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Abstract: Ligand docking checks whether a drug chemical called ligand matches the target receptor protein of
human organ or not. Docking by computer simulation is becoming popular in drug design process to reduce cost
and time of the chemical experiments. This paper presents a novel approach generating optimal ligand structures
from scratch based onde novoligand design approach employing Bayesian optimization algorithm to realize an
automated design of drug and other chemical structures. The proposed approach searches an optimal structure
of ligand that minimizes bond energy to the receptor protein, and the structure of ligand is generated by adding
small fragments of molecules to the base structure. The decision of adding fragments are controlled by Bayesian
optimization algorithm which is considered as a promising approach in probabilistic model-building genetic algo-
rithms. We have built a system that automatically generates an optimal structure of ligand, and through numerical
experiments performed on a PC cluster, we show the effectiveness of our approach compared to the conventional
approach using classical genetic algorithms.

Key–Words:automated drug design, ligand docking, screening, de novo ligand design approach, probabilistic
model-building genetic algorithms, estimation of distribution of algorithms, Bayesian optimization algorithms

1 Introduction

To develop new medicines, drug industry needs to
find promising chemical drug structures called ligands
that will match the target receptor protein of an or-
gan in a human body. Conventional approach in drug
design calledscreeningby dockingchecks matching
between the molecule of the target organ and ligand
chemicals taken from their database. The degree of
matching is calculated by minimizing energy poten-
tial between the molecule and the ligand. Some lig-
and docking software packages such as AutoDock[1]
and BioStation[2] have been developed to minimize
energy potential between the ligand and the receptor
protein. Simulated annealing (SA)[15] or other sim-
ilar meta-heuristics are usually employed for the en-
ergy minimization.

We have developed a ligand docking system
employing an estimation of distribution algorithm
(EDA)[16] and SA elsewhere. However, simple en-
ergy minimization problem between the protein and

∗This paperis an extended version of the paper ”De Novo
Ligand Evolution using Bayesian Optimization Algorithms”, pre-
sented in the 10th WSEAS International Conference on Evolu-
tionary Computing (EC’09).

ligands in a database is not so difficult; simulated an-
nealing alone seems sufficient to have an optimal so-
lution that minimizes the energy. Simple docking is
not useful for researchers who try to find a new lig-
and structure which is not stored in the database in
advance.

In order to support researchers who want to
search for new ligand structures to be tested through
chemical experiments, we propose ade novoligand
evolution framework that generates ligand structures
by combining additional fragments to a base frag-
ment. The optimization of the structure is realized
by Bayesian Optimization Algorithm (BOA)[19, 20]
which is a promising approach in EDAs that models
probabilistic models of solutions based on Bayesian
networks.

In this paper, we explain a classical approach
to ligand docking in section 2., an overview of the
de novoligand design in section 3., an overview of
Bayesian optimization algorithm we employ in sec-
tion 4, and discuss our framework in section 5. The
results of the numerical experiments are presented in
section 6.
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Figure 1:Ligand docking (screening)

2 Ligand docking and screening
In the drug design process, since it is expensive to test
drugs through chemical experiments, computer sim-
ulations are employed to find candidates of chemical
structures called ligands to be tested by the chemical
experiments that may match the target protein struc-
ture. A conventional approach calledscreeningsim-
ply checks whether ligands in their database matches
the receptor protein by calculating minimal energy be-
tween both of them. Figure 1 illustrates an overview
of screening process by ligand docking. Candidates
of ligands are stored in their database in advance and
for each ligand structure in the database, we check
whether it matches the target receptor protein by min-
imizing the bond energy between them through com-
puter simulations and optimizations.

Computer simulation cannot be perfect since we
cannot avoid some errors in calculating bond energies.
Therefore, the results obtained by the ligand docking
are employed to reduce the number of chemical ex-
periments performed by the chemist who want to find
a promising structure of drug chemicals.

3 De novo Ligand Design
The conventional approach such as screening can-
not find promising structure of ligands which are not
stored in the database.De novo ligand design, on
the other hand, constructs the structure of ligands by
adding their fragments from scratch. Figure 2 shows
an overview of the de novo ligand design[8].

First, an initial fragment is set, and then we gener-
ate structure of ligands automatically by adding frag-
ments based on some heuristics. This approach gener-
ates ligand structure automatically, which can be used
by the drug designers without having detailed infor-
mation on the target receptor proteins.

The de novo ligand design approach consists of
the following components.

Figure 2:An overview ofde novoligand design

1. Evaluation of a candidate of ligand

2. Policy of adding fragments to the ligand

3. Optimization algorithm to control fragment ad-
dition to the ligand

Evaluation of a ligand is performed by calculating
bond energy between the ligand and the target recep-
tor protein. We can employ any ligand docking soft-
ware packages for screening by evaluating the energy.

In order to generate good candidates of complex
ligand structure, we need to control the policy of
adding fragments to the ligand, that is, how to pre-
pare and combine a variety of fragments, substructure
of ligands.

Also, we need to choose an appropriate optimiza-
tion algorithm for the energy minimization problem.
The optimization problem to search an appropriate
combination of fragments is a complex combinatorial
problem which is classified into a NP-complete prob-
lem. Conventional optimization algorithms such as
breadth-first, depth-first, Monte-Carlo methods, and
evolutionary algorithms have been applied to solve
this problem.

Glen et. al employs simple genetic algo-
rithm to generate optimal structure of ligands from
scratch[13]. This approach introduces mutation op-
erators that add/delete fragments, change bond status,
and so on.

4 Bayesian Optimization Algorithms
In the field of genetic and evolutionary computation, a
series of advanced algorithms employing probabilistic
models have been developed since classical approach
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Figure 3:Estimation of Distribution Algorithm (EDA)

such as simple genetic algorithms cannot solve some
problems where we cannot ensure tight linkage in the
encoded strings.

Instead of applying genetic operators in genetic
algorithms (GAs), estimation of distribution algo-
rithms (EDAs) estimate distribution of alleles in a
population of strings to build a probabilistic model
of promising solutions, and the model is employed
to generate offspring for the next generation. Fig.3
shows an overview of EDA.

Bayesian optimization algorithm (BOA) is a
promising approach in EDAs, which employs
Bayesian networks as its probabilistic model in order
to model dependencies among alleles. Bayesian net-
work is a directed acyclic graph that represents depen-
dencies as conditional probabilities. The probabilistic
model employed in the BOA represents a distribution
of conditional probabilities as follows:

p(X) =
n∏

i=1

p(Xi|ΠXi) (1)

whereX = (X1, · · · , Xn) is a vector of random vari-
ables, each of which represents the probability of 1’s
occurrence, andΠXi is a list of variables that become
parentsof variableXi.

The model-building process of the BOA searches
an optimal strucure of Bayesian network that maxi-
mizes the Bayesian-Dirichlet (BD) metric defined as
follows which measures a quality of the newtork with
respect to the data set of the current promising solu-
tions.

p(D,B|ξ) = p(B|ξ)
l−1∏
i=0

∏
πXi

m′(πXi)!
(m′(πXi) + m(πXi))!

×
∏
xi

(m′(xi, πXi) + m(xi, πXi))!
m′(xi, πXi)!

(2)

wherep(B|ξ) is a prior probability of networkB, D
is the population of promising solutions,m(πXi) is
the number of instances where

∏
Xi

= πXi in D, and

m(xi, πXi) is the number of instances whereXi = xi

and
∏

Xi
= πXi in D.

The BOA performs the following algorithm:

1. A population ofN strings are initialized ran-
domly.

2. M strings (M < N) are selected from a popula-
tion of N strings based on their fitness values.

3. A Bayesian network is generated that maximizes
the BD metric. A greedy search heuristics is em-
ployed to find an optimal structure of the net-
work.

4. N strings are generated as offspring of the next
generation based on the probabilistic model of
the Bayesian network.

5. Goto 2. unless some termination criterion is sat-
isfied.

A greedy search is performed as follows to find a
Bayesian networks that maximize the BD metric

1. Initial networkB is initialized consisting only of
nodes without any link.

2. A pair of nodes are randomly chosen and an edge
is added to the networkB that connects the pair
to generateB′.

3. If B′ has any cycle, the added edge is discarded
and go to 2.

4. Calculate the metrics ofB andB′, and replaceB
by B′ if the metric ofB′ is larger than that ofB.

5. Go to 2. unless a terminate condition is satisfied.

By employing Bayesian networks, the BOA can
solve wide spectrum of problems with complex inter-
action among genes.

5 De novo Ligand Evolution using
Bayesian Optimization Algorithm

De novo ligand evolution framework that we propose
employs Bayesian optimization algorithm to obtain
optimal structure of ligands from a large number of
possible structure consisting of a variety of possible
fragments. Fig.4 illustrates an overview of our ap-
proach to realize de novo ligand evolution.
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Figure 4:An overview of the proposed framework

5.1 Overview of the Proposed System

The proposed ligand evolution system consists of the
following three major components:

• Ligand Construction Module

• Ligand Evaluation Module

• Optimization Module

The input to the system is the structure of the tar-
get receptor protein, the base fragment, and the set
of additional fragments, which are described by the
PDB (Protein DataBase) format[3]. The objective of
the system is to find a candidate structure of ligand
that minimizes the bond energy between the ligand
and the target receptor protein and also maximizes the
number of atoms of the ligand since we are not inter-
ested in smaller structure of ligands which are already
stored in the current database of ligands.

Inside the system, each ligand structure is en-
coded into a binary strings, and the ligand construc-
tion module decodes the string to generate structure of
ligands by following the process of adding fragments
to the base fragment as in section 5.4.

The generated ligand is evaluated by the ligand
evaluation module. The module employs BioSta-
tion Dock to calculate bond energies between the
ligand and the receptor protein. We input the stru-
tures of them with PDB format, and then BioStation
Dock generates candidates of active sites and per-
forms replica exchanging, a variation of simulated an-
nealing, to find a configuration that minimize the en-
ergy. Fitness values are calculated by the obtained
value of the energy and the number of atoms of the
ligand generated.

Based on the fitness values, the optimization
module selects a set of promising solutions, which are
employed to generate Bayesian networks. According
to the probabilistic model as in the Bayesian networks,
we generate offspring of the ligand structures for the
next generations. After convergence, we can obtain a
candidate of ligand structure that minimizes the bond
energy to the target receptor protein.

5.2 Ligands and Fragments

A ligand consists of a base fragment and additional
fragments. Figure 4 illustrates an overview of the lig-
and construction and its encoding. A base fragment is
a basis of the ligand structure, which is selected from
molecules existent in natural chemicals. The base
fragment has several candidates of connectors, where
additional fragments can be connected to extend the
structure of the ligand. In the proposed framework,
the positions ofH (hydrogen) atom on the base frag-
ment is set as the connectors, which can be replaced
by additional fragments.

An additional fragment is a sub-structure of lig-
ands which can be connected to the positions of the
H atoms on the base fragment. In the proposed sys-
tem, we store several candidates of the additional frag-
ments in the database, which is to be selected in gen-
erating structure of ligands.

Structures of ligands and receptor proteins are
stored by PDB format in their database. Fragments
of ligand structure are stored following the format as
shown in figure 5. The fragment database consists of
entries to specify fragments (@FRAG) and their con-
nections (@CONNECT).
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fragment database
@FRAGNUM# of fragments
@FLAG fragment_ID fragment_filename
@FLAG fragment_ID fragment_filename

:
@CONNECT fragment_ID

atom_ID_to_connect_base_fragment
atom_ID_to_be_removed
connection_ID

@CONNECT fragment_ID
atom_ID_to_connect_base_fragment
atom_ID_to_be_removed
connection_ID

:

Figure 5: Fragment database format

5.3 String Representation

Each string represents a configuration of fragments
added to the base fragment. As in figure 4, we encode
ID numbers assigned in the fragment database into bi-
nary substrings. When we set the number of positions
Nbase where additional fragments can be added, and
the number of possible additional fragments asNadd,
the length of strings is calculated as follows:

l = Nbase × log2⌈Nadd + 1⌉ (3)

where⌈Nadd + 1⌉ means the number of possible ad-
ditional fragments (Nadd) plus that of H atom without
addition (1).

5.4 Adding Fragments

Figure 6 illustrates the process of adding a fragment to
the base fragment. When we add a fragment, rotation
of the additional fragment is set to determine the de-
grees to the base fragment, and also, distance between
the additional and the base fragments is calculated ac-
cording to the database of bond distances.

In the rotation process, we calculate degrees of
rotation θrot and ϕrot from those of the base frag-
mentθbase, ϕbase and those of the additional fragment
θfrag, θfrag as follows:

θrot = θbase − θfrag (4)

ϕrot = ϕbase − ϕfrag (5)

Employing the degrees calculated as above, we
rotate atoms in the additional fragment. First, we per-
form rotation around y-axis as follows:

�� ��
base

�� ��
base �� ��

add

�� ��
add

H

A1 : Connect atom 
of base-fragment

H-atom of 
base-fragment

H-atom of 
add-fragment

A2 : Connect atom 
of add-fragment

A1

A2

Vbase Vadd

H

A2

A1
A2   Length2

A1   Length1

�
�

�
�

�
�

1. Rotate add-fragment 
matching Vbase

2.  Set connect length from 
Connect Length File 

H

H

Connect Length File

A1

A2

L (= Length1+Length2)

3. Connect

Base-
fragment

Base-
fragment

Figure 6:Process of adding fragments

x′ = x cos(ϕ) − z sin(ϕ)
y′ = y (6)

z′ = x sin(ϕ) + z cos(ϕ)

Next, rotation around z-axis is performed as fol-
lows to obtain final results:

xrot = x′ cos(θ) + y′ sin(θ)
yrot = −x′ sin(θ) + y′ cos(θ) (7)

zrot = z′

After the rotation is finished, we calculate bond
distances based on the database of the distances em-
pirically calculated as in the table 1.
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In the distance database, average distances be-
tween orbital of the atoms are stored. In connect-
ing the fragments, an atom from the base fragment
and another one from the additional fragment are se-
lected and their distance is calculated based on the
database. For example, when we connect twoC-sps,
distance forC.3 is selected from the database and the
distance between aC.3 and anotherC.3 is calculated
by 0.771 × 2 = 1.542.

Table 1: An example of database of bond distances
C.3 0.771 O.co2 0.596
C.2 0.668 N.3 0.740
C.1 0.602 N.2 0.676
C.ar 0.967 N.1 0.689
O.3 0.715 N.am 0.661
O.2 0.615 N.pl3 0.736
O.ar 0.604 N.4 0.739

5.5 Evaluations

We employ Biostation Dock[2] to calculate bond en-
ergy between the ligand and the receptor protein. Bio-
station performs minimization of the bond energy by
controlling the position of the ligand(x, y, z), the
angles of bonding(θx, θy, θz), and dihedral angles
(ϕ1, · · · , ϕn) that determine the structure of the lig-
and.

To calculate the energy, XUFF is employed which
considers modified charge equilibration (MQEq) and
universal force field (UFF). The XUFF is based on the
following equation:

EXUFF = EUFF + EMQEq + EvdW + ∆GGB/SA

(8)

EUFF = Ebond strech + Eangle bend + Etorsion (9)

whereEUFF is the energy with UFF consisting of
bonding stretch energy between atomsEbond strech,
energy with variable angle of bendingEangle bend and
that withtorsion of dihedral anglesEtorsion. EMQEq

represents energy calculated by MQEq method,EvdW

is energy based on van der Waals potentials, and
∆GGB/SA is energy that considers the solvent effects
with the GB/SA (Generalized Born/Surface Area)
method.

Energy minimization procedure in BioStation
employs a variation of simulated annealing (SA), a
local search meta-heuristics that allows acceptance of

solutions that degrades the solution by a perturbation
as in the following probability.

accpt(x′) =

{
1 ∆E < 0

exp(−∆E
T ) otherwise

(10)

where∆E is thedifference of the energyE by a per-
turbation of solution fromx to x′. Biostation Dock
employs the replica exchange method that performs
SA threads in parallel, and each SA thread exchanges
its replica of current solutions to the other SA thread.
By exchanging solutions, it increases robustness of so-
lution candidates obtained by the system.

The purpose of ligand evolution is to find candi-
dates of ligand structures to be tested by the actual ex-
periments. We evaluate fitness values of the structures
according to the following policies:

1. We assign higher fitness values to the structure
consisting of more atoms. This is because we
want to find complex ligand structures which are
not stored in the database in advance

2. We assign low fitness values to the structures
with energy lower than a threshold that is nec-
essary to bedockedto the receptor proteins.

Therefore, overall fitness function of the ligand is
calculated by the following equation:

f(S) = wefe(EXUFF ) + wmfm(N),
if EXUFF < Eth (11)

f(S) = wefe(EXUFF ), otherwise, (12)

whereEth is the threshold value of energy,we is the
weight to the energy fitness functionfe, andwm is
the weight to the fitness functionfm of the number of
atomsN in the ligand structureS.

5.6 Application of Bayesian Optimization

De novo ligand evolution framework that we propose
performs the following algorithm to a population of
binary strings which encode ligand structures as in fig-
ure 4:

1. A base fragment and a set of additional frag-
ments are generated and stored in a database.

2. An initial population of strings is generated ran-
domly.

3. Evaluations of strings:
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(a) For each string in a population, fragments
are selected from a set of additional frag-
ments based on the encoded string and are
added to the base fragment to generate a
ligand.

(b) Calculate energy of the generated structure
of the ligand using docking software.

(c) Calculate the fitness value of the ligand
based on the energy and the number of
atoms.

4. Select the ligands based on the calculated fitness
values.

5. Construct a Bayesian network based on the se-
lected individuals of ligands.

6. Generate offsprings based on the Bayesian net-
work and the population of current strings.

7. Go to 3 . unless a termination criterion is satisfied

5.7 Parallel implementation

Since calculation of the bond energy with BioStation
Dock needs a considerable computation time, we need
to seek for parallel implementation of the system. We
employ MPI (Message Passing Interface)[4] to paral-
lelize the calculation of energy to evaluate fitness val-
ues. We perform the following sequence in the paral-
lel environment such as PC clusters with a shared file
system such as NFS (Network File System).

1. A root node generates a population of strings
(ligands)

2. In the root node, register filenames of the ligands
for each strings

3. The root node distributes the information on the
ligands and the receptor proteins to the other
nodes.

4. Each node executes BioStation Dock in parallel
to obtain output of the minimum energy between
them.

5. The root node collects the results from the other
nodes in the cluster.

6. The root node evaluates fitness values and per-
forms one generation of Bayesian optimization
algorithm to generate strings for the next genera-
tion.

7. go to 1. unless termination condition is not satis-
fied.

Figure 7:The target receptor protein

Figure 8:The base fragment

6 Empirical Results
We perform numerical experiments to illustrate the ef-
fectiveness of the proposed framework compared with
conventional approach employing simple genetic al-
gorithms. We employ a small PC cluster consisting
of 12 computing nodes (IBM x3455 with Dual-Core
Opteron 2210) to perform fitness evaluations in paral-
lel by using MPI, since energy calculation with Bio-
Station Dock is computational expensive which usu-
ally needs several hours to evaluate a single fitness.

We try to generate ligand structure to bedocked
to the target receptor protein in figure 7. We employ
fol molecule in figure 8 as the base fragment which
has 19 H atoms.

Figure 9 illustrates a set of additional fragments
which are employed in the following experiments.
Since additional fragments can be connected to the
base ligand by replacing its H atoms, the length of the
string becomes19×⌈log2(7+1)⌉ = 57 from equation
(2).

Population size is set to 120 and we perform ex-
periments for 20 generations. The parameters for
evaluations are as follows:Ethreshold = 10000, we =
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Figure 9:The set of additional fragments

Figure 10:Structure of the initial ligand molecule

Figure 11:Best structure of ligand in the 12th gener-
ations

Figure 12:Best structure of ligand in the 14th gener-
ations

Figure 13:Best structure of ligand in the 18th gener-
ations

Figure 14:Best sturcture of lingand obtained after the
20th generations
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Figure 15:A comparison of the average fitness values

0.001, wm = 1.0, fe(x) = x andfm(x) = x. Sim-
ulated annealing (SA)[15] is performed inside Bio-
station Dock that perform local search to minimize
structural energies. The parameters of is as follows:
initial temperatureT0 = 1.0 and cooling schedule is
Ti = 0.9 × Ti−1.

Figure 10 shows the initial structure. Figure 11,
12, and 13 show the solution obtained in the 12th, 14th
and 18th generations. The final solution obtained after
the 20th generations is in figure 14. The energy is
greatly decreased from6639.9 (initial) to −1168, and
the number of atoms is increased by 191 from the base
fragment. Overall fitness value of the obtained result
is 192.2.

We perform experiments to compare the proposed
algorithm to the ligand evolution employing a simple
GA. The parameters of the GA are as follows: popula-
tion sizeN = 120, one-point crossover is performed
with the probabilityPc = 1.0 and the probability of
mutation isPm = 0.05.

Figure 15 shows a comparison of average fitness
values in a population of strings between the proposed
algorithm employing Bayesian optimization and that
employing a simple GA. The x-axis shows the number
of generations performed and the y-axis shows the av-
erage fitness values in a population. This figure shows
that the proposed method employing BOA achieves
better fitness values than that employing GA which
shows some instability of fitness in the earlier genera-
tions.

Figure 16 shows a comparison of the number of
allowable and excellent solutions between the pro-
posed algorithm employing Bayesian optimization
and that employing a simple GA. The x-axis shows
the number of generations and the y-axis shows the
number of instances. The lines show the number of al-
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Figure 16:The number of candidates of ligand struc-
tures obtained

lowable solutions with energy less than 10,000 and the
boxes shows the number of excellent solutions with
negative energy value. Solid lines and boxes show the
numbers by the proposed approach and dashed lines
and boxes show those by a simple GA.

The result shows that the proposed method can
obtain around three times as much as allowable solu-
tions and around five times as much as good solutions
than those with conventional approach which employs
simple GAs. Since the objective of the ligand evolu-
tion is to find good candidates of ligand structure, the
result here apparently illustrates the effectiveness and
robustness of our approach employing Bayesian opti-
mization.

7 Conclusion

The paper presents a novel approach in generating
structure of ligands automatically to reduce cost and
time of experiments in the drug design process. The
proposed approach is based on de novo ligand de-
sign approach that constructs new ligand structures by
combining additional fragments to the base fragment.
We introduce Bayesian optimization algorithms, a
promising approach in probabilistic model-building
genetic algorithms to search optimal structure of lig-
ands considering complex interaction among addi-
tional fragments.

Through numerical experiments performed on a
cluster of PCs, we show the effectiveness of the pro-
posed framework; that is, the proposed algorithm em-
ploying BOA can generate promising ligand struc-
tures automatically and the number of good structure
of ligands is much larger than that employing classical
GAs. Although the obtained results should be checked
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by chemiststhrough chemical experiments, the frame-
work proposed here can reduce the number of chemi-
cal experiments by presenting a set of promising struc-
ture of ligands with lower bond energy estimated to
the target receptor proteins.
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