
Technical solutions for integrated trading on Spot,
Futures and Bonds stock markets

Vlad Diaconita, Ion Lungu, Adela Bara
Department of Economic Informatics
The Academy of Economic Studies

Piata Romana Street, nr. 6, BUCHAREST
Research Financed by UEFISCSU, GRANT code 820/2007

diaconita.vlad@csie.ase.ro; ion.lungu@ie.ase.ro; bara.adela@ie.ase.ro

Abstract: - This article is an extended version of a paper presented in the WSEAS MCBE09 conference [10] in which we
will present in more detail practical solution for building an integration tier between an online trading platform and two
stock exchange markets, in a SOA like architecture. Our solution is constructed using XML, Java and PL/SQL and not
third-party costly solutions. This open source approach, even if it is more difficult to develop and implement at first, helps
a company to control the solution. The system will not be tied to SOA vendors that are usually keeping their software as
secret as possible, demanding that they will develop, an additional costs, all the future developments. We are using XML
for communication, not only because of the constraints given by the systems we integrate, but also because it is the
natural choice in a SOA like solution. XML it’s being used to enable web services and similar, often custom, RPC
functionality to allow greater access to data across multiple systems within an organization and allowing the possibility of
future systems to be created from collections of such RPC functionality [5, 6].

Keywords: - XML, integration, SOA, PL/SQL, Java, Threads, Spot Market, Futures Market

1. Stock markets
A stock exchange is a corporation or mutual
organization which provides "trading" facilities for stock
brokers and traders, to trade stocks and other securities.
Stock exchanges also provide facilities for the issue and
redemption of securities as well as other financial
instruments and capital events including the payment of
income and dividends. The securities traded on a stock
exchange include: shares issued by companies, unit
trusts, derivatives, pooled investment products and
bonds. To be able to trade a security on a certain stock
exchange, it has to be listed there. Usually there is a
central location at least for recordkeeping, but trade is
less and less linked to such a physical place, as modern
markets are electronic networks, which gives them
advantages of speed and cost of transactions. Trade on
an exchange is by members only. The initial offering of
stocks and bonds to investors is by definition done in the
primary market and subsequent trading is done in the
secondary market. A stock exchange is often the most
important component of a stock market. Supply and

demand in stock markets are driven by various factors
which, as in all free markets, affect the price of stocks
(see stock valuation).

There is usually no compulsion to issue stock via the
stock exchange itself, nor must stock be subsequently
traded on the exchange. Such trading is said to be off
exchange or over-the-counter. This is the usual way that
derivatives and bonds are traded. Increasingly, stock
exchanges are part of a global market for securities.

In this article we will talk about integrating trading on
three different stock exchanges:

• Spot market
• Bonds market
• Future market

Historically, the markets, which as noted, encompasses
the totality of stock trading on all exchanges has been
slow to respond to technological innovation, thus
allowing growing pure speculation to continue.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Vlad Diaconita, Ion Lungu, Adela Bara

ISSN: 1790-0832 798 Issue 5, Volume 6, May 2009

mailto:diaconita.vlad@csie.ase.ro
mailto:ba_adic@yahoo.com
mailto:bara.adela@ie.ase.ro

Conversion to all-electronic trading could
erode/eliminate the trading profits of floor specialists.

In the case presented in this paper, the spot and bonds
market runs a different platform from the futures market
belonging to different organizations. Beside this, trading
on different markets posses economic constraints and
difference to which we will advance solutions.

2. Problem formulation
The intermediary, the broker, the initiator of the
integration, has a RDBMS based operational system that
must be integrated with two systems, the systems of two
different stock exchange markets. The integration has to
be build so a user that connects to the broker’s system
must be able to make an order on any of the two
markets. The system must receive, validate and send the
order to the corresponding market, and receive the
confirmation or the rejection of that order, all in real
time.
The components to be integrated are the following:
• The online trading platform informatics system

(OTPIS) built on a three tier web architecture which
enables users to connect, using a user and a
password, to see the market picture and to trade, for

the money they made available, on one or several
stock exchange markets.

• The integration tier of the on-line platform side
which consists of several applications enabling the
OTPIS to communicate with the stock exchanges.

• The integration tier of the stock exchange side.
Every stock exchange distributes a client
application, a gateway that must be used by the
integration team of the broker to connect their
system to the stock exchange system. In this case
study we will to the gateways: GW1 and GW2.

• The Stock Exchange systems, on which the offer
and demand meet and the trades are taking place.
We will refer to two systems: SE1 and SE2.

3. Problem Solution
The OPTIS is build around an Oracle solution, a 10G
Database Server and a 10G Application Server. To
integrate the systems, we will build the integration tier
of the OPTIS by using the existing procedures and by
writing new procedures to enable them to exchange
information. The architecture of the solution is shown in
Fig. 1.

The Online Trading Platform (OTPIS)

Integration tier of the OTPIS

Gateway 1
(Adapter)

Gateway 2
(Adapter)

Stock Exchange 1
(Spot, Bonds)

Stock Exchange 2
(Futures)

Fig. 1: SOA style Integration Architecture

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Vlad Diaconita, Ion Lungu, Adela Bara

ISSN: 1790-0832 799 Issue 5, Volume 6, May 2009

We will build the integration tier using PL/SQL and
Java procedures to make the applications communicate
and to manipulate relational and the XML data.

Oracle has implemented XML through the XML DB
component of the database, which is a standard feature
in Enterprise Edition as well as Standard Edition. The
SQL/XML standard has been under development to
provide a mechanism that allows the users to generate
XML from a relational query and, conversely, provide
the ability to deliver SQL data from XML documents.
Oracle XML DB in Oracle Database 10g Release 2
implements the SQL2003 standard and features from the
upcoming SQL/XML standard release. A new data type,
XMLType, was introduced starting the 9i release of
Oracle Database that allowed an XML document in the
database to be accessible in SQL and at the same time
allow XML developers the ability to use XML standards
on a document. This data type tells the database that the
content is in XML format and allows us to perform
queries on an XML document. Using XMLType rather
than a relational or CLOB implementation provides a
layer of separation between the application and storage
model. This separation can allow data to move to a
different storage model without being tied to a CLOB or
relational model. XMLType can be used to create a
table, column, or view. It can also be used as a data type
for parameters and variables. Built-in XML methods
operate on the content of a document by allowing the
user to create, extract, and index XML data. Indexing
can be performed using b-tree, text indexing, and
function-based indexes. In effect, XMLType data
combined with XPath access can be used to look inside a
document. This functionality is provided through
PL/SQL and Java APIs. XMLType can be used in
PL/SQL, in Java using JDBC, and in the Oracle Data
Provider for .Net. When passing queries we use
optimization techniques like: table partitioning,
indexing, using hints and using analytical functions
(described in detail in [9]) instead of data aggregation in
some reports in order to reduce as much possible the
response time and to prevent deadlocks.

3.1 Gateway Client 1: Stocks and bonds/bills
market
Between the GW1 and the integration tier the
messages have the following format [8]:
|start sequence | message body |checksum| end
sequence

1. The start sequence is a 9 byte sequence (0xEF 0x81
0x86 0xE2 0x86 0xA6 0xEF 0x81 0x86)
2. Message Body - the message payload; it has variable
length
3. Checksum – the MD5 hash computed over the
message body - 16 bytes
4. The end sequence is a 9 byte sequence (0xEF 0x81
0x85 0xE2 0x86 0xA4 0xEF 0x81 0x85)

UTF-8 character set is used to convert between bytes
and character sequence representation of the message
body. The message body should not contain the start or
end sequences in order to prevent a misinterpretation of
the real message. There are two types of messages that
flow between the gateway and the client:

• outgoing messages : messages that are sent from the

gateway client to the central system through the
gateway

• incoming messages: messages received from the
central system by the gateway client through the
gateway

At application level the message body is interpreted as
an XML formatted text. The XML message structure is
fully described using an XML Schema file named
gateway-messages.xsd. Every outgoing message will be
parsed and validated against the provided XML Schema.
In the event of an invalidated message the gateway will
send an error message to the client formatted against this
specification.

Any outgoing message has a client sequence and an
inner content that represents the actual command with its
parameters. An outgoing engine message has the
following general structure:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<m:outgoingEngineMessage xmlns:c="http://..." xmlns:m="
http://..." xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <content xsi:type=…>
 …
 </content>
 <csq>10001</csq>
</m:outgoingEngineMessage>

Content is the body of the actual command that is sent to
the central system. The client sequence (csq) can be used
to identify an incoming message as being the response
for this outgoing message. The central system will not

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Vlad Diaconita, Ion Lungu, Adela Bara

ISSN: 1790-0832 800 Issue 5, Volume 6, May 2009

modify the content of this field. Client sequence is
managed by the gateway client.

Every incoming message has a header and an inner
structure that embeds a command confirmation, a report,
a market data event or other information. We can call
these embedded structures Data Transfer Objects. An
incoming message has the following general structure:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<m:incomingEngineMessage xmlns:c=" http://..." xmlns:m="
http://..." xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <content xsi:type=…>
 …
 </content>
 <csq>10003</csq>
 <err>false</err>
 <id>213</id>

 <kmsg>to ADMIN: Hello</kmsg>
 <ktime>20070827174849441</ktime>
</m:incomingEngineMessage>

Based on the id of the message, the client knows what to
expect in the content. Time, having the
yyyyMMddHHmmssSSS, format is the one at which the
message was generated by the stock market’s system. In
the kmsg field, there is a comment, a message or a error
description. The Client sequence (csq) is used to match
an incoming message to a command; it is 0 in case of an
unsolicited messages. In content we have the actual
message content, one or more data structures packed
together but it also can be NULL.

The table below lists all the possible incoming messages
a client should expect to come unsolicited from the
gateway [8]:

Message id Event Message content type / comments
800 Operational events and/or

trading activity
TickersPack

802 Trade confirmation HalfTrdDto

The gateway will receive all trade notifications regardless they
were performed by other users from the same participant

378, 373, 305, 309,
147, 381, 376, 719,
354, 555, 558

Operations performed on an
order by another user
(change, delete, etc). Note
that order fills will not be
transmitted this way.

OrdDto

719 arrives in case of order activation for contingent orders

354, 555 or 558 arrive in case batch operations are performed
upon orders by system administrators

The gateway will receive all order operations confirmations
regardless they were performed by other users from the same
participant

801 A text message sent by
another user or other text
announcements.

MailDto

102 The gateway was
disconnected from the central
system.

Null

603 The central system responds
to a heartbeat message sent
by the gateway. Note that this
heartbeat is not related to the
HeartBeatCmd.

Null. ktime will be a yyyyMMddHHmmssSSS timestamp
representing the time of the central system.

762 Start init cache. This message
arrives after a successful
login or after the order book

SmkDto
In this case only sym and mkt fields are relevant and they can
come in 4 different combinations:

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Vlad Diaconita, Ion Lungu, Adela Bara

ISSN: 1790-0832 801 Issue 5, Volume 6, May 2009

cache was reloaded on the
communication server.

• sym=*,mkt=*
• sym=defined, mkt=*
• sym=*, mkt=defined
• sym=defined, mkt=defined

After this message the client should expect a series of 175 type
messages (MboDto payload will have the symbol and market
field from the range definded in the abolve 4 categories) that
could be used to initialize the cache of the client.

For example if sym=* and mkt=* the client should expect the
175 type messages for every symbol-market it is subscribed to.

765 End init cache. This message
marks the end of the cache
initialization process.

Null

761 The order book cache was
invalidated from the central
system and no longer
consistent.

SmkDto. See the comments for 762 above.
When this message arrives the client should invalidate it’s own
cache as it is no longer consistent.

For example if sym=* and mkt=REGS the client should
invalidate the order books for every symbol trades in REGS
market.

175 After a successful login or
after the order book cache
was reloaded on the
communication server.

MboDto

790 When a market or symbol-
market parameter is added,
changed or deleted

ParamsShortDto

Table 1: Types of possible unsolicited incoming messages

3.2. Gateway Client 2 : Futures market

Communicating through the second gateway client is
similar to the first; the difference is at the messages
format and complexity. Exchanging information with the
gateway client 2 is simpler; we don’t use any embedded
complex data structures, only straight XML. The
incoming messages has the following structure

<market t='type'>
 <info>
 <label>label1</label>
 <value>value1</value>
 </info>
 ...
 <label>labeln</label>
 <value>valuen</value>
 </info>

</market>

Where type is the kind of message being received, and
the content is send in (label,value) pairs. For example, to
receive the market picture, we use the 112 type
messages that describe the market at connect time and
212 messages that contain the updates. For knowing if
an outgoing message, an order, was accepted or not, we
have to analyze the 400 and 401 messages.
As an example, a message of type 112 has the following
XML structure:

<market t='112'>
<info><label>503</label><value>DERRC</value></info>
<info><label>504</label><value>MAR09</value></info>
<info><label>510</label><value>0</value></info>
<info><label>511</label><value>0</value></info>
<info><label>525</label><value>0.003</value></info>
<info><label>505</label><value>0.024</value></info>
<info><label>520</label><value>0</value></info>
 <info><label>530</label><value>0</value></info>
<info><label>531</label><value>0.0</value></info>
<info><label>500</label><value>Active</value></info>

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Vlad Diaconita, Ion Lungu, Adela Bara

ISSN: 1790-0832 802 Issue 5, Volume 6, May 2009

<info><label>540</label><value>0</value></info>
<info><label>550</label><value>2</value></info>
<info><label>542</label><value>0</value></info>
</market>

In the case of GW2 there are fewer outgoing message
types. The most use are: new order and cancel order.

For example, a order is sent to the market using an XML
structure like this one:
<m t='AddFuturesOrder'>
 <ls>31875</ls>
 <ct>DESIF2</ct>
 <sd>MAR09</sd>
 <ac>99</ac>
 <cc>990001</cc>
 <vo>5</vo>
 <pr>0.714</pr>
 <vl>Day</vl>
 <bs>Buy</bs>
 <ot>Limit</ot>
 <ap>0</ap>
</m>

In this case, we have a buy order for 5 contracts at 0.714,
on DESIF5 with the MAR09 settle date.

We receive the accept/reject confirmation by a XML
message of type 400:

400 – OrderInfo

500 Accept or reject(values: OK = accepted,
Wrong = rejected)

610 Local order number for new orders or the
market order number for deleted orders

615 Comment, explanation for rejection or the
server time in case of acceptation

If the previous order was accepted we will receive
the following message:

<market t='400'>

<info><label>500</label><value>OK</value></info
>

<info><label>610</label><value>31875</value></i
nfo>

<info><label>615</label><value>15:46:38</value>
</info>

</market>

If the order has been rejected we will receive the
following message:

<market t='400'>

<info><label>500</label><value>Wrong</value></i
nfo>

<info><label>610</label><value>31875</value></i
nfo>

<info><label>615</label><value>You can not cancel
order while status<>Active.:17:45:16</value></info>

3.3. Putting it together
In OPTIS, we’ll have an integration point, a table
VALIDATE_ORDERS {Id_robot, Ord, Oper,
Enter_Date, Market_Date, Market_Order, Status, Stare,
XML_String}, which contains all the orders that were
received from clients at meet the conditions to be sent to
the market. Next, we will build a java application that
reads the orders from this table and sends them to the
markets. The same java application receives the
messages and sends them to PL/SQL procedures which
converts them back to relational. The message flow is
portrayed in figure 2:

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Vlad Diaconita, Ion Lungu, Adela Bara

ISSN: 1790-0832 803 Issue 5, Volume 6, May 2009

Fig 2. Message flow between the systems

Using the gateway client the system can issue
commands as outgoing message any time after login.
Any command that arrives at the central system will
have a response that maps to an incoming message
containing a confirmation that states the command was
executed as expected or an incoming message with the
error flag marked to true that states that the command
could not be executed. In case of an error should contain
further explanations about the encountered error.
Also by using the gateway client the system can issue
report requests as outgoing messages. Any report request

that reaches the central system will have a response as
an incoming message containing a page of records or an
incoming message with the error flag marked to true. In
case of an error message the content of the incoming
message should contain further explanations about the
encountered error. The number of records in a response
page is limited. In order to receive all the pages of a
report the gateway client has to issue further report
requests, until the last page of records is received.

For the OPTIS integration tier, to connect to GW2 we
use a simple Socket UTF communication. We build a
separate thread in the application that assures the

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Vlad Diaconita, Ion Lungu, Adela Bara

ISSN: 1790-0832 804 Issue 5, Volume 6, May 2009

exchange between the database and the GW2. This
thread is for the incoming messages which are read from
the socket.

 private static class ConexiuneSibex extends Thread {
 public Connection conn;
 public Statement StmtPersoane;
 ConexiuneSibex(Connection conn) {
 this.conn = conn;
 }
 public void run() {
 try{
 kin = new BufferedReader(new
InputStreamReader(System.in));
 s = new Socket("127.0.0.1",9191);
 dos = new DataOutputStream(s.getOutputStream());
 dis = new DataInputStream(s.getInputStream());
 System.out.print(dis.readUTF());
 dos.writeUTF("user_gw2");dos.flush();
 dos.writeUTF("pass_gw2");dos.flush();
 while (1==1){
 try
 {
 String t=dis.readUTF();
 ConexiuneBd c = new ConexiuneBd(conn,t);
 c.start();
 }
 catch(Exception e){
 e.printStackTrace();
 }

 }
 }
 catch(Exception e){ e.printStackTrace(); }
 }
 }

We use a different thread to pass the XML to the
database so the communication with the gateway is not
affected by the procession time of the database.

 private static class ConexiuneBd extends Thread {

 public Statement StmtPersoane;
 Connection conn;
 String t;
 ConexiuneBd(Connection conn,String t) {
 this.conn = conn; this.t = t; }
 public void run() {
 try{
 PreparedStatement callstmt=conn.prepareCall("{call
parce_xml(trim(?))}");
 try{
 callstmt.setString(1,t);
 callstmt.executeUpdate();

 }
 catch(Exception e){e.printStackTrace();}
 callstmt.close();
 }
 catch(Exception e){e.printStackTrace();}
 }
 }

In the database tier, we need a procedure that receives
the XML, deserializes it and uses the information
correspondingly. In this example, we use a cursor to
deserialize the XML and obtain the (label, value) pairs
used to update the market picture.

create or replace procedure parce_xml(pstring varchar2) is
cursor c is
select
extractvalue(value(p), '/info/label') label,
extractvalue(value(p), '/info/value') value
from
table(
xmlsequence(
extract(
xmltype(pstring),'//info'))) p;
 cursor cc2(qserialno number) is
 select 'D' from futures_deal_ag t where
 t.serialno = qserialno;
[…]
 if pstring like '%<market t=''112''>%' then
 v:=true;

 for r in c loop
 if r.label=503 then pcontract:=r.value; elsif r.label=504
then psettledate:=r.value;
 elsif r.label=510 then
pbestbid:=to_number(r.value,'99999.9999');
[…]
 end if;
 end loop;
 begin
 insert into
futures_market(CONTRACT,SETTLEDATE,BESTBID,BES
TASK,SETTLE,OPEN,HIGH,LOW,CHANGE,TRADES,CO
NTRACTS,OPENINT,STATUS,CATEGORY,DATA_FOLD
ER) values
(pcontract,psettledate,pbestbid,pbestask,psettle,popen,phigh,pl
ow,pchange,ptrades,pcontracts,popenint
 ,pstatus,'MARKETS' ,vdata_folder);
 exception
 when dup_val_on_index then null;
[...]
end;

When connecting to GW1 we use a different approach.
Even if the sent and received messages are in XML

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Vlad Diaconita, Ion Lungu, Adela Bara

ISSN: 1790-0832 805 Issue 5, Volume 6, May 2009

format, we use some java packages (ro.java.gw) to ease
the conversion [3].

For a sell/buy order the message format is the following:
Field
name

Description

sym Symbol code

mkt Market code

stt
Settlement term type: 1 = standard, 2
= non standard

clr

Standard settlement date; if stt = 1, clr
is one of the standard settlement terms
as defined at the symbol level; if stt =
2, clr should be 0

std

Non standard settlement date; if stt =
1, std should be 0; if stt = 2 std should
be the actual settlement date (
yyyyMMdd)

trm
Order term; 0 = Fill or Kill, 1 = Day, 2
= Open, 3 = Good Till Date

opd
Open date; should be 0 unless trm = 3
else it should be the date until this
order should live (yyyyMMdd)

ref Comment

acc Account number

prc
Price; -1 = Market, 0 = Unpriced, a
positive numeric for Limit orders

size Volume

ver Special volume restriction; 0 = NONE

dcv
Disclosed volume; 0 unless the order is
hidden else it should be the disclosed
volume of the hidden order

tpa
Trigger price type; 1 = None, 2 = Stop,
3 = If Touched

tgp
Trigger price; a positive number unless
tpa = 1 else 0 (zero)

ssl
Short sell mark (used only for sell order
); 1=Yes, 0=No

import import ro.arena.gw
[…]
iem =
client.sendMessage(getAddSellOrder(pACC,pSym,pMkt,pPR
C,pVol,pOrd,pGTD));

[…]
public static OutgoingEngineMessage getAddSellOrder(int
pAcc,String pSym, String pMkt, BigDecimal pPrc, int
pSiz,String pOrd, int pGTD) {
AddOrderSellCmd buy = new AddOrderSellCmd();
buy.sym = pSym; buy.mkt = pMkt;
buy.stt = OrdDto.ORDER_STT_STANDARD;buy.clr = 3;
 if (pGTD>0)
 {
 buy.trm=3; buy.opd=pGTD;
 }
 else
 {
 buy.trm = OrdDto.ORDER_TRM_DAY;
 }
 buy.ref = pOrd;buy.acc = pAcc;buy.prc = pPrc;buy.siz
= pSiz;buy.ver = OrdDto.ORDER_VER_NONE;
buy.dcv = 0;buy.tpa = OrdDto.ORDER_TPA_ORDINARY;
buy.tgp = new BigDecimal("0");
 return new OutgoingEngineMessage(buy,
GatewayClient.getNextClientSequence());
 }

This function gets appealed from this context, first we
send the order to the market and then we receive the
confirmation. After we receive the confirmation we must
update the state of the order so the client will know if his
order was accepted or rejected.

 while (this.CrsPersoane.next())
 {
 String pSym=CrsPersoane.getString("sym");
 int pVol=CrsPersoane.getInt("vol");
 int pACC=CrsPersoane.getInt("acc");
 int pOper=CrsPersoane.getInt("oper");
 int pSDE=CrsPersoane.getInt("sde");
 String pOrd=CrsPersoane.getString("ord");
 int pOrd_Arena=CrsPersoane.getInt("ord_a");
 String pMkt=CrsPersoane.getString("mkt");
 int pGTD=CrsPersoane.getInt("gtd");
 BigDecimal pPRC=CrsPersoane.getBigDecimal("prc");
 java.sql.Timestamp Ts = CrsPersoane.getTimestamp("ts");

if (pOper==1) // New Order
 {
 if (pSDE==2) //Sell order
 {

 iem =
Client.sendMessage(getChgOrderCmd(pOrd_Arena,pSym,pM
kt,pPRC,pVol,pOrd,Ts,pGTD));
 try
 {
 OrdDto od=(OrdDto)iem.content;
 if (od!=null)

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Vlad Diaconita, Ion Lungu, Adela Bara

ISSN: 1790-0832 806 Issue 5, Volume 6, May 2009

 modifica(iem.ktime,iem.kmsg,od.uti,od.ref);
 else modifica(iem.ktime,iem.kmsg,null,null);
 }
 catch (Exception ex)
 CallableStatement callstmt=conn.prepareCall("{call
update__order_state(?,?)}");
 callstmt.setString(1,pOrd);
 callstmt.setInt(2,2);
 callstmt.execute();
 callstmt.close();
 }

 }

Operational events are generated when an exchange
entity is added or deleted or one of its properties is
changed. For example when a trade is generated the
message id is always 802 in this case and the content of
the message will be a HalfTrdDto structure:

try {
client = new GatewayClient(gwHost, gwPort, new
GatewayClientListener() {
public void onMessageReceived(IncomingEngineMessage
iem) {
 try
 {
 if (iem.id==802)
 {
 HalfTrdDto htd=(HalfTrdDto)iem.content;
 if (htd.sde==1)
 {
 CallableStatement callstmt=conn.prepareCall("{call
arena.buy_trade_gw(?,?,?,?,?,?,?,?)}");
callstmt.setInt(1,htd.acc);
 callstmt.setString(2,htd.sym);
 callstmt.setString(3,htd.mkt);
 callstmt.setInt(4,htd.tck);
 if (htd.mkt.equals("ORDB"))
 callstmt.setBigDecimal(5,htd.dtp);
 else
 callstmt.setBigDecimal(5,htd.prc);
 callstmt.setInt(6,htd.ord);
 callstmt.setLong(7,htd.siz);
 callstmt.setTimestamp(8,htd.uti);
 callstmt.execute();
 callstmt.close();
 }
 [...]
 }

}

When we run the application, it connects to the gateway
and XML is received from the gateway. The XML is

deserialized and the data it contained is added in the
market table.

4. Discussions and conclusions
The architecture shown in this paper is a primitive SOA
because the integration logic occurs at the edges of the
architecture, not the heart, like in the case of Enterprise
Application Integration (EAI) [2, 4]. In SOA, the
integrations are pushed outward, toward the applications
themselves, leaving the bus to speak a standardized
language.
This solution is not a true SOA solution; it only uses
some of its principles, for example the existence of
services for every action: enter an order, cancel an order,
process conformation etc. The main problem is the lack
of true loose coupling. A modern solution should by
more configuration-based than code-based to assure
louse coupling [7]. Most software systems in use today
are code-based; Java EE 5 applications are a great
example of this. In a Java EE 5 application, you write
source code, compile it into an EAR or WAR file, copy
that EAR or WAR file onto one or more Java EE 5
application servers, and then deploy those applications.
Sometimes it’s necessary to restart the Java server,
depending on the nature of your deployment.
Configuration-based systems work differently. There’s
nothing to compile or deploy. You simply change the
configuration and activate those changes. Similarly,
network routers and switches are configuration-based.
As you make changes to their configuration, those
changes take effect. There’s no need for a longer
software development life cycle to take place.
Configuration and coding are two different strategies.
Neither is superior to the other in all situations. There
are times when the Java EE 5 approach is the most
appropriate, and other times when the configuration-
based approach is best.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Vlad Diaconita, Ion Lungu, Adela Bara

ISSN: 1790-0832 807 Issue 5, Volume 6, May 2009

In our solution, another problem can be the usually large
size of the XML that can be particularly problematic for
use in transmission across a network, where network
bandwidth restrictions can cause significant delays in
receiving the transmission. In a XML integration
solution it’s always a good idea to try and minimize the
information that is being transmitted [1]. Given the fact
that the XML is not dependent only of one of the
systems, and its format is usually a compromise, the best
way to overcome this problem is by assuring a good
steady connection between the remote systems.
Our contribution in this project concerned remodeling
the integration process between the intermediary system
and the stock exchange systems. This required two main
tasks. The first involved developing the interface
between the database and the market exchanges, by
using Java and PL/SQL like shown in this article. The
second task involved re-routing several internal
processes without changing too much of the existing
software. For now, we can say this solution delivers and
delivers well, by being powerful and reliable, but also
opens the path for a full SOA integrated system.

References:

[1] Matjaz B. Juric, Ramesh Loganathan, Poornachandra
Sarang,Frank Jennings: SOA Approach to
Integration,XML, Web services, ESB, and BPEL in real-
world SOA projects
[2] Diaconiţa Vlad, Botha Iuliana, Bara Adela, Lungu
Ion, Velicanu Manole - Portal oriented integration in
public institutions, Proceedings of the 7th WSEAS
International Conference on ARTIFICIAL
INTELLIGENCE, KNOWLEDGE ENGINEERING and
DATA BASES (AIKED'08) University of Cambridge,
Cambridge, UK, February 20-22, 2008, ISBN: 978-960-
6766-41-1, ISSN: 1790-5109 (pag. 532-536)

[3] Diaconita, Vlad, Lungu Ion- TCP/IP XML
Integration, The Proceedings of the 1st International
Conference - Economics and Information Technology-e
society Knowledge and Innovation, pg 51-58, 26-27 Sep
2008, ISBN 978-973-749-491-7
[4] Diaconita, V., Botha, I., Bara, A., Lungu, I.,
Velicanu, M.- Two integration flavors in public
institutions, WSEAS TRANSACTIONS ON
INFORMATION SCIENCE AND APPLICATIONS,
Volume 5, Issue 5, May 2008, Pages 806-815 , ISSN:
1709-0832
[5] Curbera, F. Duftler, M. Khalaf, R. Nagy, W.
Mukhi,N and Weerawarana, S.: Unraveling the web
services web: An introduction to SOAP, WSDL, UDDI.
IEEE Internet Computing, 6(2): 86-93, March-April
2002.
[6] Kohloff, Christopher and Steele, Robert: Evaluating
SOAP for High Performance Business Applications:
Real-Time Trading Systems, 2003,
[7]Jeff Davies, David Schorow, Samrat Ray, David
Rieber- The Definitive Guide to SOA, Oracle Service
Bus, SECOND EDITION, Apress 2008, ISBN-13: 978-
1-4302-1057-3
[8] Arena Gateway 1.1.4 Documentation, 22.July,2008
[9] A. Bâra, I.Lungu, M. Velicanu, V. Diaconita, I.
Botha – Improving query performance in virtual data
warehouses, WSEAS TRANSACTIONS ON
INFORMATION SCIENCE AND APPLICATIONS,
May 2008, ISSN: 1790-0832 - Indexed by SCOPUS
[10] V. Diaconita, I. Lungu, A. Bara, A practical
solution for stock market integration, Proceedings of the
10th WSEAS international conference on Mathematics
and Computers in Business and Economy (MCBE’09
Prague) ISBN 978-960-474-063-5, ISSN 1790-5109.
Indexed by ISTP/ISI Proceedings Web of Knowledge

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Vlad Diaconita, Ion Lungu, Adela Bara

ISSN: 1790-0832 808 Issue 5, Volume 6, May 2009

