
Image Compression via Textual Substitution

BRUNO CARPENTIERI
Dipartimento di Informatica ed Applicazioni “R. M. Capocelli”

Università di Salerno
Via S. Allende – 84081 Fisciano (SA)

ITALY
bc@dia.unisa.it http://www.dia.unisa.it/professori/bc

Abstract: - Textual substitution methods, often called dictionary methods or Lempel-Ziv methods, after the
important work of Lempel and Ziv, are one-dimensional compression methods that maintain a constantly
changing dictionary of strings to adaptively compress a stream of characters by replacing common substrings
with indices (pointers) into a dictionary. Lempel and Ziv proved that the proposed schemes were practical as
well as asymptotically optimal for a general source model. Two-dimensional (i.e. images) applications of
textual substitution methods have been widely studied in the past. Those applications involve first the
application of a linearization strategy to the input data, and then the encoding of the resulting mono-
dimensional vector using LZ type one-dimensional methods. More recent strategies blend textual substitution
methods with Vector Quantization.
In this paper we discuss the textual substitution methods for image compression, with particular attention to
the AVQ class of algorithms, and review recent advances in the field.

Key-Words: - Data Compression, Dictionary Compression, Image Compression, Vector Quantization.

1 Textual Substitution Methods

An interesting approach to compressing a string of
characters is textual substitution.

A textual substitution method is any compression
method that compresses input by identifying repeated
substrings and replacing some substrings by
references to other copies. Generally, textual
substitution methods are implemented as on line,
dynamic, lossless, one-dimensional, compression
algorithms.

Lempel and Ziv [1] proved that the proposed
schemes were asymptotically optimal for a general
source model. The compression algorithms that apply
these schemes are generally known as Lempel Ziv
(LZ) coders and are divided in two different classes:
LZ1 and LZ2 type methods. These two classes differ
in the way the pointers are represented and in the type
of objects to which the pointers point.

LZ1 methods (see [1]) represent pointers by triples
<d,l,c> (d is the displacement of the matching
substring relative to the current position, l is the
length of the match, and c is the character that
follows the newly encoded string). The “dictionary”
consists of all the substrings that occur previously in
the input within a finite distance from the current
position. This kind of dictionary is therefore a first–
in–first–out (FIFO) queue of the immediate past, and
it is generally referred to as “sliding window”.

The LZ2 algorithm is presented in Ziv and Lempel
[2]. LZ2-based schemes, also called LZ78 or
dictionary methods, attempt to code the repeated
occurrence of a substring with an index in a specific

dictionary. The coding pass consists of searching the
dictionary for the longest entry that is a prefix of a
string starting at the current coding position. The
index of the match is transmitted to the decoder using
log2(N) bits, where N is the dictionary size. This
method updates the dictionary, that is generally
initialized with the alphabet symbols, with new
strings that can be, for example, a concatenation of
the previous match with some new set of strings
based on the current match. A trie data structure is
often used to represent the dictionary; when the
memory is full several strategies can be used to gain
new space: the trie could be removed and
reinitialized, it could be "frozen", or some substrings
could be deleted to leave space to new data.

Although asymptotically identical, in practice LZ2
encoding is faster than LZ1, while the converse is
true for decoding. Nevertheless, the general method is
attractive, and it is the basis of many widely used
compression systems.

Two-dimensional (i.e. images) applications of
textual substitution methods have been widely
studied in the past, for instance by Lempel and Ziv
[3] themselves and by Sheinwald, Lempel and Ziv
[4]. Those researches involve first the application of a
linearization strategy to the input data, and then the
encoding of the resulting mono-dimensional vector
using textual substitution, one dimensional, methods.

Storer, in [5], first suggested the possibility of using
dynamic dictionary methods in combination with
Vector Quantization for lossless and lossy
compression of bi-dimensional data.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Bruno Carpentieri

ISSN: 1790-0832 768 Issue 5, Volume 6, May 2009

The AVQ algorithm of Constantinescu and Storer
[6] and the LZ1 based algorithm of Storer and
Helfgott [7] pioneered this approach by showing that
it has a number of advantages with respect to current
state-of-the art algorithms such as JPEG.

In this paper we discuss the textual substitution
methods for image compression, with particular
attention to the AVQ class of algorithms, and review
recent advances in the field.

2 Sliding Window Methods for Image
Compression

Storer and Helfgott, in [7], present a generalization
of the LZ1 method to lossless compression of bi-level
images. They use a wave heuristic to scan the image
and a multi–shape, two–dimensional, suffix trie to
represent the dictionary (i.e. the window of the
already coded pixels).

For each growing point, the largest square match of
size k, for a given k, is computed and then the
window is searched for the entry of size k*u or v*k
that will code the largest number of unmarked pixels.
If such match exists, then the quadruple <x,y,w,h> is
sent to the decoder, where x and y are the location of
the matching pattern and w and h are its dimensions.
A raw block is sent otherwise.

The implementation proposed in [7] is very fast in
practice (especially for decoding), and it is not too far
to the current state of the art for lossless compression
of bi-level images (i.e. JBIG).

Rizzo, Storer and Carpentieri in [8] address the
same problem and show how it is possible to improve
upon the basic algorithm by using hashing methods
and by coding pointers carefully.

In order to reduce computation time they bound the
window height. As shown in Figure 1 (from [8]) the
window will contain only entries between the
Window BackFront and Window ForeFront.

If the window size exceeds some predefined
maximum size, the back front is advanced.

CCITT gzip SH SWBM AVQ JBIG JBIG2

1 17.22 17.40 19.14 20.00 39.69 78.66
2 20.46 28.00 28.12 31.00 62.07 65.15
3 11.61 12.00 12.67 13.00 25.29 43.07
4 5.10 5.50 5.45 5.60 10.49 32.54
5 9.78 10.50 11.20 11.60 21.55 47.79
6 17.76 19.30 24.68 22.50 42.93 44.89
7 4.68 5.30 5.36 5.70 9.70 14.34
8 12.87 13.50 17.76 18.40 36.11 39.71

Table 1: A comparison of Storer-Helfgott (SH),
SWBM and other compression algorithms on the
CCITT test set.

This strategy impacts compression time
significantly because only locations within the
boundaries are involved in the match search. The
width of the window is dynamically bounded too.
Bounding the search window is also a way to
significantly reduce the entropy of the displacement
pointers. In [7] and [8], the proposed two-
dimensional, sliding window, block matching
algorithms are tested on the CCITT image test set.
The compression ratio obtained for lossless
compression are shown in Table 1 (from [8]) where
[7] is SH and [8] is SWBM.

3 LZ2 Methods for Image Compression
The adaptive vector quantization algorithm (AVQ

from now on) presented by Constantinescu and Storer
in [6] has been the first effective application of the
LZ2 strategy to images.

This approach does not reduce the two-dimensional
data to one dimension (as in [4]), but blends the
textual substitution strategy with the Vector
Quantization compression approach to images.

In [6] it is defined as Growing Border the set of
locations in the input image that have not yet been
encoded and that are closest to the already–coded
locations (see Figure 2). A Growing Point is any
coded point not yet encoded where a match may take
place. The data structure that stores the growing
points is called Growing Points Pool.

A Growing Heuristic is a set or rules used to
identify the next growing point to be processed.
There are many different ways to implement the
growing heuristic.

There are many different ways to implement the
growing heuristic. The one depicted in Figure 3 is
usually addressed as Circular Heuristic: coding starts
from a given location of the input image and the
growing heuristic will always pick the closest
growing point to the starting one. When the initial
growing point is the upper left corner of the input
image, the resulting heuristic is addressed as the
Wave Heuristic, since the image will be coded in a
path parallel to the secondary diagonal (i.e. like a
“wave”, see Figure 2).

At each step the AVQ algorithm selects a growing
point of the input image. The encoder uses a match
heuristic to decide which block of a local dictionary
is the best match for the sub-block anchored on that
growing point. The match heuristic chooses the
largest block for which the distortion from the
original block is less or equal to a threshold T. The
threshold T could be fixed for the whole image, or
dynamically adjusted to the image content.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Bruno Carpentieri

ISSN: 1790-0832 769 Issue 5, Volume 6, May 2009

It will be higher for smooth areas and lower for
zones with large variance (as, for example, sharp
edges).

At the starting of the encoding process, the local
dictionary contains one entry for each possible pixel
value; during the encoding process the dictionary is
updated by using a Dictionary Update Heuristic,
possibly preceded by a Deletion Heuristic. The basic
structure of the encoding algorithm is described in
Algorithm 1:

1. Initialize the local dictionary D to have one

entry for each pixel of the input alphabet and
the growing points pool with the initial set of
growing points.

2. Repeat until the growing points pool is
empty:

a) Use a Growing Heuristic to choose the
next growing point gp from the
growing points pool.

b) Use a Match Heuristic to find a block b
in D that matches with acceptable
fidelity the sub-block anchored in the
growing point gp.

c) Transmit logD bits for the index of b.
d) Use a Dictionary Update Heuristic to

update the dictionary D (if D is full,
first use a Deletion Heuristic to make
space).

e) Update the growing points pool
according to a Growing Points Update
Heuristic

Algorithm 1: AVQ Coding
Algorithm

As reported in [6] and [8], for a given overall

fidelity, the compression achieved by the AVQ
approach often equals or exceeds the traditionally
trained VQ approach and the JPEG algorithm.

As reported in [6] the compression performance of
AVQ is weakest on standard magazine photographs,
on which it generally equals JPEG or achieves
slightly less compression for the same quality, and
strongest on technical images as scientific images,
fingerprints, medical images, handwriting, graphs,
etc, where the adaptation abilities of AVQ yield
significant improvements over JPEG and other
similar methods. Besides good compression
performance the AVQ algorithm has other
advantages over traditional image compression
techniques. It is a single-pass adaptive algorithm that
requires no dictionary or codebook to be provided in
advance. Moreover one can provide in advance a
precise estimate on the distortion of any sub-block of
the image and, with a fixed codebook size, it is
possible to vary continuously the fidelity-
compression tradeoff. The algorithm presents fast
(table-lookup) decoding and practical real-time
encoding time.

Image SNR JPEG AVQ MGSAVQ

Baloon 24.2 27.03 11.85 20.55

 15.3 55.64 39.33 70.47

Barb 22.3 6.10 4.86 5.31

 13.5 19.43 14.16 14.67

Barb2 21.7 5.85 5.13 5.18

 13.6 21.64 14.81 13.99

Board 27.1 13.15 9.78 11.85

 18.9 39.60 28.23 39.12

Boats 24.2 8.19 5.97 6.89

 14.3 22.66 24.62 26.25

Girl 23.0 13.21 8.53 9.19

 14.9 43.90 28.06 29.47

Gold 22.8 7.24 5.96 4.86

 14.4 41.33 23.10 25.43

Hotel 23.5 6.93 5.81 6.21

 15.5 25.98 15.68 18.33

Lena 23.2 8.09 5.34 6.35

 14.1 39.01 20.98 23.95

Peppers 22.3 9.04 6.24 6.75

 14.9 38.68 21.00 25.29

Zelda 20.0 27.69 12.94 19.37

 13.6 51.46 36.92 48.71

Table 2: AVQ vs MSGAVQ

4 More on the AVQ Algorithm

The basic AVQ algorithm is robust against minor
changes, such as the choice of growing method.

From the theoretical point of view, it is not easy to
analyze its performance.

Alzima, Spankowski, and Grama, in [9] and [10],
proposed a formal analysis of the algorithm; although
they do not fully resolve the question of whether the
AVQ algorithm is an (asymptotically) optimal
compression algorithm, they do show experiments
that confirm its competitive performance.

Rizzo, Storer and Carpentieri in [11] perform a
theoretical analysis of the algorithm, by taking into
account one of the key AVQ aspects: matches are
allowed to overlap, therefore it is not necessary to
perform bin packing in order to cover the image with
variable size and shape matches. [11] proves that
AVQ is asymptotically optimal (under certain
conditions), depending on the overlapping factor

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Bruno Carpentieri

ISSN: 1790-0832 770 Issue 5, Volume 6, May 2009

defined as the average number of times that a pixel is
covered by a match.

Overlapping is an aspect of AVQ that is really new:
this mechanism was not present (or needed) in the
one-dimensional lossless textual substitution
algorithms or in the lossy two-dimensional VQ, from
which AVQ was derived.

Rizzo, Storer and Carpentieri in [8] improve the
AVQ performance by adding a mean gain shape
transformation to the match heuristic (they call this
new algorithm MGSAVQ). Namely, let mb, gb and

r
s

b

be respectively the mean, the gain and the shape of
the block b in the dictionary and mgp, ggp and

!

r
s gp be

respectively the mean, the gain and the shape of the
block x anchored at the growing point gp of the same
size and shape of b. They change the match heuristic
in Step 2.b as follows:

2.b Compute the vector

!

r
y b = ggp "

r
s b + mgp "

r
1 and

choose b as the current match if its size is maximal
and the distance

!

d(
r
x ,

r
y b) is less or equal to the fixed

threshold T.

Once the best match is found, it is necessary to
transmit mgp and ggp to the decoder along with the
index of b in the dictionary. In order to minimize the
entropy of the output stream, the mean is
differentially encoded and it is fed to an arithmetic
encoder.

Table 2 (from [8]) shows the experimental results
obtained on the typical AVQ image test set at two
different levels of quality. The first column indicates
the target signal to noise ratio, while the second, third
and fourth columns, contain the relative compression
ratios of JPEG, AVQ and MGSAVQ respectively.

As in the one-dimensional case, the two-
dimensional dynamic dictionary methods, and
specifically the AVQ algorithm, turn out to be
sensitive to channel errors.

In fact even the flipping of a single bit in the bit-
stream is likely to cause catastrophic errors at the
decoder side.

Figure 4, from [11], shows what happens when a
random byte is altered in the coded stream of the
Lena image: the decoded image is almost fully
corrupted.

In the one-dimensional case with the presence of
channel errors, because of the sequential nature of the
input, we can expect a total loss of information.

In the two-dimensional case instead we might
expect a different behavior: for example we might
expect that a single error has only local effects or, in
the worst case, that it spoils only a wedge-shaped
area starting from the growing point at which the
error occurs.

Instead, as we can see in Figure 4, after the error
occurs, the decoded image starts to degrade heavily
and no information could be extracted from the
corrupted areas. Moreover, the black region in the
middle of the decoded image indicates that part of the
original image has not been decoded at all.

In fact, as in the one-dimensional case, the error
propagates and scrambles the content of the
dictionary. Moreover the error causes new (wrong)
growing points to be added to the growing point pool,
and this will disrupt the entire process.

Rizzo, Storer and Carpentieri, in [11], modify AVQ
so that a channel error does not propagate, or at least
there is a graceful degradation in the decoded output
quality.

A simple approach to solve this problem is to
divide the image into a fixed number of macro-areas
of a given size and to compress each area separately
(i.e., starting with a new, empty dictionary for each
macro-area). This way, if the channel is such that the
errors occur only in isolated bursts, in general the
errors may effect only a few macro-areas, depending
on the size of the macro-areas themselves, the
duration of the burst and the time at which the error
occurs.

This strategy may be profitable when the size of the
input is large enough, even though in the worst-case
scenario there could be at least one burst for each
macro-area.

Another possible strategy to tackle the channel
errors is to impose a more rigid structure on the
dictionary and to change the amount and type of
information that is transmitted through the channel.

The dictionary is then divided into as many sub-
dictionaries as the different number of legal block
sizes. Each sub-dictionary has the same size and the
encoding algorithm is basically the same as the
baseline AVQ.

This approach, in [11], is called AVQ-MD. The
reorganization of the dictionary allows a reduction of
the risk of error propagation in the presence of a
noisy channel. In fact, if we assume that the error
affects only the information on the match index, the
degradation in the decoded image could still be
severe but most of the information would be
preserved.

In Figure 5, from [11], it is shown the experimental
result of decoding the test image Lena when different
bit error rates (BER) occur.

5 Conclusion
In this paper we have reviewed the textual

substitution methods for image compression.
The LZ1 class of algorithms has been extended to

the two-dimensional case by Storer and Helfgott, but

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Bruno Carpentieri

ISSN: 1790-0832 771 Issue 5, Volume 6, May 2009

the overall performance of the two-dimensional
algorithms is not, at the moment, competitive with
the state of the art algorithms for image compression.

The LZ2 class of algorithms, instead, is more
promising: the AVQ algorithm introduced by
Constantinescu and Storer is an adaptive vector
quantization algorithm that applies to the digital
image data the LZ2 textual substitution methods. This
method maintains a constantly changing dictionary of
variable sized rectangles by “learning” larger
rectangles from smaller ones as the target image is
compressed.

Its compression performance is weakest on
standard magazine photographs, on which it generally
equals JPEG or achieves slightly less compression
than JPEG for the same quality, and it is stronger on
technical images as scientific images, fingerprints,
medical images, handwriting, graphs, etc, where the
adaptation abilities of AVQ yield significant
improvements over JPEG and also over other
traditional compression methods.

This algorithm has been successively studied also
from a theoretical point of view. Its asymptotical
optimality has been proven, depending on the
overlapping factor that is defined as the average
number of times a pixel is covered by a match.

The impact of channel transmission error on the
decoding process has been studied too and solutions
have been proposed by modifying AVQ so that a
channel error does not propagate, or at least there is a
graceful degradation in the decoded output quality.

The original AVQ algorithm has been further
improved on the class on images on which JPEG does
best (magazine photographs) by transforming the
input vector in a way similar to the one used in mean-
shape-gain vector quantization.

This improved MGSAVQ algorithm, along with
better compression results with respect to AVQ,
brings also an improvement in the overall visual
quality of the decoded image, especially at high
compression rate.

The full potential of the presented algorithms has
not been totally explored yet and it should be possible
to fill the gap in terms of compression ratio with the
current standards. We are examining different
organizations and encoding strategies of dictionary
information.

Future researches, following the footsteps in [12],
[13], [14], involve a more careful data representation
and an accurate application of the coding strategies to
the output of the textual substitution methods, as for
example by using arithmetic coding, so to improve
the overall compression performance.

References:
[1] A. Lempel and J. Ziv, “On the Complexity of

Finite Sequences”, IEEE Transactions on
Information Theory, Vol. 22, No. 1, 1976, pp. 75-
81.

[2] A. Lempel and J. Ziv, “Compression of Two-
Dimensional Images”, In A. Apostolico and Z.
Galil editors. Combinatorial Algorithms on
Words, Springer-Verlag, 1985, pp. 141-154.

[3] J. Ziv, A. Lempel, “Compression of Individual
Sequences via Variable Rate Coding”, IEEE
Transaction on Information Theory, Vol. IT-24,
No. 5, 1978, pp. 530-536.

[4] D. Sheinwald, A. Lempel and J. Ziv, “Two-
dimensional encoding by finite state encoders”,
IEEE-COM 38, 1990, pp. 341-347.

[5] J. A. Storer, Data Compression: Methods and
Theory, Computer Science Press, Rockville, MD,
1988.

[6] C. Constantinescu and J.A. Storer, “Improved
Techniques for Single-Pass Adaptive Vector
Quantization”, Proceedings of the IEEE, Vol. 82,
No. 6, 1994, pp. 933-939.

[7] J. A. Storer and H. Helfgott, “Lossless Image
Compression by Block Matching”, The Computer
Journal, Vol. 40, No. 1, 1997, pp. 137-145.

[8] F. Rizzo, J. A. Storer and B. Carpentieri, “LZ-
based Image Compression”, Information Sciences,
Vol. 135, No. 1-2, 2001, pp. 107-121.

[9] M. Alzima, W. Szpankowski, and A. Grama,
"2D-pattern Matching Image and Video
Compression", Proceedings of the Data
Compression Conference, 1999, IEEE Comp.
Society Press, pp. 424-433.

[10] M. Alzima, W. Szpankowski, and A. Grama,
"2D-pattern Matching Image and Video
Compression: Theory, Algorithms and
Experiments", IEEE Transactions on Image
Processing, Vol. 11, No. 3, 2002, pp. 318-331.

[11] F. Rizzo, J. A. Storer, B. Carpentieri, “Overlap
and channel errors in Adaptive Vector
Quantization for image coding”, Information
Sciences, Vol. 171, No. 1-3, 2005, pp. 125-143.

[12] Luca Matola , Bruno Carpentieri, “Color Re-
indexing of Palette-Based images”, WSEAS
Trans. on Information Sciences and Applications,
Vol. 3, n. 2, pp. 455-461, Feb. 2006, WSEAS
Press.

[13] Anna Ansalone, Bruno Carpentieri, “How to Set
“Don’t care” Pixels when Lossless Compressing
Layered Documents”, WSEAS Trans. on
Information Sciences and Applications, Vol. 4, n.
1, pp. 220-225, Jan. 2007, WSEAS Press.

[14] Bruno Carpentieri, "Learning how to compress
from correlated examples: the lossless case",

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Bruno Carpentieri

ISSN: 1790-0832 772 Issue 5, Volume 6, May 2009

WSEAS Trans. on Systems, Vol. 2, n. 4, Oct.
2003, pp. 856-860, WSEAS Pub..

Fig. 1: Two dimensional Sliding Window

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Bruno Carpentieri

ISSN: 1790-0832 773 Issue 5, Volume 6, May 2009

Fig. 2: Growing Border and Growing Points

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Bruno Carpentieri

ISSN: 1790-0832 774 Issue 5, Volume 6, May 2009

Fig.3: Circular growing heuristic

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Bruno Carpentieri

ISSN: 1790-0832 775 Issue 5, Volume 6, May 2009

Fig.4: Lena original image and Lena decompressed after 1 byte in the input stream has been corrupted

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Bruno Carpentieri

ISSN: 1790-0832 776 Issue 5, Volume 6, May 2009

Fig. 5: AVQ-MD: degradation when channel errors affect the match pointer (average over 100 runs).
(a) BER 10-5, (b) BER 10-4, (c) BER 10-3, (d) BER 10-2, (e) BER 10-1, (f) BER vs SNR/PSNR

(a) (b)

(c)

(e)

(d)

(f)

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Bruno Carpentieri

ISSN: 1790-0832 777 Issue 5, Volume 6, May 2009

