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Abstract: - Textual substitution methods, often called dictionary methods or Lempel-Ziv methods, after the 
important work of Lempel and Ziv, are one-dimensional compression methods that maintain a constantly 
changing dictionary of strings to adaptively compress a stream of characters by replacing common substrings 
with indices (pointers) into a dictionary. Lempel and Ziv proved that the proposed schemes were practical as 
well as asymptotically optimal for a general source model. Two-dimensional (i.e. images) applications of 
textual substitution methods have been widely studied in the past. Those applications involve first the 
application of a linearization strategy to the input data, and then the encoding of the resulting mono-
dimensional vector using LZ type one-dimensional methods. More recent strategies blend textual substitution 
methods with Vector Quantization. 
In this paper we discuss the textual substitution methods for image compression, with particular attention to 
the AVQ class of algorithms, and review recent advances in the field. 
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1 Textual Substitution Methods 

An interesting approach to compressing a string of 
characters is textual substitution.  

A textual substitution method is any compression 
method that compresses input by identifying repeated 
substrings and replacing some substrings by 
references to other copies. Generally, textual 
substitution methods are implemented as on line, 
dynamic, lossless, one-dimensional, compression 
algorithms. 

Lempel and Ziv [1] proved that the proposed 
schemes were asymptotically optimal for a general 
source model. The compression algorithms that apply 
these schemes are generally known as Lempel Ziv 
(LZ) coders and are divided in two different classes: 
LZ1 and LZ2 type methods. These two classes differ 
in the way the pointers are represented and in the type 
of objects to which the pointers point. 

LZ1 methods (see [1]) represent pointers by triples 
<d,l,c> (d is the displacement of the matching 
substring relative to the current position, l is the 
length of the match, and c is the character that 
follows the newly encoded string). The “dictionary” 
consists of all the substrings that occur previously in 
the input within a finite distance from the current 
position. This kind of dictionary is therefore a first–
in–first–out (FIFO) queue of the immediate past, and 
it is generally referred to as “sliding window”. 

The LZ2 algorithm is presented in Ziv and Lempel 
[2]. LZ2-based schemes, also called LZ78 or 
dictionary methods, attempt to code the repeated 
occurrence of a substring with an index in a specific 

dictionary. The coding pass consists of searching the 
dictionary for the longest entry that is a prefix of a 
string starting at the current coding position. The 
index of the match is transmitted to the decoder using 
log2(N) bits, where N is the dictionary size. This 
method updates the dictionary, that is generally 
initialized with the alphabet symbols, with new 
strings that can be, for example, a concatenation of 
the previous match with some new set of strings 
based on the current match. A trie data structure is 
often used to represent the dictionary; when the 
memory is full several strategies can be used to gain 
new space: the trie could be removed and 
reinitialized, it could be "frozen", or some substrings 
could be deleted to leave space to new data. 

Although asymptotically identical, in practice LZ2 
encoding is faster than LZ1, while the converse is 
true for decoding. Nevertheless, the general method is 
attractive, and it is the basis of many widely used 
compression systems. 

Two-dimensional (i.e. images) applications of 
textual substitution methods have been widely 
studied in the past, for instance by Lempel and Ziv 
[3] themselves and by Sheinwald, Lempel and Ziv 
[4]. Those researches involve first the application of a 
linearization strategy to the input data, and then the 
encoding of the resulting mono-dimensional vector 
using textual substitution, one dimensional, methods. 

Storer, in [5], first suggested the possibility of using 
dynamic dictionary methods in combination with 
Vector Quantization for lossless and lossy 
compression of bi-dimensional data.  
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The AVQ algorithm of Constantinescu and Storer 
[6] and the LZ1 based algorithm of Storer and 
Helfgott [7] pioneered this approach by showing that 
it has a number of advantages with respect to current 
state-of-the art algorithms such as JPEG. 

In this paper we discuss the textual substitution 
methods for image compression, with particular 
attention to the AVQ class of algorithms, and review 
recent advances in the field. 
 
 
2 Sliding Window Methods for Image 
Compression 

Storer and Helfgott, in [7], present a generalization 
of the LZ1 method to lossless compression of bi-level 
images. They use a wave heuristic to scan the image 
and a multi–shape, two–dimensional, suffix trie to 
represent the dictionary (i.e. the window of the 
already coded pixels).  

For each growing point, the largest square match of 
size k, for a given k, is computed and then the 
window is searched for the entry of size k*u or v*k 
that will code the largest number of unmarked pixels. 
If such match exists, then the quadruple <x,y,w,h> is 
sent to the decoder, where x and y are the location of 
the matching pattern and w and h are its dimensions. 
A raw block is sent otherwise. 

The implementation proposed in [7] is very fast in 
practice (especially for decoding), and it is not too far 
to the current state of the art for lossless compression 
of bi-level images (i.e. JBIG).  

Rizzo, Storer and Carpentieri in [8] address the 
same problem and show how it is possible to improve 
upon the basic algorithm by using hashing methods 
and by coding pointers carefully.  

In order to reduce computation time they bound the 
window height. As shown in Figure 1 (from [8]) the 
window will contain only entries between the 
Window BackFront and Window ForeFront. 

If the window size exceeds some predefined 
maximum size, the back front is advanced. 

 
CCITT gzip SH SWBM AVQ JBIG JBIG2 

1 17.22 17.40 19.14 20.00 39.69 78.66 
2 20.46 28.00 28.12 31.00 62.07 65.15 
3 11.61 12.00 12.67 13.00 25.29 43.07 
4 5.10 5.50 5.45 5.60 10.49 32.54 
5 9.78 10.50 11.20 11.60 21.55 47.79 
6 17.76 19.30 24.68 22.50 42.93 44.89 
7 4.68 5.30 5.36 5.70 9.70 14.34 
8 12.87 13.50 17.76 18.40 36.11 39.71 

Table 1: A comparison of Storer-Helfgott (SH), 
SWBM and other compression algorithms on the 
CCITT test set. 

 

This strategy impacts compression time 
significantly because only locations within the 
boundaries are involved in the match search. The 
width of the window is dynamically bounded too. 
Bounding the search window is also a way to 
significantly reduce the entropy of the displacement 
pointers. In [7] and [8], the proposed two- 
dimensional, sliding window, block matching 
algorithms are tested on the CCITT image test set. 
The compression ratio obtained for lossless 
compression are shown in Table 1 (from [8]) where 
[7] is SH and [8] is SWBM.  

 
 

3 LZ2 Methods for Image Compression 
The adaptive vector quantization algorithm (AVQ 

from now on) presented by Constantinescu and Storer 
in [6] has been the first effective application of the 
LZ2 strategy to images.  

This approach does not reduce the two-dimensional 
data to one dimension (as in [4]), but blends the 
textual substitution strategy with the Vector 
Quantization compression approach to images. 

In [6] it is defined as Growing Border the set of 
locations in the input image that have not yet been 
encoded and that are closest to the already–coded 
locations (see Figure 2). A Growing Point is any 
coded point not yet encoded where a match may take 
place. The data structure that stores the growing 
points is called Growing Points Pool. 

A Growing Heuristic is a set or rules used to 
identify the next growing point to be processed. 
There are many different ways to implement the 
growing heuristic. 

There are many different ways to implement the 
growing heuristic. The one depicted in Figure 3 is 
usually addressed as Circular Heuristic: coding starts 
from a given location of the input image and the 
growing heuristic will always pick the closest 
growing point to the starting one. When the initial 
growing point is the upper left corner of the input 
image, the resulting heuristic is addressed as the 
Wave Heuristic, since the image will be coded in a 
path parallel to the secondary diagonal (i.e. like a 
“wave”, see Figure 2).  

At each step the AVQ algorithm selects a growing 
point of the input image. The encoder uses a match 
heuristic to decide which block of a local dictionary 
is the best match for the sub-block anchored on that 
growing point. The match heuristic chooses the 
largest block for which the distortion from the 
original block is less or equal to a threshold T. The 
threshold T could be fixed for the whole image, or 
dynamically adjusted to the image content. 
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It will be higher for smooth areas and lower for 
zones with large variance (as, for example, sharp 
edges). 

At the starting of the encoding process, the local 
dictionary contains one entry for each possible pixel 
value; during the encoding process the dictionary is 
updated by using a Dictionary Update Heuristic, 
possibly preceded by a Deletion Heuristic. The basic 
structure of the encoding algorithm is described in 
Algorithm 1: 

 
1. Initialize the local dictionary D to have one 

entry for each pixel of the input alphabet and 
the growing points pool with the initial set of 
growing points.  

2. Repeat until the growing points pool is 
empty:  

a) Use a Growing Heuristic to choose the 
next growing point gp from the 
growing points pool. 

b) Use a Match Heuristic to find a block b 
in D that matches with acceptable 
fidelity the sub-block anchored in the 
growing point gp. 

c) Transmit logD bits for the index of b.  
d) Use a Dictionary Update Heuristic to 

update the dictionary D (if D is full, 
first use a Deletion Heuristic to make 
space). 

e) Update the growing points pool 
according to a Growing Points Update 
Heuristic 

Algorithm 1: AVQ Coding 
Algorithm 

 
As reported in [6] and [8], for a given overall 

fidelity, the compression achieved by the AVQ 
approach often equals or exceeds the traditionally 
trained VQ approach and the JPEG algorithm.  

As reported in [6] the compression performance of 
AVQ is weakest on standard magazine photographs, 
on which it generally equals JPEG or achieves 
slightly less compression for the same quality, and 
strongest on technical images as scientific images, 
fingerprints, medical images, handwriting, graphs, 
etc, where the adaptation abilities of AVQ yield 
significant improvements over JPEG and other 
similar methods. Besides good compression 
performance the AVQ algorithm has other 
advantages over traditional image compression 
techniques. It is a single-pass adaptive algorithm that 
requires no dictionary or codebook to be provided in 
advance. Moreover one can provide in advance a 
precise estimate on the distortion of any sub-block of 
the image and, with a fixed codebook size, it is 
possible to vary continuously the fidelity-
compression tradeoff. The algorithm presents fast 
(table-lookup) decoding and practical real-time 
encoding time. 

 
Image SNR  JPEG AVQ MGSAVQ 

Baloon 24.2 27.03 11.85 20.55 

 15.3 55.64 39.33 70.47 

Barb 22.3 6.10 4.86 5.31 

 13.5 19.43 14.16 14.67 

Barb2 21.7 5.85 5.13 5.18 

 13.6 21.64 14.81 13.99 

Board 27.1 13.15 9.78 11.85 

 18.9 39.60 28.23 39.12 

Boats 24.2 8.19 5.97 6.89 

 14.3 22.66 24.62 26.25 

Girl 23.0 13.21 8.53 9.19 

 14.9 43.90 28.06 29.47 

Gold 22.8 7.24 5.96 4.86 

 14.4 41.33 23.10 25.43 

Hotel 23.5 6.93 5.81 6.21 

 15.5 25.98 15.68 18.33 

Lena 23.2 8.09 5.34 6.35 

 14.1 39.01 20.98 23.95 

Peppers 22.3 9.04 6.24 6.75 

 14.9 38.68 21.00 25.29 

Zelda 20.0 27.69 12.94 19.37 

 13.6 51.46 36.92 48.71 

Table 2: AVQ vs MSGAVQ 
 

 
4   More on the AVQ Algorithm 

The basic AVQ algorithm is robust against minor 
changes, such as the choice of growing method.  

From the theoretical point of view, it is not easy to 
analyze its performance.  

Alzima, Spankowski, and Grama, in  [9] and [10], 
proposed a formal analysis of the algorithm; although 
they do not fully resolve the question of whether the 
AVQ algorithm is an (asymptotically) optimal 
compression algorithm, they do show experiments 
that confirm its competitive performance. 

Rizzo, Storer and Carpentieri in [11] perform a 
theoretical analysis of the algorithm, by taking into 
account one of the key AVQ aspects: matches are 
allowed to overlap, therefore it is not necessary to 
perform bin packing in order to cover the image with 
variable size and shape matches. [11] proves that 
AVQ is asymptotically optimal (under certain 
conditions), depending on the overlapping factor 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Bruno Carpentieri

ISSN: 1790-0832 770 Issue 5, Volume 6, May 2009



defined as the average number of times that a pixel is 
covered by a match.  

Overlapping is an aspect of AVQ that is really new: 
this mechanism was not present (or needed) in the 
one-dimensional lossless textual substitution 
algorithms or in the lossy two-dimensional VQ, from 
which AVQ was derived.  

Rizzo, Storer and Carpentieri in [8] improve the 
AVQ performance by adding a mean gain shape 
transformation to the match heuristic (they call this 
new algorithm MGSAVQ). Namely, let mb, gb and 

  

r 
s 

b
 

be respectively the mean, the gain and the shape of 
the block b in the dictionary and mgp, ggp and 

  

! 

r 
s gp  be 

respectively the mean, the gain and the shape of the 
block x anchored at the growing point gp of the same 
size and shape of b. They change the match heuristic 
in Step 2.b as follows: 
 
2.b Compute the vector 

  

! 

r 
y b = ggp "

r 
s b + mgp "

r 
1  and 

choose b   as the current match if its size is maximal 
and the distance   

! 

d(
r 
x ,

r 
y b ) is less or equal to the fixed 

threshold T. 
 

Once the best match is found, it is necessary to 
transmit mgp and ggp to the decoder along with the 
index of b in the dictionary. In order to minimize the 
entropy of the output stream, the mean is 
differentially encoded and it is fed to an arithmetic 
encoder.  

Table 2 (from [8]) shows the experimental results 
obtained on the typical AVQ image test set at two 
different levels of quality. The first column indicates 
the target signal to noise ratio, while the second, third 
and fourth columns, contain the relative compression 
ratios of JPEG, AVQ and MGSAVQ respectively. 

As in the one-dimensional case, the two-
dimensional dynamic dictionary methods, and 
specifically the AVQ algorithm, turn out to be 
sensitive to channel errors.  

In fact even the flipping of a single bit in the bit-
stream is likely to cause catastrophic errors at the 
decoder side.  

Figure 4, from [11], shows what happens when a 
random byte is altered in the coded stream of the 
Lena image: the decoded image is almost fully 
corrupted. 

In the one-dimensional case with the presence of 
channel errors, because of the sequential nature of the 
input, we can expect a total loss of information. 

In the two-dimensional case instead we might 
expect a different behavior: for example we might 
expect that a single error has only local effects or, in 
the worst case, that it spoils only a wedge-shaped 
area starting from the growing point at which the 
error occurs.  

Instead, as we can see in Figure 4, after the error 
occurs, the decoded image starts to degrade heavily 
and no information could be extracted from the 
corrupted areas. Moreover, the black region in the 
middle of the decoded image indicates that part of the 
original image has not been decoded at all.  

In fact, as in the one-dimensional case, the error 
propagates and scrambles the content of the 
dictionary. Moreover the error causes new (wrong) 
growing points to be added to the growing point pool, 
and this will disrupt the entire process. 

Rizzo, Storer and Carpentieri, in [11], modify AVQ 
so that a channel error does not propagate, or at least 
there is a graceful degradation in the decoded output 
quality.  

A simple approach to solve this problem is to 
divide the image into a fixed number of macro-areas 
of a given size and to compress each area separately 
(i.e., starting with a new, empty dictionary for each 
macro-area).  This way, if the channel is such that the 
errors occur only in isolated bursts, in general the 
errors may effect only a few macro-areas, depending 
on the size of the macro-areas themselves, the 
duration of the burst and the time at which the error 
occurs.  

This strategy may be profitable when the size of the 
input is large enough, even though in the worst-case 
scenario there could be at least one burst for each 
macro-area. 

Another possible strategy to tackle the channel 
errors is to impose a more rigid structure on the 
dictionary and to change the amount and type of 
information that is transmitted through the channel. 

The dictionary is then divided into as many sub-
dictionaries as the different number of legal block 
sizes. Each sub-dictionary has the same size and the 
encoding algorithm is basically the same as the 
baseline AVQ.  

This approach, in [11], is called AVQ-MD. The 
reorganization of the dictionary allows a reduction of 
the risk of error propagation in the presence of a 
noisy channel. In fact, if we assume that the error 
affects only the information on the match index, the 
degradation in the decoded image could still be 
severe but most of the information would be 
preserved.  

In Figure 5, from [11], it is shown the experimental 
result of decoding the test image Lena when different 
bit error rates (BER) occur.  

 
 

5   Conclusion 
In this paper we have reviewed the textual 

substitution methods for image compression. 
The LZ1 class of algorithms has been extended to 

the two-dimensional case by Storer and Helfgott, but 
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the overall performance of the two-dimensional 
algorithms is not, at the moment, competitive with 
the state of the art algorithms for image compression. 

The LZ2 class of algorithms, instead, is more 
promising: the AVQ algorithm introduced by 
Constantinescu and Storer is an adaptive vector 
quantization algorithm that applies to the digital 
image data the LZ2 textual substitution methods. This 
method maintains a constantly changing dictionary of 
variable sized rectangles by “learning” larger 
rectangles from smaller ones as the target image is 
compressed. 

Its compression performance is weakest on 
standard magazine photographs, on which it generally 
equals JPEG or achieves slightly less compression 
than JPEG for the same quality, and it is stronger on 
technical images as scientific images, fingerprints, 
medical images, handwriting, graphs, etc, where the 
adaptation abilities of AVQ yield significant 
improvements over JPEG and also over other 
traditional compression methods. 

This algorithm has been successively studied also 
from a theoretical point of view. Its asymptotical 
optimality has been proven, depending on the 
overlapping factor that is defined as the average 
number of times a pixel is covered by a match.  

The impact of channel transmission error on the 
decoding process has been studied too and solutions 
have been proposed by modifying  AVQ so that a 
channel error does not propagate, or at least there is a 
graceful degradation in the decoded output quality.  

The original AVQ algorithm has been further 
improved on the class on images on which JPEG does 
best (magazine photographs) by transforming the 
input vector in a way similar to the one used in mean-
shape-gain vector quantization.  

This improved MGSAVQ algorithm, along with 
better compression results with respect to AVQ, 
brings also an improvement in the overall visual 
quality of the decoded image, especially at high 
compression rate. 

The full potential of the presented algorithms has 
not been totally explored yet and it should be possible 
to fill the gap in terms of compression ratio with the 
current standards. We are examining different 
organizations and encoding strategies of dictionary 
information. 

Future researches, following the footsteps in [12], 
[13], [14], involve a more careful data representation 
and an accurate application of the coding strategies to 
the output of the textual substitution methods, as for 
example by using arithmetic coding, so to improve 
the overall compression performance. 
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Fig. 1: Two dimensional Sliding Window 
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Fig. 2: Growing Border and Growing Points 
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Fig.3:  Circular growing heuristic 
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Fig.4: Lena original image and Lena decompressed after 1 byte in the input stream has been corrupted 
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Fig. 5: AVQ-MD: degradation when channel errors affect the match pointer (average over 100 runs). 
(a) BER 10-5, (b) BER 10-4, (c) BER 10-3, (d) BER 10-2, (e) BER 10-1, (f) BER vs SNR/PSNR 

 

(a) (b) 

(c) 

(e) 

(d) 

(f) 
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