5.3). The main motivation for
this research was the generation of a repository of test-
cases for verification tools (Subsec. 5.2). And last but
not least we propose a versioning manegement tool
for State Machine models (Sec. 6).

2 Statechart Definition

The UML sc is an evolution of the Harel sc [12], and
has been incorporated in the UML standard since ver-
sion 1.1. A precise description can be found in the
UML 2.0 specification documentation [22]. It is a
rich, hybrid model incorporating some influences that
cater for different modeling preferences. A basic sc is
a state machine model extended with constructs for hi-
erarchical encapsulation and concurrent computation.
The execution semantics are based on the queuing of
events [22] and on the properties of some kind of ac-
tion language. Fig. 1 displays part of the UML 2.0
metamodel, which defines the UML sc. Some model
elements of UML statecharts, shown in Fig. 1 are re-
dundant, others are convenient extensions to the basic
state machine model. For a deeper explanation of the
different diagram elements, we refer to the UML 2.0
superstructure document [22].

We only keep the most essential constructs from
the UML metamodel in our definition of simplified

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Benjamin De Leeuw, Albert Hoogewijs

ISSN: 1790-0832 859 Issue 5, Volume 6, May 2009

Figure 1: Partial UML 2.0 Metamodel Defining Statecharts

statecharts (ssc). In Sec. 3 we will show how UML
statecharts can be converted to simplified statecharts
through action abstraction. We use mathematical lan-
guage to describe this restricted model for statecharts.
We therefore assume the reader has some familiarity
with automata theory (see for example [18]), as our
definitions will make use of notions common in this
theory.

Definition 1 (Simplified Sc) A simplified statechart
(ssc) M is a tuple

M = 〈Σ, L, δ, δ′, s0, S, T 〉,

where Σ is a set of atomic objects, called states. L is
a finite alphabet consisting of two sets of symbols eL
(events) and mL (memory locations) with

L = eL ∪mL
eL ∩mL = {ε}.

Here ε is the empty character. The functions δ and δ′
define transitions between states.

δ : Σ × Λ → Σ (intra-region transitions)
δ′ : Σ × Λ → 2Σ (inter-region transitions),

where
Λ = eL×mL× L

is the set of all labels.The first component of a label
is called the trigger of the label, the second one is the
guard and the third one is the effect. The state s0 is
the root state. It belongs to the set S, consisting of
all initial pseudostates of Σ. The set T consists of all
terminate pseudostates of Σ.

Matching the definition of the ssc model to the UML
sc model of Fig. 1 is a trivial exercise, since we used
the same names for the components in Def. 1 as in
Fig. 1. An explicit construct for regions is lacking in
Def. 1. We compose regions as collections or contain-
ers of states. We build these collections from paths of
states in the ssc model. We also define the region hi-
erarchy of ssc M as an ordering relation on S, based
on paths.

Definition 2 A simple path of an ssc model M , is a
list [σ0, σ1, σ2, . . . , σn] of states of Σ, such that there
exists a list of labels [l1, l2, . . . , ln] of Λ for which

σ0 ∈ S
δ(σ0, l1) = σ1

δ(σ1, l2) = σ2

. . .
δ(σn−1, ln) = σn

A composite path of an ssc model M , is a list
[σ0, σ1, σ2, . . . , σn] of states of Σ, such that there ex-
ists a list of labels [l1, l2, . . . , ln] of Λ for which

σ0 ∈ S
δ(σ0, l1) = σ1 ∨ σ1 ∈ δ′(σ0, l1)
δ(σ1, l2) = σ2 ∨ σ2 ∈ δ′(σ1, l2)
. . .
δ(σn−1, ln) = σn ∨ σn ∈ δ′(σn−1, ln)

Definition 3 (Region) A region of ssc M from si, no-
tation ρ(M,si) or ρ(si) for short, is a set consisting
of the union of all simple paths in M headed by some
initial pseudostate si of S.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Benjamin De Leeuw, Albert Hoogewijs

ISSN: 1790-0832 860 Issue 5, Volume 6, May 2009

Definition 4 The ordering relation <h, called the re-
gion hierarchy, is such that si <h sj iff sj is on a
composite path starting from si (with si 	= sj).

Figure 2 shows a “dummy” ssc diagram. It is a
simplified version of the UML sc diagram. We refer to
[22] where the semantics of the UML sc diagram are
explained. Figure 2 translates to following ssc model:

Σ = {s1, s2, s3, s4, s5, 1, 2, 3, 4, 5, 6, c12 ,
t1, t2, t3, t4, t5}

L = {ε, e, f, g, h, a, b}
with eL = {e, f, a} and mL = {g, h, b}

S = {s1, s2, s3, s4, s5} and T = {t1, t2, t3, t4, t5}
with root state s1

δ(s1, (ε, ε, a)) = 1 δ′(1, (e, g, a)) = {s2, s3, s5, s6}
δ(1, (e, g, a)) = c12 δ′(4, (e, g, a)) = {2, 3}
δ(c12, (f, h, b)) = c12 δ

′(t1, (e, g, a)) = {4}
δ(c12, (e, g, a)) = 4 δ′(t2, (e, g, a)) = {4}
δ(4, (e, g, ε)) = t3 δ′(t4, (e, g, a)) = {4}
δ(s2, (ε, ε, b)) = 2 δ′(t5, (e, g, a)) = {4}
δ(2, (f, h, ε)) = t1
δ(s3, (ε, ε, b)) = 3 ρ(s1) = {s1, 1, c12, 4, t3}
δ(3, (f, h, ε)) = t2 ρ(s2) = {s2, 2, t1}
δ(s4, (ε, ε, b)) = 5 ρ(s3) = {s3, 3, t2}
δ(5, (f, h, ε)) = t4 ρ(s4) = {s4, 5, t4}
δ(s5, (ε, ε, b)) = 6 ρ(s5) = {s5, 6, t5}
δ(6, (f, h, ε)) = t5 s1 <h (s2, s3, s4, s5)

M = 〈Σ, L, δ, δ′ , s1, S, T 〉

Figure 2: Example Ssc Diagram

Accompanying these definitions, there are some
properties which further refine the ssc model. These

properties are enforced on the UML sc metamodel
through constraints, formulated in the Object Con-
straint Language (OCL). A detailed discussion of the
OCL can be found in [28], but is beyond the scope of
this paper.

Property 5 Each region ρ(si) in M is disjoint from
the other regions in M :

ρ(si) ∩ ⋃
sj∈S\{si} ρ(sj) = φ

Regions form a partition of Σ.

Property 6 Each region ρ(si) contains exactly one
initial pseudostate si and one terminate pseudostate
ti:

S ∩ ρ(si) = {si}
T ∩ ρ(si) = {ti}

Property 7 Any initial pseudostate si of S has no
incoming intra-region transitions, and any terminate
pseudostate ti of T has no outgoing intra-region tran-
sitions:

∀σ ∈ Σ : δ(σ, l) 	= si

∀σ ∈ Σ : δ(ti, l) 	= σ

Property 8 A state cannot be an initial pseudostate
and a terminate pseudostate at the same time:

T ∩ S = φ

Property 9 There is exactly one transition from the
initial pseudostate si of every region to some state σ ∈
Σ, belonging to that region. Such a transition only
carries an effect.

∃σ ∈ Σ : ∃a ∈ L : δ(si, (ε, ε, a)) = σ) ∧
(∀σ′ ∈ Σ : δ(si, (e, g, b)) = σ′ ⇒
σ = σ′ ∧ e = ε ∧ g = ε ∧ b = a)

Property 10 There is at least one transition from
some state σ of every region to its final pseudostate
ti. These transitions only carry a trigger and a guard.

∃σ ∈ Σ : ∃e, g ∈ L : δ(σ, (e, g, ε)) = ti) ∧
(∀σ′ ∈ Σ : δ(σ′, (f, h, a)) = ti ⇒ a = ε) ∧

(∀σ′ ∈ Σ : ti ∈ δ′(σ′, (f, h, a)) ⇒ a = ε)

Property 11 The application δ′(ti, l) always returns
either the empty set or a singleton set for every ti ∈ T .

Property 12 The transition functions δ and δ′ are
aligned to eachother:

∀σ ∈ Σ : δ′(σ, l) ⊆ S ⇒ ∃σ′ : δ(σ, l) = σ′

∀ti ∈ T : σ ∈ δ′(ti, l) ⇒ ∃σ′ : δ(σ′, l) = σ

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Benjamin De Leeuw, Albert Hoogewijs

ISSN: 1790-0832 861 Issue 5, Volume 6, May 2009

Property 13 The ordering relation <h of an ssc
M is a tree-order (connected, anti-reflexive, anti-
symmetric, transitive and at most one predecessor or
parent for each element). The root of this tree is the
root state s0 and the children of si are those initial
pseudostates sj for which si <h sj .

Property 14 If for σi ∈ ρ(si) and σj ∈ ρ(sj) holds
that

¬(si <h sj) ∧ ¬(sj <h si)

then there can be no inter-region transitions from σi
to σj .

The different pseudostate kinds are known to be
shorthands for UML sc models built of more basic
model elements of the UML metamodel [22]. With
(global) memory access available (the set mL con-
sists of memory locations, see Sec. 3), all pseudostate
kinds can be simulated by the basic model elements
of Fig. 1, or delegated to the action language. Since
pseudostates can be converted this way, we conclude
the section with following theorem, the proof of which
matches all model elements of UML sc models with
mathematical constructs in the definition of ssc mod-
els.

The information represented by a model has a
tendency to be incomplete, informal, imprecise, and
sometimes even inconsistent. For example a UML di-
agram, such as a class diagram, is typically not refined
enough to provide all the relevant aspects of a specifi-
cation [20]. The same applies to state machine behav-
ior. There is a need to describe additional constraints
about the objects in the model. The Object Constraint
Language (OCL) [22] is a formal language that re-
mains easy to read and write. It is a subset of stan-
dard UML that allows software developers to write
constraints and queries over object models. We use
techniques presented in [20] to prove the following
theorem.

Theorem 15 (Ssc Expressivity 1) Every UML sc
model element of the UML metamodel, defining
statecharts, is covered by the ssc model definition, as
is every OCL constraint on the UML metamodel by
properties of the ssc model.

The platform independent model (PIM) to PIM trans-
formation (see [21]), from UML sc models to ssc
models is therefore well defined. We refer to the UML
documentation [22] for a full description of the differ-
ent OCL constraints on the UML metamodel. They
are easily matched with the properties of ssc models.
The advantages of our approach to sc models can be
formulated as follows:

1. we refrain from object-oriented concepts because
they are not ideally suited in a mathematical con-
text,

2. each transition label has a fixed size, bringing
regular automata and sc models closer together
and allowing well-defined mathematical manip-
ulations of sc models,

3. it allows easy translation to other mathematical
frameworks such as model checking or assisted
theorem provers and

4. it introduces two-tier transition semantics, dis-
tinguishing intra-region and inter-region transi-
tions.

3 Action Abstraction

UML sc models describe effects of transitions in some
kind of action language. The UML specification [22]
defines formal classes of actions. One language sup-
porting these abstract classes of actions is the Java
programming language [11]. The ssc model allows
following sorts of actions:

1. event catches, appearing as the first component
of transition labels, (e, g, a) ∈ Λ, e ∈ eL.

2. event throws, specified as the third component of
transition labels, also referred to as the action of
transition labels, (e, g, a) ∈ Λ, a ∈ eL.

3. memory reads, defined as the second component
of transition labels, (e, g, a) ∈ Λ, g ∈ mL.

4. memory writes, shown as the third component of
transition labels, (e, g, a) ∈ Λ, a ∈ mL.

In Tab. 1, we divide the different programming
constructs of the Java (action) language into seven
classes, more or less resembling the classes of actions
of the UML metamodel. All constructs mentioning
“implicit” under the Translation table header are al-
ready present in the ssc model definition and are there-
fore redundant inclusions in the action language of ssc
models. Memory control constructs belong to another
UML viewpoint (diagram), and are abstracted away in
the sc viewpoint. It remains to show the translation of
the classes of constructs, marked “special” in Tab. 1
to ssc model actions.

Object method invocations are sequences of in-
structions, and can be replaced by a sequence of
actions from some of the other six classes of pro-
gramming constructs (see also [22] for behavioral
state machines, supporting the same principle). They

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Benjamin De Leeuw, Albert Hoogewijs

ISSN: 1790-0832 862 Issue 5, Volume 6, May 2009

Table 1: Programming Constructs and their Translation

Construct Examples Translation

memory control

int i

finalize

volatile

extends

abstract/omd

assignment
a = b

System.println()
special

control flow

if-else

while

for

implicit

concurrency

Thread t

t.start()

t.stop()

implicit

event reaction

throw

try-catch

itemStateChanged()

gen(new Event e)

implicit

object invocation object.method(arg1,arg2) special

sef operation

a+ b

n!

a <= b

special

would therefore be redundant additions to the ssc ac-
tion language. Side-effects-free (sef) operations also
use a sequence of machine instructions to calculate a
value. Since the ssc model definition doesn’t support
sequences of actions on transitions, it remains to show
how these sequences are translated to the ssc model.

In a visual representation of the sc model, transi-
tion labels show the pattern e[g]/a, with (e, g, a) ∈ Λ
[22]. We put all entry and exit actions of states of
the UML sc on all incoming, respectively outgoing
transition labels, of these states. Subsequently apply-
ing the conversion described in the previous paragraph
results in transition labels with action sequences con-
sisting of assignments and sef operations. Figure 3
shows how a sequence /a; b of actions is translated to
ssc model transitions with single action component.
In the general case, one or more new states are added
in a sequential fashion, and the action list, is linearly
decomposed into single actions between a sequence
of states.

Figure 3: Decomposition of Action Lists in an Ssc
Model

Sef operations compute a new value from avail-
able ones. In the ssc model, we denote the read of
the available values, as guards on transitions, and the
store operation of the new value, as memory write ac-
tions, without reference to any actual value. When a
guard [g] appears on a transition labeled e[g]/a, this
transition should be interpreted as “depending on the
value of memory location g, action a will happen”.
Figure 4 shows the translation of a sef operation taken
together with an assignment, e[g]/m = m + l; a. The
most recent memory writes [23, 9], on memory loca-

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Benjamin De Leeuw, Albert Hoogewijs

ISSN: 1790-0832 863 Issue 5, Volume 6, May 2009

tions m and l, are shown with dotted lines in Fig. 4.
The guard [m] on the second transition of the right
hand side of Fig. 4, fixes the value of memory loca-
tion m in the next state. The next transition fixes the
value of l in the same way. Given this fixed value for
m and l, which is depending on the most recent mem-
ory writes for the respective locations, a new value for
m is stored on the last transition with action /m.

Figure 4: Side-Effects-Free Operations in an Ssc
Model

In the UML sc model, guards denote conditions
on variables, needed to be true, in order for certain
transitions to fire. The UML sc model allows these
guards to be compound guards using Boolean opera-
tors. The latter are no different from sef operations,
and are therefore abstracted in a similar fashion. Fig-
ure 5 shows the translation of two well known opera-
tors. The or connective is decomposed on two distinct
transitions, with same source and target. If one of the
guards is true, the next state will be reached, and ac-
tion /a will be executed. The and operator is trans-
lated into a concurrent state with two regions, each of
which checks one of the composite guards. If both
guards are true, the concurrent state will be left, and
action /a executed. Further discussion of the Boolean
operators within guards lies beyond the scope of this
paper.

We propose following theorem, the proof of
which can be composed using the information in this
section.

Theorem 16 (Ssc Expressivity 2) The ssc model
covers the action semantics of the UML sc action
language, except for sef operations and assignment,
which are abstracted to their most basic forms as
memory reads and writes.

Theorem 15 and thm. 16 taken together allow us
to construct a translation morphism ϕ between UML
sc models and ssc models, which preserves all infor-
mation, except for the sef operations of the action lan-
guage. A trivial exercise shows that every UML sc

Figure 5: Decomposition of Boolean Connectives in
an Ssc Model

model can be translated to one unique ssc model, but
that one ssc model, may be the translation of several
UML sc models with different sef operations, but the
same memory accesses. ϕ is therefore an epimor-
phism. This morphism formally defines a PIM-to-
PIM model transformation from UML sc models to
ssc models.

Let us now extend the definition of the ssc model
as follows:

Definition 17 An extended simplified statechart
(exssc) is a tuple

〈Σ, L, δ, δ′, s0, S, T, ι〉

such that 〈Σ, L, δ, δ′, s0, S, T 〉 is an ssc, and ι is a
functor

ι = ι ∪ ι′
ι : Σ × Λ × Σ → λ− calc. expr. × τ
ι′ : Σ × Λ × 2Σ → λ− calc. expr. × τ
τ = {b | b : var(λ− calc. expr.) → 2mL}

With λ-calc. expr. we mean a Turing computable
function specification. Many authors in computer sci-
ence literature cover λ-calculus as a formal approach
to recursive function specifications [1]. In the case
of exssc models, all λ-expressions are of the form
λgf. gfε with g referring to the guard and f denot-
ing a sef operation. The set τ consists of all bindings.
A binding b lays a connection between the variables
in the λ-expression, and the known memory values at
that point in the execution. We use exssc to define the
execution semantics of ssc, but a discussion of exe-
cutions lies beyond the scope of this paper. A trivial
exercise now shows that with this definition of exssc
we are able to make ϕ an isomorphism between UML
sc models and exssc models such that one exssc model
also translates back to one unique UML sc model.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Benjamin De Leeuw, Albert Hoogewijs

ISSN: 1790-0832 864 Issue 5, Volume 6, May 2009

4 Statechart DNA

With the translation morphism ϕ defined in Sec. 3,
the action language for sc models can be reduced to
its most basic form, consisting of memory reads and
writes and throws and catches of events. The sc model
is limited to its most basic constructs. This simplifi-
cation makes it easy to compose and manipulate ssc
models. We will postpone the discussion on manipu-
lation to Sec. 5 and 6. In this section we introduce
a grammar rewrite system, inspired by the theory of
scenario composition [3]. This scheme allows us to
identify the most important complexity determining
factors of sc models. Each factor is formalized in this
grammar as a composition construct. When identified,
these factors can be counted and put onto a complex-
ity scale for sc models (see Subsec. 5.1). The rewrite
system itself will allow us to generate sc test cases,
usable within sc analysis and development tools.

A detailed description of scenarios lies beyond
the scope of this paper. We therefore refer to [3] for
more information. Scenarios can easily be integrated
in the industrial design of software [15], but in order
to gain the ability to specify executable systems with
scenarios, we have need of some typical programming
constructs which go beyond a linear execution of cou-
pled scenarios. Expert authors in the field have iden-
tified how multiple scenarios can be composed into
one executable behavior [29, 27, 19, 13]. In order
to make realistic behaviors, composed from scenar-
ios, we need a construct that executes more than one
scenario sequentially, one that allows conditional or
disjunctive execution, another for parallel or conjunc-
tive execution and a construct that iterates over a sce-
nario a number of times [29, 27]. In this paper, we use
the same combination rules as in the work on scenario
composition, but we apply them on atomic ssc instead
of on scenarios. An atomic ssc(assc) represents the
simplest conceivable ssc.

Definition 18 An atomic ssc (assc) (a|e[g]) is an ssc

〈{ε, e, g, a}, {s, σ, t}, δ, δ′ , s, {s}, {t}〉
with one region, initial pseudostate s, normal state σ
and terminate pseudostate t. Transition function δ′ is
empty and δ is defined as follows:

δ(s, ε, ε, a) = σ
δ(σ, e, g, ε) = t

We show that every ssc model is composed of a fi-
nite number of assc. Only a finite number of different
assc is available to ssc models, by the finite alphabet
L of Def. 1. One single assc can however be repeated
a finite number of times in an ssc model. We compose

Table 2: Rewrite Rules of Ssc Composition (Sc DNA)

(1) Start↪→R

(2) R↪→λ | S

(3) R↪→S ⊕ 〈d R,Rd 〉d
(4) S↪→S + S

(5) S↪→(a|e[g]) for some (e, g, a) ∈ Λ

(6) S↪→S ⊕ 〈d R,Rd 〉d ⊕ S

(7) S↪→S → 〈i Ri 〉i
(8) S↪→S → 〈c Rc 〉c
(9) Rd↪→Rd, Rd

(10) Rd↪→[R](a|e[g]) for some (e, g, a) ∈ Λ

(11) Ri↪→Ri, Ri

(12) Ri↪→[R](a|e[g]) for some (e, g, a) ∈ Λ

(13) Rc↪→Rc, Rc

(14) Rc↪→R

assc in an ssc model, guided by the rewrite system
displayed in Tab. 2. The grammar defines two compo-
sition operators + (4) and ⊕ (3,6), a lifting operator
→ (7,8), and a wrapping operator [. . .](a|e[g]) (10,12).

We call the language defined by the production
system of Tab. 2 statechart DNA, because it consists
of strings describing how ssc models are composed
of assc. We use the symbol λ to denote the empty
assc having no state and no transitions. The different
operators of sc DNA are explained as follows:

1. composition by + glues two ssc operands M1 and
M2 together in one resulting ssc modelM1+M2.
The terminate pseudostate of the root region of
M1 (ρ(s0)) is removed from M1, as is the ini-
tial pseudostate of the root region of M2. Both
“loose” transition labels e[g] ofM1 and /a ofM2

are then composed into one label e[g]/a, con-
necting M1 + M2. The first operand M1 may
therefore only have one edge to the terminate
pseudostate of the root region, otherwise compo-
sition with + is undefined. The rewrite system
of Tab. 2 guarantees that this constraint holds.
Composition by + is associative, if the constraint
also holds for the second operand M2.

2. composition by ⊕ glues one or more ssc, to more
than one ssc and results in composite ssc model
M . The basic operation is analogous to composi-
tion by +, but in case of a lifted operator preced-
ing or following the ⊕ operator, transitions are
redistributed (change source or target states) over

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Benjamin De Leeuw, Albert Hoogewijs

ISSN: 1790-0832 865 Issue 5, Volume 6, May 2009

Figure 6: Corresponding Statecharts

the loop or concurrent sub regions that are lifted
(see lifting below). We define this redistribution
of transitions to be irrelevant to the model’s pur-
pose.

3. states lifted to encapsulated regions and loops
denote where clusters of transitions might be
redistributed to the states of those regions and
loops respectively. Lifting therefore marks the
ssc models Mi of which loops and encapsulated
regions consist.

4. wrapping identifies certain label parts in the case
of disjunctive and iterative composition by + and
⊕.

Disjunctive composition is delimited by 〈d. . .〉d
(Fig.6c,6d,6e), iterative composition by 〈i. . .〉i
(Fig.6f,6g) and conjunctive composition is marked
with 〈c. . .〉c (Fig. 6h). An example production string
of the rewrite system in Table 2

(c|a[b]) + (f |d[e])
⊕ 〈d λ, [(i|g[h])](b|f [h]) , [(l|j[k])](v|t[u]) 〉d
⊕ (o|m[n]) → 〈i [λ](a|e[m]) 〉i
⊕ 〈d λ, [λ](z|x[y]) 〉d
⊕ (p|q[r]) → 〈c (u|s[t]) + (x|v[w]), (a′|y[z])

+ (d′|b′[c′]) + (g′|e′[f ′]) 〉c
+ (j′|h′[i′]) + (m′|k′[l′]) + (p′|n′[o′]),

translates to a class of ssc models. One element of this
class is shown in Fig. 7. It illustrates the translation of
one sc DNA string to one of its possible ssc model
representations. The wrapper operation is displayed
as underlined transition label parts. Figure 7 shows

one conjunctive site, one iteration, and two disjunc-
tive sites, matching their counterparts in the example
production string. Reading the example production
string from left to right and the ssc diagram of Fig. 7
from the root state to the terminate pseudostate of the
same region, we encounter

1. first a disjunctive site, consisting of three ssc
models 〈d λ, [r2](b|f [h]), [r3](v|t[u]) 〉d, the first of
which is empty,

2. an iterative site consisting of an (empty) ssc
model connected through a reflexive transition
〈i [λ](a|e[m]) 〉i,

3. a second disjunctive site consisting of two empty
ssc models 〈d λ, [λ](z|x[y]) 〉d and

4. a conjunctive site consisting of two ssc models
〈c r4, r5 〉c. Incoming transitions from the sec-
ond disjunctive site are redistributed to the two
concurrent regions of the conjunctive site.

Because of the redistribution of incoming edges
to the concurrent regions, shown in the example of
Fig. 7, every sc DNA string represents a class of ssc
models, with as many elements as there are possible
redistributions of edges. In case of the given exam-
ple, there are five states, two final pseudostates and
one concurrent state, eligible for redistribution. This
means 64 possible redistributions, hence the class of
ssc models translated from this production string con-
sists of 64 ssc models.

A relatively complex procedure based on model
transformations and graph rewriting as explained
in [16] allows us to construct for each class of ssc

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Benjamin De Leeuw, Albert Hoogewijs

ISSN: 1790-0832 866 Issue 5, Volume 6, May 2009

Figure 7: Translation of an Example Sc DNA

models, the sc DNA. The proof of the following the-
orem builds on this procedure. Both lie beyond the
scope of this paper.

Theorem 19 (Sc DNA Translation) Each element of
the sc DNA language translates to a class of ssc mod-
els, each of which is disjoint from the classes trans-
lated from other sc DNA production strings.

This theorem allows us to construct another trans-
lation isomorphism ψ between sc DNA production
strings and ssc model classes. The complex proce-
dure, mentioned above implements the inverse mor-
phism ψ−1. The morphism ψ defines a PIM-to-PIM
model transformation from ssc models to sc DNA.
The inverse morphism ψ−1 defines a PIM-to-PIM
model transformation from sc DNA to ssc models.

Definition 20 The isomorphism ψ returns a complex-
ity class of ssc models, for each element of the sc DNA
language.

Following theorem is a consequence of thm. 19.
We denote the set of all ssc models, allowed by Def. 1
as SSC , and the set of all sc DNA production strings
with DNA.
Theorem 21 (Sc DNA Completeness)

ψ(DNA) = SSC
ψ−1(SSC) = DNA

The composed morphism ψ−1 ◦ ϕ, by thm. 15,
thm. 16, thm. 19 and thm. 21, allows us to abstract any
UML sc model to its complexity class, represented by
a unique sc DNA production string.

5 Statechart DNA Experimentation

We have been working ([4], [7], [5], [6], [8]) on de-
veloping following applications :

5.1 Complexity Metric for UML sc models

Further compression of sc DNA on a numeric scale
allows us to define a complexity metric for UML sc
models, considering the intenseness of concurrent, it-
erative and disjunctive (conditional) execution and the
label density of the composing assc. Engineering their
development, different versions of UML sc models
can be evaluated by such a metric.

5.2 Generation sc Model Test Cases

Model checking is a method for formally verifying
finite-state concurrent systems. Specifications about
the system are expressed as temporal logic formulas,
and efficient symbolic algorithms are used to traverse
the model defined by the system and check if the spec-
ification holds or not. Extremely large state-spaces
need special techniques such as slicing [25] in order to
reduce the traversal time. A classical test case for such
model checkers in the ”washing machine controler” as
described in [17]. The rewrite system of Sec. 4 allows
(automatic) generation sc model test cases, in differ-
ent complexity classes. These are usable as a general
purpose sc repository for benchmarking model check-
ing tools, and in gathering empirical evidence for sc
model theories ([26],[24]).

5.3 “Benign” Behavior Manipulations

We use the sc DNA framework, to define “benign”
behavior manipulations, applicable to sc development
in CASE tool environments. Given an sc DNA spec-
ification, dna, of a UML sc, replace all occurrences
of assc, and of λ, except those occurring in wrapper
operations, with a variable S, and call the resulting
string dna′. A conservative sc modification is defined
as any UML sc, which converts to an sc DNA string,
obtained by rewriting through dna′, in the parse tree
for the rewrite system of Tab. 2. A mutative sc mod-
ification is obtained by a rewriting through any dna′′

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Benjamin De Leeuw, Albert Hoogewijs

ISSN: 1790-0832 867 Issue 5, Volume 6, May 2009

that is obtained by a permutation of two sequences
of the form +S . . . S+ in dna′. Combined with the
complexity metric of Subsec. 5.2 these patterns can
be used to manage and control object behavior evolu-
tions in industrial model repositories.

6 State Machine Versioning

In this section we highlight an important industrial
application of sc DNA: versioning and automati-
cally merging different state machine models. Soft-
ware companies protect their source code from un-
wanted change by adding version control to the com-
pany’s code repository. A large number of version-
ing systems exist (e.g. MS Team Foundation System,
SourceSafe, Eclipse) all based on the same principle:
starting from a base-lined text file only the changes to
this file are stored (called a ”diff” or ”delta”). The his-
tory of such a text file can therefore be reconstructed
up to the creation of the original version. Changes can
also be undone by rolling back to any previous ver-
sion of the text file. If the language of the text file is a
compositional programming language, versioning can
also be understood as preventing multiple developers
from modifying the same source code inconsistently.
This means that the versioning system will signal dif-
ferences upon storing the code and force developers
to merge their code into one consistent version. Stor-
ing text files in a versioning system is referred to as a
check-in, changing and locking the code as check-out.

Any one-dimensional compositional string of
symbols (e.g. Java programs) can be versioned but
multi-dimensional structures like graphs (and state
machines) don’t allow this. This is why versioning
and merging of UML models in general doesn’t be-
long to the possibilities of versioning systems because
they most commonly store the models as XMI serial-
izations. With sc DNA we introduce an abstraction of
state machines that can be used as a compositional se-
rialization subject to versioning mechanics just as nor-
mal source code can. The XMI serialization of a state
machine represents it as a hierarchical object oriented
structure of meta-model elements. On this representa-
tion an additional calculation step is needed. This pa-
per contains a simple and elegant way to achieve this.
Sc DNA represents state machines based on a for-
mal grammar and therefore sensible automatic model
merges of different state machine versions can be pro-
posed.

We showed how every state machine can be rep-
resented as an ssc (with morphism ϕ). An ssc can be
compiled into an sc DNA string. This form can be
made normal by ordering comma separated R-lists of
sc DNA from smallest to biggest number of atoms and

Figure 8: Merging State Machine models

then alphabetically by atom labels (see Sec. 4). We
use a function called ”Diff” calculating the smallest
set of differentiating substrings of two text files [10],
with the smallest total number of characters appearing
in both sets of substrings. We also use the XMI de-
scription of both state machines to be compared (for
state and transition identification, see below).

Because the sc DNA is now in a normal form,
there is one unique parsing tree for it. This tree can
be serialized breadth first with nodes ordered by parse
step length or weight (see 5.1). This serialization is
again normalized and results in another text file on
which the ”Diff” calculation can apply. The top row
of Fig. 8 shows two state machine model versions on
which an insert (or dually, a delete) has been per-
formed.

Consider for example the sc DNA compilation of
the upper left and right sc. Their respective compila-
tion trees are compared as shown in Tab. 3. We deter-
mine where and how two new sc (represented as R)
were added to the existing state machine.

From Tab. 3 we see that the compilation tree dif-
fers in step four where a disjunctive pattern was used
instead of a sequential one. This transformation can
now automatically be assigned to the Diff set of the
sc.

We use this observation to visualize and automat-
ically merge both models. They are compiled into
sc DNA. Applying the Diff-function on both normal-
ized and serialized parse trees can therefore show ad-
ditional and removed grammar steps in between sc

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Benjamin De Leeuw, Albert Hoogewijs

ISSN: 1790-0832 868 Issue 5, Volume 6, May 2009

Table 3: Determining The “Diff” Set of Fig.8

(1) Start Start

(2) R R

(3) S S

(4) S + S S ⊕ 〈d R,Rd 〉d ⊕ S

(5) S + S + S S ⊕ 〈d R,Rd 〉d ⊕ S + S

(6) S + S + S + S S ⊕ 〈d R,Rd 〉d ⊕ S + S + S

(7) S + S + S → 〈c Rc 〉c + S S ⊕ 〈d R,Rd 〉d ⊕ S + S → 〈c Rc 〉c + S

(8) S + S + S → 〈c Rc, Rc 〉c + S S ⊕ 〈d R,Rd 〉d ⊕ S + S → 〈c Rc, Rc 〉c + S

(9)

DNA versions under comparison. Automatic merges
can now be done if there is an ordering available on
the sc DNA grammar rules (e.g. Subsec. 5.1). Depen-
dent on the weight of the Diff-set and if it is an insert
or removal it can then be decided to be allowed au-
tomatically or rolled-back (e.g. normal inserts merge
automatically, similar to code merges).

Transition redistribution can also be detected. Af-
ter compilation to sc DNA it is known where redistri-
butions can happen (everywhere the ⊕-sign appears,
see Sec. 4). The lower row of Fig. 8 shows a redis-
tribution of edges over two concurrent regions. Al-
though compiling both models to sc DNA will show
the same serialized compilation tree, compiling the sc
DNA strings back to ssc and matching the Diff-sets of
both XMI representations will show (and visualize)
where redistributions have happened. Redistributions
can again be ordered in preference and therefore be
merged automatically together with other changes.

More powerful changes can be detected and
merged with the described technique. Transition la-
bel changes can consitently and automatically be de-
termined and matched to a memory model (of read-
write access). An impact analysis (or model check) on
memory states can then determine to allow or discard
certain transition label manipulations automatically.

Figure 9 shows three versions of the branching
transitions in Fig. 8 belonging to the “Diff” set. From
left to right their labels are detailed as follows:

(ε|e1[g1]) + (a1|e2[g2])
(ε|e1[g1]) ⊕ 〈d (x1|y1[z1]), [(x2|y2[z2])](a1|e1[g1]) 〉d

⊕ (a1|e2[g2])
(ε|e1[g1]) + (a1|y1[z1]) ⊕ 〈d λ, [λ](x2|y2[z2]) 〉d

⊕ (x1|e2[g2])
Suppose the leftmost version of Fig. 8 was originally
checked-in. The middle and rightmost version might
both have been developed by separate analysts. An

automatically deducible merge between the two ver-
sions of the right is to keep the rightmost one since it
has the least intricate disjunctive site but does appear
to have the same memory access.

Depending on the intended power of automatic
merges, calculations get gradually more involved. Au-
tomatically merging the state machine structure is the
least involved. Next comes the detection of redis-
tributed transitions and lastly perceiving patterns of la-
bel changes. State machine versioning systems should
restrict the complex calculations according to this or-
dering. Starting from the XMI description of a state
machine check if the XMI descriptions of parallelly
checked-in versions are indeed different. If this is
the case calculate the sc DNA to check for structural
changes. If you find mutated sites detect for each of
these if and where transition redistributions were ap-
plied. After this step determine transition label pat-
terns.

Property 22 Three (almost) ortogonal information
axes are available to control automatic state machine
merges. With XMI, the serialization into XML, DNA
the serialization into sc DNA and MM the intended
memory model to be applied to the label behavior
of state machines we define following ordering on
the calculation complexity of state machine merges:
XMI <
DNA <
DNA×XMI <
DNA×XMI ×MM

7 Conclusion

In this paper, we confirm that the effects of UML
sc models can be abstracted, and that they are but a
secondary construct of the rich UML model. With
a formal approach we build a strictly mathematical

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Benjamin De Leeuw, Albert Hoogewijs

ISSN: 1790-0832 869 Issue 5, Volume 6, May 2009

Figure 9: Tracking Label Changes

model of the UML sc and untangle the object-oriented
concepts characterizing the UML. We treat triggers,
guards and effects as related to eachother, but make
no reference to any explicit value (type) in the com-
putation. This abstract approach allows us introduce
involved mathematical manipulations of UML sc, in
line with the theory of regular automata. The mor-
phism ϕ, introduced in Sec. 3, translates UML sc
models to ssc models. These reduce to sc DNA de-
scriptions by morphism ψ−1 of Sec. 4. Sc DNA al-
lows us on the one hand to partition ssc models, and
therefore also UML models, into complexity classes,
which give us an indication of how difficult a behav-
ioral model is. On the other hand sc DNA strings
can be manipulated thereby allowing formal behav-
ioral model management, refactoring and versioning.

References:

[1] H P Barendregt, editor. The Lambda Calculus
(Studies in Logic and the Foundations of Mathe-
matics Series). Elsevier, 2006.

[2] G Booch, J Rumbaugh, and I Jacobson. The Uni-
fied Modeling Language User Guide (2nd edi-
tion). Addison-Wesley Professional, 2005.

[3] J M Carroll, editor. Scenario-Based Design: En-
visioning Work and Technology in System Devel-
opment. John Wiley and Sons, 1995.

[4] Benjamin De Leeuw. Statechart DNA: Formal
and Practical Investigation in a Statechart Ab-
straction Method. PhD thesis, Gent University,
December 2009.

[5] Benjamin De Leeuw and Albert Hoogewijs.
Complexity Metrics with Generated Statechart
Instrumentation. Internal report, September
2006.

[6] Benjamin De Leeuw and Albert Hoogewijs.
Random Test Generation and Instrumentation of
Statecharts. Internal report, July 2006.

[7] Benjamin De Leeuw and Albert Hoogewijs.
Scenario-Based Analysis of Statechart Con-
struction. In P Schobbens and J Fiadeiro, ed-
itors, Abstracts of the 18th International Work-
shop on Algebraic Development Techniques, 1-
3 June 2006, La Roche en Ardenne, Belgium.,
pages 28–28, 2006.

[8] Benjamin De Leeuw and Albert Hoogewijs. For-
mal management of object behavior with state-
chart dna. In 10.1109/AFRICON.2007.4401522
/ INSPEC Accession Number: 9857309, pages
1–7. IEEE Xplore, september 2007.

[9] Guang R Gao and Vivek Sarkar. Location
Consistency-A New Memory Model and Cache
Consistency Protocol. IEEE Trans. Comput.,
49(8):798–813, 2000.

[10] Free Software Foundation Gnu. Comparing and
merging files. http://www.gnu.org/ software/ dif-
futils/manual/html mono/diff.html, 4 2002.

[11] D Harel and H Kugler. The RHAPSODY Se-
mantics of Statecharts. Lecture Notes in Com-
puter Science, 3147(0):325–354, June 2004.

[12] David Harel. Statecharts: A Visual Formalism
for Complex Systems. Science of Computer Pro-
gramming, 8(3):231–274, June 1987.

[13] R L Hobbs. Using a Scenario Specification Lan-
guage to Add Context to Design Patterns. In
SEKE ’04: Proceedings of the Sixteenth Inter-
national Conference on Software Engineering &
Knowledge Engineering, pages 330–335, 2004.

[14] Daniel Ioan Hunyadi and Mircea Adrian Musan.
Uml data models from an orm (object-role mod-
eling) perspective: data modeling at conceptual
level. WSEAS Transactions on Information Sci-
ence and Applications, 5(5):796–805, 2008.

[15] Rohit Kelapure, Marcos André Gonçalves, and
Edward A. Fox. Scenario-Based Generation of

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Benjamin De Leeuw, Albert Hoogewijs

ISSN: 1790-0832 870 Issue 5, Volume 6, May 2009

Digital Library Services. In Traugott Koch and
Ingeborg Sølvberg, editors, ECDL, volume 2769
of Lecture Notes in Computer Science, pages
263–275. Springer, 2003.

[16] Tihamr Levendovszky, Lszl Lengyel, and Has-
san Charaf. Extending the dpo approach for
topological validation of metamodel-level graph
rewriting rules. WSEAS Transactions on Infor-
mation Science and Applications, 2(2):226–231,
2005.

[17] Xin Ben Li and Feng Xia Zhao. Formal
development of a washing machine controller
model based on formal design patterns. WTOS,
7(12):1463–1472, 2008.

[18] Peter Linz. An Introduction to Formal Lan-
guages and Automata (3rd edition). Jones and
Bartlett Publishers, 2001.

[19] E Makinen and T Systa. An Interactive Ap-
proach for Synthesizing UML Statechart Di-
agrams from Sequence Diagrams. In OOP-
SLA2000: Proceedings of the 10th ACM Confer-
ence on Object-Oriented Programming Systems,
Languages and Applications, 2000.

[20] Gergely Mezei, László Lengyel, Tihamér Lev-
endovszky, and Hassan Charaf. Minimizing the
traversing steps in the code generated by OCL
2.0 compilers. WSEAS Transactions on Informa-
tion Science and Applications, 3:818–824, April
2006.

[21] OMG. MDA Guide Version 1.0.1 (omg/2003-
06-01), June 2003.

[22] OMG. Unified Modeling Language: Superstruc-
ture, v2.0 (formal/05-07-04), August 2005.

[23] W Pugh and T Lindholm. JSR-133: Java Mem-
ory Model and Thread Specification, final re-
lease, September 2004.

[24] Sara Van Langenhove. Protocal conformance
through refinement mapings in cadence smv.
Bull. Belg. Math. Soc.-Simon Stevin, 13:905–
915, 2006.

[25] Sara Van Langenhove and Albert Hoogewijs.
SVtL: System verification through logic tool
support for verifying sliced hierarchical state-
charts. Lecture Notes in Computer Science,
4409:142–155, 2007.

[26] Sara Van Langenhove, Albert Hoogewijs, and
Benjamin De Leeuw. Uml based verification

of software. In Proceedings of the 32nd Spring
School in Theoretical Computer Science, Con-
currency theory and Applications, page 1, Lu-
miny, France, 4 2004.

[27] S Vasilache and J Tanaka. Synthesizing Stat-
echarts from Multiple Interrelated Scenarios,
2001.

[28] Jos Warmer and Anneke Kleppe. The Ob-
ject Constraint Language: Getting Your Mod-
els Ready for MDA, Second Edition. Addison-
Wesley Professional, August 2003.

[29] Jon Whittle and Johann Schumann. Generating
Statechart Designs from Scenarios. In ICSE ’00:
Proceedings of the 22nd international confer-
ence on Software engineering, pages 314–323,
New York, USA, 2000. ACM Press.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Benjamin De Leeuw, Albert Hoogewijs

ISSN: 1790-0832 871 Issue 5, Volume 6, May 2009

