
An Optimized Location-based Mobile Restaurant
Recommend and Navigation System

ZHI-MEI WANG

Department of Computer
Wenzhou Vocational Technical College

Wenzhou, 325035, Zhejiang
CHINA

wzmfst@126.com

FAN YANG
Continuing Education College
Shanghai JiaoTong University

No. 1954, HuaShan Road, 20030, Shanghai
China

fyang@sjtu.edu.cn

Abstract: -With the widely used of the intelligent mobile phones with the GPS, the location-based services
has become the a hot issue of mobile communications research. This paper implements a Mobile
Location-based Restaurant Navigation and Recommend System. In order to improve server-side
response speed for real-time query, we propose a memory pool model, the expansion Accept command,
no-data client polling and interrupt mechanism, which aims to greatly optimize the server-side control
procedures. On the client side, we combine the latest Web2.0 application data with the location-based
data, and propose a collaborative assessment and recommend mechanisms, which can provide users
with real-time location-based restaurant and recommend personalized navigation.

Key-Words: Mobile Information Share, GPS, Web2.0, Location Based Service (LBS), Tagging, Collaborative
Filtering, Personalized Recommendation

1 Introduction

Nowadays, the intelligent mobile phones with
the GPS functional component become very
popular and widely used. How to provide timely
and personalized information and sharing
services based on the user's location information?
This problem is gradually contracting wide range
of concerns of different areas of the researchers,
content providers and network operators. And it
forms a known and independent research area
named as Location Based Services (LBS) [1-2].

Location-based services (LBS), is the use of
certain technical approaches through the mobile
network to access the end-user’s location

information (latitude and longitude coordinates),
and provides users with a corresponding
value-added Services through the electronic map
platform [1-2].

The new generation of multimedia mobile
phone, like iPhone, has begun to integrate online
LBS services as Google maps to help users
access to their destinations with traffic
information and road conditions.

LBS is the integrated business of mobile
network and location-based services, which aims
at providing location and personalized
information services to frequently location
changing mobile users.

Location and context are the core of LBS.
Thus LBS is also known as Location-Aware
Computing, or Context-Aware Services. ** This paper is partly supported by the project founded by WenZhou

Science & Technology Bureau of China [Project No. H20080008],

and the projec“Research and Implementation on Web2.0 Information

Sharing Platform based on GPS Services”founded by Science and

Technology Department of Zhejiang Province in 2009.

Compared with traditional Geographical
Information System (GIS) [3], from the
hardware and software perspective, LBS is

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Zhi-Mei Wang, Fan Yang

ISSN: 1790-0832 809 Issue 5, Volume 6, May 2009

involved in more platforms and components,
including the Internet, GIS, positioning
equipment and telecommunications technology
and so on.

From the data perspective, LBS needs to
obtain data from different sources, such as
remote sensors, positioning systems, electronic
maps, traffic and transportation databases and so
on.

Therefore, from the system architecture
perspective, LBS has a strong heterogeneity. At
the same time, the user's location is constantly
changing. Thus, the data-processing capability in
the server side LBS services on the system
server-side has brought new challenges [4-6].

For this new type of location-based
information retrieval approach, users want to be
able to obtain more real-time and targeted
content services, not just the indexed
information based simply on a static
database[7-8]. Recently, the rise of a large
number of Web2.0 applications (blog,
community forums, Web Albums, Blog and
Taggings, etc.) indicates that users have the very
pressing requirements of direct, rapid, useful and
personalized information recommendation and
sharing services [9-13].

If the information can be user-friendly
visualized in the client mobile terminals, It
should doubtless be a very important research
topic, and will have a very wide market prospect.

This paper designs and realizes a
location-based mobile restaurant
recommendation and navigation system. In order
to improve server-side response speed for
real-time query, we propose a memory pool
model, the expansion Accept command, no-data
client polling and interrupt mechanism, which
aims to greatly optimize the server-side control
procedures. On the client side, we combine the
latest Web2.0 application data with the
location-based data, and propose a collaborative
assessment and recommend mechanisms, which
can provide users with real-time location-based
restaurant and recommend personalized
navigation.

Users can also manually provide personalized
tagging and recommendation to build their own
social networks, which can help them to consider
other similar community users’collaborative

comemnts and obtain more presice content
pushing service.

Section 2 presents a simple description of the
system's overall architecture and component.
The server-side operating mechanism, working
threads, listening thread mechanism and
optimize the statement is discussed in Section 3.
And in section4 you can find the introduction of
the functional in the client side considering the
users commend and recommend mechanisms . A
case study is carried out in Section 5. Finaly, the
conclusion of this paper and future work
overview are discussed in Section 6.

2 System Workflow and Architecture

Figure 1 gives the workflow of our system.
Users can send their inquiries demand by
operating in the mobile phone. And the client
will get the current location information and sent
it together with users’ inqueries demand to the
server. Server-side application will analyze the
relevant data and provide matched restaurant
recommendation and navigation.

Application data information of our system
can be divided into two parts: the location-based
data (such as traffic and road condition data,
GPS map, and entity information, etc.) and the
value-added data provided by users (such as
Ratings, Comments, Blog and Tags, etc.).

Fig.1. System Workflow

Clien

Client

User

Server

Prescribed Location-based Info.

Matched Entity
& Route Info.

Personalized
Location-based
Restaurant
Recommendation &
Navigation Services

Location-based DB
GPS-info E-Map
Entity-info ……...

Restaurant Query

Users‘
Collaborative
Recommendation &
Entity Feature Info.

Value-added DB
Comments Tags
Ratings …..….

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Zhi-Mei Wang, Fan Yang

ISSN: 1790-0832 810 Issue 5, Volume 6, May 2009

The system will obtain tbe initial restaurant

candidates through the matching in
location-based database (such as distance from
the current location of 500 meters radius)
restaurants navigation information. Furthermore,
the system will be coordinated to analyze the
user's comments information and refilter the
initial candidates, thus return the restaurants
more fitting users’ requirements.

In order to know users’ acceptance of our
recommendations, we propose the ‘mobile
discount coupons’ which can be directly used
when the users show it to the restuarant.
Through the usage of the ‘mobile counpons’, we
can analyze the users’ interest and characters,
which can help us to effectively improve the
accuracy of recommendation. The application
data shows our system can enhance the
acceptance and usage of mobile coupons which
do benefit the users and companies
simultaneously.

3 Server-side Implementation and
Optimization
Our Server operating systems is based on
Windows server 2003. The reason to choose is
because its completion port (IOCP) technology
is basically considered in the windows operating
system as most sophisticated and efficient
methods of IO. The overlap I/O technology by
using the IOCP provide a real scalability for
windowsNT and windows2000. Combining with
the Windows Socket 2.0, it can develop the
network services which can support a wide range
of connect procedures.

3.1 Working Thread
Working thread is the most central part of the
server and it is closely related to the server
efficiency, stability, etc. Figure 2 gives the
workfolw of the working thread. This thread
primarily obtains the status of the client socket
through the GetQueuedCompletionStatus
function, which can be called as
(OPERATION_ACCEPT,
OPERATION_RECV, OPERATION_SENT).

Here OPERATION_ACCEPT Indicated that a
new client connection requests to come in. Then

the new socket will be bound to IOCP and make
a request to receive data (PostRecv).

OPERATION_RECV means that data has
come in, and access to the client operation orders
according to custom head protocol information.
Then it will make the corresponding treatment,
and return the results back to the client.

OPERATION_SENT shows the completation
of data sending from server-side. It can continue
to further send operations.

When there is an error occurs, it will turn off
the corresponding client socket, recover memory,
and take the task from the queue and put into idle
queue.

While(TRUE)

GetQueuedCompletionStatus

(OPERATION
_RECV)

DisposeRecvpacket

(OPERATION
_SEND)

WSASend

(OPERATION
_ACCEPT)
WSARecv

Windows System

If Error
Recover
Memory

Fig. 2. Working Thread Workfolw

3.2 Listening Thread
The Listening Thread will create a new event,
linked it with FD_ACCEPT through
WSAEventSelect then wait for this event using
WaitForSingleObject function. When the
number of AccpetEx calls have been depleted
and there are new client which require to connect,
the FD_ACCEPTEvents will be triggere. If the
status of the EVENT has been turned into
be-sended, and return the WaitForSingleObject,
then we will resend enough AcceptEx calls.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Zhi-Mei Wang, Fan Yang

ISSN: 1790-0832 811 Issue 5, Volume 6, May 2009

Fig. 3. Listening Workflow

3.3 Optimization Mechanism
In order to improve real-time query response in
Server-side, we made a series of optimization
mechanisms:
1) Memory pool model
First of all, we take use of the memory pool
model and set up to four queues including:
m_lpBusyPerHandleData(the in-use
single-handle data), m_lpIdlePerHandleData(the
free single-handle data), m_lpBusyPerIoData(the
in-use single-IO data) � m_lpIdlePerIoData(the
free single-IO data).

When to apply for a new data, the system will
first check whether there is any queue which has
available space. If so, it will take out a procedure
for use, and put it into the in-user queue,
Otherwise, it will ask for a space and add it to the
in-use queue.

When a client leaves or an error occurs, it will
recover the memory immediately and put the
procedure into the free queue for the next use.
This technology can effectively improve the
memory utilization, reduce memory
fragmentation and accept more client
connections, thereby increase the server capacity
and processing speed.

2) AcceptEx procedure

We propose a extend procedue AcceptEx
insteadof the traditional Accept procedure. In thi
procedure, it must bind the listening socket
m_hListenIt with FD_ACCEPT. During the
procedure, we should call the Socket or
WSASocket function and create a new
socket.Then this new socket can be passed to the
AcceptEx function through the parameter
sAcceptSocket, which can finally accelerate the
speed of accepting the client.

CreateEvent

WSAEventSelect

While (TRUE)

WaitForSingleObject

AcceptEx

3) No-Data client polling and interrupt
mechanism
Every 3 seconds, the server will poll all client
sockets. If there is no data transmission in more
than three seconds, the socket will be considered
overtime, and the server will disconnect it. This
mechanism can save the server resources to the
greatest possibility and provide services for
more clients.

4 Client-side Implementation
Client users can simply enter search keywords
and fuzzy constraints(such as the surrounding
distance, food tastes, grade, etc.). And the server
will feed back the matched restaurant
information as follows
1) Basic information: including name, telephone,
address, recommend dishes, brief introduction,
the per capita consumption as well as the
classification.
2) Collaborative recomemndation information:
recommendation based on the collaborative
filtering of other users’ tagging, rating,
commends data.
3) E-map and navigation: restaurant with a
balloon-shaped signs displayed on the vector
map, and can real-time navigation.
4) Restaurant coupons: name, preferential
margins, maturity dates and coupon bar code.

Client implementation major includes the
design and de development of Functional Class
and View Class described as follows:

4.1 Functional Class in client-side
The client-side includes six Functional Classes:
CstaticImageDecoder, CtransEngine,
CClientEngine, CMyListBox, CmyPicture, and
CsocketsEngine.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Zhi-Mei Wang, Fan Yang

ISSN: 1790-0832 812 Issue 5, Volume 6, May 2009

4.1.1 CstaticImageDecoder Class
Inherited from the Class CActive, this class
realizes the asynchronous decoding of
compressed image. It uses
CBufferedImageDecoder to decode the gif
image and feedback the decoded bmp to the
caller as shown in Figure 4.
When there is no decoding error, it will call the
DecodeComplete function of MdecoderNotifier
to notify the caller that the image decoding
process is finished.

+NewL(inout aNotify : MDecoderNotifier) : CStaticImageDecoder *
+CStaticImageDecoder(inout aNotify : MDecoderNotifier)
+~CStaticImageDecoder()
+StartDecode(inout aData : TDesC8)
-ConstructL()
-RunL()
-DoCancel()

-iDecoder : CBufferedImageDecoder *
-iNotify : MDecoderNotifier &

FoodSearch::CStaticImageDecoder

Fig. 4. CstaticImageDecoder Class

4.1.2 CtransEngine Class
 CtransEngine Class is mainly in charge of the
communication between the client-side and
server-side. Since the system needs to maintain only
one connection, this class takes use of the Singleton
design mode.
 According to different callers’ Notify types, the
CtransEngine Class has two callers as EshopList and
EshopDetail shown as follows:
int
CTransEngine::ConvertFromGB2312ToUnicode(TDes1
6& aUnicode, const TDesC8& aGb)
{
TIntstate=CCnvCharacterSetConverter::KStateDefault;
TInt ctu = iConverter->ConvertToUnicode (aUnicode,
aGb, state);
if (ctu ==
CCnvCharacterSetConverter::EErrorIllFormedInput)
User::Leave (KErrCorrupt);
return 0;
}

4.1.3 CclientEngine Class
 CclientEngine class is also related to network
communication. However it deals with the Http
request different the CtransEngine class.

4.1.4 CmyListBox Class

CmyListBox class inherites from the CeikTextListBox
class and realize the user-define list as shown in
Figure 5. The functions of the user-defined list
includes: add or delete the list item, change the list
item’s height, change the overall size of the
components, change the background and highlight
background, characters and icons display forma of a
single list. Similar with any other Symbian
components, the list takes use of the MVC (Model -
View - Controller) model.

 Fig.5. MVC model of Symbian List

4.1.5CmyPicture Class
 CmyPicture inheriates from Cpicture class which is
mainly used to display imags in RichTextEditor.

4.1.6 CsocketsEngine Class
CsocketsEngine class is responsible for setting up
connections between local socket and remote socket,
amd implement the DNS search (if necessary). It will
also create an instance of CsocketsReader and
CSocketSWrite active object, which can control the
receiving and sending process of asynchronous data.
The initial state of the CSocketsEngine class is set as
EnotConnected. It will build a counter to ensure the
failure of asynchronous request which did not finish
within the limited time duration shown as follows.
void CSocketsEngine::ConstructL()
{
ChangeStatus(ENotConnected);
iTimer = CTimeOutTimer::NewL(EPriorityHigh, *this);
CActiveScheduler::Add(this);
User::LeaveIfError(iSocketServ.Connect());
iSocketsReader = CSocketsReader::NewL(*this, iSocket);
iSocketsWriter = CSocketsWriter::NewL(*this, iSocket);
}
The communication process between the client and
remote server is asynchronous. We specified the
remote server IP address and port number, and
connect them.
iSocketsEngine->SetServerName(serverName);
iSocketsEngine->SetPort(port);
iSocketsEngine->ConnectL(); // Initiate connection
Client requests a way to achieve asynchronous write
operation, and use the CSocketWriter class to
dispatch these requests.
CsocketWriter Class uses a Buffer (iTransferBuffer)to
accept the buffer from UI (iWriteBuffer). And we use
the CSocketsEngine::WriteL function to send the
characters to the engine shown as follows.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Zhi-Mei Wang, Fan Yang

ISSN: 1790-0832 813 Issue 5, Volume 6, May 2009

void CSocketsEngine::WriteL(const TDesC8& aData)
{

// Write data to socket
if (iEngineStatus == EConnected)
{

iSocketsWriter->IssueWriteL(aData);
}

}
The request can be sent to CsocketWriter through the
CSocketWriter::IssueWriteL Class shown as follows.

void CSocketsWriter::IssueWriteL(const TDesC8&
aData)

{
if ((iWriteStatus != EWaiting) &&

(iWriteStatus != ESending)){
User::Leave(KErrNotReady);

}
if ((aData.Length() +

iTransferBuffer.Length()) >iTransferBuffer.MaxLength())
{
User::Leave(KErrOverflow);
}
iTransferBuffer.Append(aData);
if (!IsActive()){

SendNextPacket();
}

}
When the data is copied into the transfer buffer, the
system will call the CSocketWriter::SendNextPacket
function shown as follows.
void CSocketsWriter::SendNextPacket()
{

if (iTransferBuffer.Length() > 0)
{
iWriteBuffer = iTransferBuffer;
iTransferBuffer.Zero();
iSocket.Write(iWriteBuffer, iStatus); // Initiate

actual write
iTimer->After(iTimeOut);
SetActive();
iWriteStatus = ESending;
}
else
{
iWriteStatus = EWaiting;
}

}
CSocketsWriter::SendNextPacket function will
remove the data into the write buffer, clear the
transfer buffer and call the RSocket::Write function to
send the data request. The status of the
CSocketsWriter object will be changed into Esending,
and start the counter to control the status of the
RSocket::Write. When the request of RSocket::Write
is finished, the system will recall the
CSocketsWriter::RunL function shown as follows.
void CSocketsWriter::RunL()
{

iTimer->Cancel();
if (iStatus == KErrNone);

{
switch(iWriteStatus)
{

case ESending:
SendNextPacket();
break;
default:
User::Panic(KPanicSocketsEngineWr

ite, ESocketsBadStatus);
break;

};
}
else
{

iEngineNotifier.ReportError(MEngineNoti
fier::EGeneralWriteError;

iStatus.Int());
iWriteStatus = EWaiting;

}
}
The Definition of this class can be shown in Figure 6.

Fig. 6. CSocketsEngine Class

4.2 View Class in Client-side
The View classed in Client-side is composed of five
classses as : CfoodSearchContainer,

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Zhi-Mei Wang, Fan Yang

ISSN: 1790-0832 814 Issue 5, Volume 6, May 2009

CshopListContainer, CshopDetaiContainer,
CfoodSearchMapViewContainer, and
CcouponContainer.
iSocketsEngine->SetServerName(serverName);
iSocketsEngine->SetPort(port);
iSocketsEngine->ConnectL(); // Initiate connection

4.2.1 CfoodSearchContainer Class
This class includes a CeikEdwin and a button.
CeikEdwin is used to accept user’s input and
converts the encoded input as a parameter passed to
the category CshopListView class.
This Container includes a CeikEdwin and a button.
Here, CeikEdwin is used to accept user’s input and
recode the input content as a parameter sent to the
CshopListView Class. Partial recall and transfer
codes can be shown as follows:
TBuf8<100> temp8;
 CCnvCharacterSetConverter*
iUnicode2GbConverter =
CCnvCharacterSetConverter::NewL ();
 CleanupStack::PushL(iUnicode2GbConverter);
 CCnvCharacterSetConverter::TAvailability
 ta =
iUnicode2GbConverter->PrepareToConvertToOrFromL (
 KCharacterSetIdentifierGbk,
CEikonEnv::Static()->FsSession ());
 if (ta !=
CCnvCharacterSetConverter::EAvailable)
 User::Leave (KErrNotSupported);
 CleanupStack::Pop(iUnicode2GbConverter);

 TInt
state=CCnvCharacterSetConverter::KStateDefault;
 TInt ctu =
iUnicode2GbConverter->ConvertFromUnicode (temp8,
buf, state);
 if (ctu ==
CCnvCharacterSetConverter::EErrorIllFormedInput)
 User::Leave (KErrCorrupt);
delete iUnicode2GbConverter;
 iUnicode2GbConverter = NULL;
 STATIC_CAST(CFoodSearchAppUi*,CCoeEnv
::Static()->AppUi())->ActivateLocalViewL(TUid::Uid(E
ShopListContainerViewId),TUid::Null(),temp8);

4.2.2 CshopListContainer Class
CshopListContainer class is incharge of display the
restaurant list. In this class, it obtain the restaurant
information from the remote server and display the
results as user-defined list. Figure 6 shows the
sequence of restaurant list acceptance.

CShopListContainer CTransEngine CSocketsEngine

1.GetNeighbor()

2.ConnectL()

3.ConnectL()

9.FillShopList()

10.AddContent()

4.SetStatus()

5.Connected()

6.Neighbor()

7.WriteL()

8.ResponseReceived()

Fig. 7. The sequence of restaurant list acceptance

4.2.3 CshopDetaiContainer Class
CshopDetaiContainer class can display the
restaurant’s information. It obtains the information
from the remote server through the CtransEngine,
and displays the results throug RichTextEditor.
Furthermore, through the creation of CmyPicture
class, we also realize to display some images in the
RichTextEditor in order to make the restaurant
introduction more lively. Restaurant information also
includes the invisible GPS information and
Restaurant ID. These two parameters are separately
transmitted as the parameters to the CCouponView
CFoodSearchMapView classes in charge of map
visualization. Figure 7 gives the structure of
CshopDetaiContainer class.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Zhi-Mei Wang, Fan Yang

ISSN: 1790-0832 815 Issue 5, Volume 6, May 2009

+AddContent() : void

MContainerNotifier

+AddContent() : void

-iTransEng; : CTransEngine*
-iPic : CMyPicture

CShopDetailContainer

+Connect() : TBool
+DisConnect() : TInt
+GetNeighbor() : TInt
+GetShopDetail() : TInt

CTransEngine

1

1
CMyPicture

1
*

CSocketsEngine

CCnvCharacterSetConverter

11

1
*

+LineBreakPossible() : TBool
+Draw() : void
+ExternalizeL() : void
+SetOriginalSizeInTwips() : void
+GetOriginalSizeInTwips() : void

CPicture

Fig. 8. Structure of CshopDetaiContainer Class

4.2.4 CfoodSearchMapViewContainer Class
CfoodSearchMapViewContainer class is used to
displaythe map information of restaurant. It will
calculate the latitude and longitude information and
submit the result to the remote server.

4.2.5 CcouponContainer Class
CcouponContainer class can display the restaurant
counpons, which including the restaurant name,
coupon expiration time, the preferential margin,
coupon ID, as well as bar code.

5 Case Study – A Dynamic Mobile
Location-based Restaurant Navigation
and Recommend System
Based on our platform, we cooperate with some
restuarants to develop develop a dynamic restaurant
mobile location-based recommendation and discount
counpons pushing system. Based on our dynamic
location-based resturant recommendation and
navigation services, the user can easily find the
resturant in a certain range of current location as
shown in Figure 8.

Fig. 9. Restaurant Location-based Information

Especially, through this application platform, users
can not only receive the static description of the
restaurants which are suitable for their own tastes
(such as size, styles, features, environment, etc.), but
also can see the dynamic synergy of the community
users tag information (such as ratings, comments,
recommend dishes, etc.) as shown in Figure 9.

Fig. 10. Restaurant Information

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Zhi-Mei Wang, Fan Yang

ISSN: 1790-0832 816 Issue 5, Volume 6, May 2009

Furthermore, we also provide a "mobile discount
coupons" which can be directly used when the users
show it to the restuarant as showin in Figure 10.

On the one hand, the use of mobile coupons can

help us to know users’ acceptance of our
recommendations. On the other hand, through our
collaborative filtering and personalized
recommendation algorithms, our system can
effectively improve the accuracy of recommendation
which may satisfy the users and then effectively
improve the acceptance of mobile coupons. The
application data shows our system can enhance the
acceptance and usage of mobile coupons which do
benefit the users and companies simultaneously.

Fig. 11. Restaurant Counpons

6 Conclusion
This paper implements a Mobile Location-based
Restaurant Navigation and Recommend System. In
the server-side, we propose a series of opertimazation
mechanism as memory pool model, the expansion
Accept command, no-data client polling and interrupt
mechanism, which aims to enable the server to have
greatly capacity and response speed for real-time
query. In the client-side, we combine the latest
Web2.0 application data with the location-based data,
and propose a collaborative assessment and
recommend mechanisms, which can provide users
with real-time location-based restaurant and
recommend personalized navigation. We also give
the detailed description of the funtion classes and

view classed in client-side. Finally we propose the
case study of our mobile location-based restaurant
navigation and recommend system, which already
has successful business application in China.

References:
[1] Koeppel, I. What are location services? From a

GIS Perspective, ESRI white paper.2000.
[2] Shiode, N., Li, C., Batty, M., Longley, P., &

Maguire, D. The impact and penetration of
location-based services. In H. A. Karimi & A.
Hammad (Eds.), Telegeoinformatics:
location-based computing and services, 2004,
pp. 349–366, CRC Press.

[3] Jiang, B., Yao, X. B. Location-based services
and GIS in perspective. Computers,
Environment and Urban Systems,Vol.30, No.6,
2006, pp. 712-725.

[4] Kaasinen, E. User needs for location-aware
mobile services. Personal and Ubiquitous
Computing, Vol. 7, 2006, pp.70–79.

[5] Csinger, A. Users models for intent-based
authoring. Dissertation, The University of
British Columbia, 1995.

[6] Karimi, H. A. Telegeoinformatics: Current
trends and future direction. In H. A. Karimi & A.
Hammad (Eds.), Telegeoinformatics:
location-based computing and services, 2004,
CRC Press.

[7] Li, C. User preferences, information
transactions and location-based services: A
study of urban pedestrian way finding.
Computers, Environment and Urban Systems,
Vol.30, No. 6, 2004, pp.726–740.

[8] Ashbrook, D., & Starner, T. Using GPS to learn
significant locations and predict movement
across multiple users. Personal and Ubiquitous
Computing, Vol.7, 2003, pp. 275–286.

[9] Fan Yang, Bernd Kraemer, Zhimei Wang, An
Novel E-Learner Community Construction
Algorithm in Point View of Learning Interests,
WSEAS Transactions on Computers, Vol.5, No.
12, 2006, pp.3097-3103.

[10] Zhi-mei Wang, Ling-Ning Li, Enable
collaborative learning: an improved e-learning
social network exploiting approach,
Proceedings of the 6th Conference on WSEAS
International Conference on Applied Computer
Science, Vol.6, Hangzhou, China, 2007,
pp.311-314.

[11] Zhimei Wang, Peng Han, Fan Yang, E-Learner
Community Exploiting Based on Collaboration
Filtering, Proceedings of the 6th WSEAS
International Conference on Applied

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Zhi-Mei Wang, Fan Yang

ISSN: 1790-0832 817 Issue 5, Volume 6, May 2009

Informatics and Communications, Elounda,
Greece, 2006, pp.250-253.

[12] Fan Yang, Bernd Kraemer, Zhimei Wang, Peng
Han, An Improved E-learner Community
Construction Algorithm Based on Learning
Interest Feature Vectors, 6th WSEAS
International Conference on APPLIED
INFORMATICS AND COMMUNICATIONS
(AIC'06), Greece, 2006, pp. 254-259.

[13] Zhimei Wang, Peng Han, Fan Yang, Distributed
E-Learner Community Discovery Based on
Collaborative Filtering, WSEAS Transactions
on Information Science and Applications,
Vol.3, No.11, November 2006, pp.2239-2244.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Zhi-Mei Wang, Fan Yang

ISSN: 1790-0832 818 Issue 5, Volume 6, May 2009

