
Recommendation system based on the clustering of frequent sets

ANDREI TOMA, RADU CONSTANTINESCU, FLOAREA NASTASE
The Economic Informatics Department

Academy of Economic Studies
Bucharest, Piata Romana no 62

ROMANIA
andrei.toma@ie.ase.ro, radu.constantinescu@ie.ase.ro, nastasef@ase.ro

Abstract: - Generating shopping recommendations has become a classical problem in knowledge engineering with
extensive practical applications. In this article we propose a system for the generation of such recommendations based
on considering both local and global influences.

Key-Words: - shopping recommendation, frequent sets, clustering, self-organizing maps

1 Introduction
In present day online business, making decisions based
on analyzing the data gathered from previous periods
has become not a luxury, but a necessity.
In the same trend, large online salesmen make a
significant part of their revenue from the sale of
products which were recommended to the customer by
some kind of automated system.
Under these conditions, an entrant on the market of
online commerce cannot hope to succeed without
creating a relationship with its customers which will
allow for repeated sales. Since an online salesman
interacts with its customers mainly through its website, a
very important way in which this can be achieved
include efficient product recommendations.
The generation of recommendations based on stored
data recording past user actions has multiple
applications, from shopping recommendations to
collaborative based search engines.
Since the most prevalent form in which the data comes
is that of click logs or web logs, in a first step it is
important to be able to extract behavioral characteristics
from what is generally non structured information. A
possibility is to consider as characteristics of the user the
response he/she has at what can be perceived as different
external stimuli. For example, different types of users
can be identified if one represents the data in such a
way. Some users will respond to polls and constantly
view topics/products while not actually buying anything.
Differentiated treatment of users with such
heterogeneous objectives would lead to increasing their
satisfaction with the service which integrates the
recommendation engine.
In what the actual recommendation is concerned, both
global and local influences are to be considered. By
global influences we understand behavioral patterns
which are evident at the level of the entire population of

users while by local influences we understand the
similarities that a particular user might have with a
particular class of other users (local influences are
geared more toward differentiation).
While this approach can contribute to the increase of the
customer base, it is the first approach that is more likely
to increase revenue in the immediate future. Although
the objective of the recommendations depends on the
actual seller’s strategy, this paper details the case where
the recommendations are based on the preferences of
users who buy frequent items.

2 Problem Formulation
Shopping recommendations can be generated either by
taking into account some form of customer feedback
(such as asking various questions about their preferences
and building recommendations based on the answers) or
in a collaborative manner, by building a model for
customer preferences based on their connections with
the actions of other customers.
Since the customers are generally reluctant to answer a
large number of questions or, indeed, any number of
questions, the second approach should be preferred.
Sales in a web based shop are generally distributed in
the form of a “long tail” distribution there are of course
two possible recommendation strategies, inspired from
different marketing strategies. A recommendation
system can either aim for the average customer (and
recommend products that he/she would be likely to buy
in the future) or, as a different strategy, can attempt to
access the customers interested in less than frequent
products (thus tapping the “tail” part of the distribution).
The second strategy consists in recommending
infrequently bought products to their most likely buyer
even though the likelihood of an actual purchase might
be small.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Andrei Toma, Radu Constantinescu, Floarea Nastase

ISSN: 1790-0832 715 Issue 5, Volume 6, May 2009

mailto:radu.constantinescu@ie.ase.ro

2.1 Available data
If recommendations are to be constructed without the
explicit feedback of the customers, the data will most
usually come from the logs the shop keeps of the
customers’ actions.
Since the recommendations will most likely be added to
an existent systems and thus need to use existent data,
the most general form in which the data exists is a click
log form (the existent system memorizes all the clicks of
all the users through the site). The size of such a log can
be prohibitively large so various optimization concerns
arise.

 2.2 Objectives
The objective of the recommendation system is
attempting to produce an accurate system based on the
analysis of the frequent actions users take.
The accuracy of such a system is not necessarily a set
standard as one must balance accuracy with the actual
technical requirements of the system in the form in
which it would be actually implemented in a production
environment (which, if anything, must remain within the
realm of the possible).
As such, there is a set of problems which somebody
interested in implementing the system must consider.
First of all, frequent set mining can prove extremely
time consuming on large volumes of data and must be
optimized as much as possible. It is possible that such
and optimization will prove insufficient for the
requirements of a real system and that certain trade-offs
between accuracy and speed must be considered.
Another point in which optimization must be considered
is the clustering step, especially when using a high
complexity method such as self organizing maps.
In order to obtain a working system, implementation
must take into consideration the solution making some
of the components of the system run offline while
keeping the others online. By offline we understand
running the components periodically, not at any
modification of the underlying data.
Components which could be run offline in the event that
the volume of data makes it necessary are the frequent
pattern mining and clustering. This is acceptable since
the data they produce reflect global influences which are
unlikely to change on a short term. Significant
modifications would have to occur in order for this data
to have a negative effect on the recommendations.
The actual recommendation part of the system will be
run online, as it is based on the preexistent data built
through frequent pattern mining and clustering.

3 Problem Solution
The system works on a series of steps which will be
presented in subsequent sections.
Some of the steps refer to algorithms which can be
found in other papers and will only be referenced briefly
as their presentation is outside the scope of this paper.
The idea is to generate recommendations based on two
things. First we need to maintain information about each
user in the form of the sets of actions that he/she
performed as compared to the general population of
users. These frequent sets of actions have to be separated
in action classes such as buying, viewing or reaction to
polls. These classes will be considered to represent
characteristics of the users and thus used as a basis for
the comparison between any two particular users.
Secondly we must cluster the users based on the
aforementioned characteristics. As the characteristics are
based on the general behavior in the population, they
reflect general tendencies. We are interested to reflect
the similarities within the groups of similar users, not the
entire population and thus we must group the users
according to similarity based on these groups that the
recommendations will be produced.
Our approach is based on the clustering of feature
vectors via self-organizing maps. These feature vectors
are characteristics of the user defined as behavioral
classesp[11].
By characteristic we understand sets of actions that the
user has performed which have proven to be relevant
when compared to the general population of users.
These sets of actions will be obtained through frequent
pattern mining, using the “a priori” method.
This is of course not the only approach possible. On one
hand, the system could be modified in one of its parts,
such as replacing “a priori” mining with FP-trees or
another method of frequent pattern mining.
In the same line of thought, clustering could be done by
another method. This could prove advantageous from a
complexity point of view, as long as a method of
supplying the number of clusters as an input in the
system is also provided[12].
A number of different general approaches can also be
applied, such as using genetic algorithms for
recommendation generation or using models of the
human immune system[13][14][15][16].

3.1 Gathering data
A click log might be represented in the system as in
table 1 below. It will contain additional information such
as location of the user and company specific data. Some
of this information will be ignored in the
recommendation process, while other can be used in
order to obtain more accurate data (such as using the

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Andrei Toma, Radu Constantinescu, Floarea Nastase

ISSN: 1790-0832 716 Issue 5, Volume 6, May 2009

referrer to ascertain which of the open pages the user
actually read).

User Page … Referrer Action

13321 311 … x.asp action_buy

32113 33 … y.asp action_view

32131 dd … y.asp action_buy

Table 1

Since the information comes from user click logs, on
one hand it is not separated by the criteria mentioned
above (it is not separated based on the characteristics the
analyst decided to take into account). On the other hand,
a fair amount of pre-processing must be done to
eliminate useless information. For example, especially
when analyzing user view data, one cannot the
conclusion that a user clicking the product has actually
viewed it. The fact that multiple windows were open
simultaneously for example should be reflected in pre
processing (in this particular case, the window which is
considered to have been viewed should be the one with a
subsequent action performed in a reasonable amount of
time).
Another important aspect is that if the click logs contain
elements which are irrelevant for the recommendation
system, these items have to be pruned out of the data.
Such an example is buy data which is not actually
connected to real products, such as discounts or
vouchers. The representation of such entities is, of
course, dependent on the implementation of the
underlying system.
After the elimination of possible irrelevant information,
the data used to apply the algorithm will come in the
form of several entities (i.e. tables) each containing
actions from a particular class. These tables correspond
to the actions which are considered relevant for
recommendations, which are not necessarily all possible
actions. For example, the click logs will most likely
store the user’s access to his buy history or the help
pages but these contain little to no useful information in
what product recommendation is concerned.
As such, after the data gathering step we will, for
example, have a table containing buy data (products
bought by the users), one containing view data (products
viewed by the users), one containing special offer data
(the special offers the users actually clicked and read)
etc.
A special mention here is that each table corresponding
to an action has to be pruned again according to the
specifics of that particular action. For example, the user
might open multiple windows after a search, but will
obviously not read all of them simultaneously. In order
to make the data more relevant, only the page which has

a follow-up action (a subsequent click on an element of
the page) will be considered read. Buy data, in turn,
should not contain all the products that were added to
the shopping cart, but products which have resulted in
and actual payment; products added to the cart can be,
however, used to refine view data.
It is impossible to present exhaustively all the rules that
should be applied in order to obtain more accurate data,
as these are dependent on the underlying system.

3.2 Finding patterns with the “a priori”
algorithm
For the identification of frequent patterns, one of the
possible solutions is the a priori algorithm[4][8][9].
While fairly resource intensive, a fair number of
optimizations can be done to ignore part of the
intermediary sets which will not lead to useful results.
For more details about the optimization of frequent set
mining, see [1].
Also for a more in-depth description of the a priori
frequent pattern mining algorithm, see [2].
One initial choice is if to apply “a priori” to the data as it
was extracted from the click log or to transform it in
order to allow for a vertical approach. Representing the
data in vertical form would have the advantage of easier
calculation of frequencies but would in turn necessitate
transforming the input tables.
In the system described by the present paper, a priori
mining will be done via a horizontal approach which
does not require doing further transformations on the
gathered data.
“A priori” is an algorithm proposed by R. Agrawal and
R. Arikant which is built around the idea of using prior
knowledge of lower order frequent set properties to
generate higher order sets. By the “order” of a frequent
set we understand the number of elements it contains.
The most important property of frequent sets is that any
subset of a frequent set must also be frequent (a property
which is called the “a priori” property). As such, a
candidate set can be eliminated from the process if it
contains at least an infrequent subset.
The frequency or infrequency of a set is defined in
relation to a minimal frequency which is a parameter of
the algorithm and which must be chosen so as not to
eliminate any relevant sets while at the same time
avoiding the inclusion of irrelevant sets.
The basis of the “a priori” property is the following line
of reasoning. If an item does not satisfy the frequency
condition, then any set to which it is added cannot
possibly have a frequency higher than the item and thus
will, in turn, not satisfy the condition either.
The basic a priori algorithm is described in the following
figure (Fig. 1).

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Andrei Toma, Radu Constantinescu, Floarea Nastase

ISSN: 1790-0832 717 Issue 5, Volume 6, May 2009

Fig.1 Frequent pattern mining

As shown in figure one, the algorithm is basically
organized in two major steps, one which involves
generating candidate frequent sets and one which
eliminates the sets which are infrequent.
At the beginning of the application of “a priori” the
generation step will refer to individual items, whose
frequencies will have to be generated by effectively
counting all item instances.
After all items which do not satisfy the frequency
condition have been eliminated, the next step is to
generate 2nd order item sets by combining the remaining
items. This is the generation step which will be repeated
throughout the algorithm.
The next step is to verify if the generated sets are
actually frequent. While the obvious method is to count
all the instances of the generated sets, this will produce a
lot of computational overhead and might not be feasible
with a high amount of data. In order to alleviate this
problem the algorithm uses the “a priori” property to
eliminate possible infrequent subsets.
The next step is to continue the set generation,
producing 3rd order sets by merging 2nd order sets. After
the generation step, the “a priori” property is applied in a
similar manner as on the 2nd level sets in order to
eliminate sets containing infrequent subsets.
As a general rule, in order to find frequent sets of order
k, the “a priori” algorithm will generate them by

merging sets of order k-1. On this pool of candidate sets,
it will then apply the “a priori” property in order to
eliminate the infrequent ones.

Algorithm:
P1.Go through one of the tables constructed in
the data gathering phase and construct the
frequences of all items. In principle, the
frequencies are constructed in memory but
should this be a performance constraint, they
will be stored in a temporary table.
P2. Keep only the items for which the frequency
is larger than a certain limit.
The frequency threshold should be chosen
according to the existent data in such a way as to
balance the information loss and the time needed
to perform subsequent calculations.
P3. Construct candidate sets of length i+1 by
combining itemsets of length i.
P4. Discard constructed itemsets that fall under
the frequency limit. A set is also infrequent it it
contains an infrequent set of any order.
P5. Continue generating n element sets based on
n-1 element sets until no new frequent sets can
be found.

As an optimization, sets of n elements can be generated
based not only on n-1 element sets, but also n-2 element
sets or n-3 element sets if such sets have count (n-k)
+count (k) < count (n-1) +count (1) where count(x) is
the frequency of the set of x level based on the property
that all subsets of a frequent set must be frequent
themselves
The algorithm can be further optimized by exploiting a
series of properties that the frequent sets have. See for
example [1].

3.2.1 Recommendations based on frequent sets only
While frequent sets do not generate sufficient
information to permit effective recommendations, they
are an integral component in the recommendation
engine.
The weakness of recommending items based on frequent
sets only is that such a system will not consider the
similarities between users.
The preferences of all users will have similar chance of
affecting the recommendations although it can be argued
that the existence of similar sets of items that users find
interesting is a basis for similarity.
Recommendations can be constructed based on the
frequent sets associated to a user. The mechanism we
propose is presented in the following figure.

Fig.2 Recommendations based on frequent patterns

Algorithm:
P1. Consider the sets extracted for a particular
user U and a particular characteristic C which
form S=(s1,s2,...,sn)
P2. Find all sets sk belonging to the same
characteristic C of any other user with the
property that at least one element si of S is a
subset of sk (sk contains all the elements in si and
at least one more element)
P3. For every superset, extract the set of
elements M that are not contained in the subset.
P4. Eliminate from M the actions that were
already performed by the user.

The algorithm in figure 2 can also be optimized if
performance constraints demand it. The number of
supersets taken into calculations can be adjusted by
considering supersets only for the sets of maximum size
(n) or including supersets for sets of lower size (n-k with
a strictly positive k).

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Andrei Toma, Radu Constantinescu, Floarea Nastase

ISSN: 1790-0832 718 Issue 5, Volume 6, May 2009

While the algorithm described in figure 2 is relatively
effective in producing items which are likely to be
interesting to the user, it does so only by estimating
effects on a global level. The results should be narrowed
down by taking into account the preferences of the users
which are behaviorally similar. Furthermore, even for a
particular user, the algorithm takes into account only the
actions taken from a particular class of possible actions.
For example, it can give a viewing recommendation, but
it ignores which products the user has actually bought.
Optimization of the result would first involve
introducing a way to consider the whole of user behavior
and not just the current category. As such
recommending similar products to a user currently
viewing a product must involve not only the products
the user previously viewed, but also, for example, the
fact that his reaction was one of interest to a promotion
involving certain products.
Secondly, it must be considered that, taking into account
the whole of the user’s behavior, there might be greater
similarity between him/her and a certain set of users.
Should such a similarity exist, those users’ behavior
should be the basis for recommendation.

3.3 Clustering users using self-organizing maps
In order to find out which users are similar in behavior,
one can apply as series of algorithms such as K-NN or
SOM (which is the one we have opted for). The
advantage of using self-organizing maps for clustering
users according to preference stems from the fact that
there is no initial need to know the number of clusters.
With SOM, the number of clusters itself is produced by
the algorithm without the necessity of giving the as an
input[3][5][6][10].
However, since SOM is a “heavier” algorithm than some
of the alternatives, in the sense that the needed computer
time is much bigger, one could presumably run SOM
just to detect the number of clusters and then use it as a
basis for the implementation of a “lighter” algorithm.
Should such an approach prove necessary, the algorithm
used for clustering in the actual system should probably
be a variation of naïve Bayes, which would produce
accurate results with an acceptable loss in accuracy.
The basic algorithm for SOM based clustering is
presented below, in figure 3. For a more complete
description see [3][7].

Fig.3 SOM clustering

Algorithm
P1. Define the size of the network (the number
of input variables, the size of the external layer),
the learning rate.
P2. Calculate the time constant, the maximum
radius of the network.
P3. Allocate random values to the intensities of
the connections to the external layer.
P4. Select an user.
P5. For the selected the user, calculate the
neuron on the external layer which is closest
(winning neuron). The distance between an input
set and the external neurons is calculated via a
version of edit distance.
P5. Calculate the radius of the winning neuron’s
neighbourhood and adjust the intensities for the
neurons in the neighbourhood with decreasing
influence from the centre to the borders.
P6. As long as there are more users, go back to
step P4. With passing iterations of the algorithm,
the learning rate and neighbourhood radius are
affected by a degeneration function.
P7. Group the users according to which neurons
on the external layer fire when the input layer is
activated with the user’s characteristics.

The concept of self-organizing maps was introduced by
Teuvo Kohonnen and is one of the more popular
clustering mechanisms[3].
Self-organizing maps are neural networks which allow
grouping of the data based on the relations existent in
the data itself. Their training is unsupervised, without
the need for external input under the form of training
sets.
The characteristics taken into account when classifying
the users are vectors of frequent sets.
Each characteristic is a set of frequent actions taken in a
class of actions. Such a class might be buying or
viewing.
As such, a user will be represented as a vector of
characteristics such as U = (C1,..,Cn), where the number
of characteristics n is the number of entities constructed
in the data gathering step. C1 might thus represent
buying, while C2 might represent viewing. The degree of
similarity of a user Ui to a user Uj will be represented by
the sum of the similarities between each of the
corresponding characteristics of the two users. The use
of the distance between two users is presented in figure
4 with d(x,y) the distance function between two users

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Andrei Toma, Radu Constantinescu, Floarea Nastase

ISSN: 1790-0832 719 Issue 5, Volume 6, May 2009

defined as the sum of the distances between each of the
characteristics of the users.
Each of the characteristics will be on the form of a set
vector, with the sets present in a characteristics being
frequent sets mined through the “a priori” algorithm. A
characteristic C will thus have the form C = (s1,..,sn),
where si is a frequent set.
Distances between two characteristics, which are needed
to calculate the distance between users are calculated
based on the appearance of the same frequent sets in
both characteristics, as shown in figure 5. Sets contained
in only one characteristic which have a corresponding
superset in the other are considered relevant based on
the reasoning that in the future they might generate
common sets.
Clustering through self-organizing maps consists of
mapping the data from the n-dimensional space of the
input vectors, which in our case represent the users, to a
2-dimensional space. This of course has the added
advantage of being able to represent similarities within
the data in a human readable form. There are of course
possible optimizations to the representation of the data
which may reveal further correlations (such as
representing the outer layer on a torus shape or making it
3-dimensional).
The first step in applying the algorithm to the data is
determining the structure of the network. Also, a series
of parameters needed in the training of the network have
to be determined at this stage.
It must be mentioned that the results on different
structures of the network applied to the experimental
data should guide the analyst in determining the best
solution to be selected.
A self organizing map is composed from an input layer
with a number of nodes equal to the number of
components of the input vectors and an n-dimensional
output where n is the number of dimensions of the map
on which we want to represent the input vectors.
All input nodes are connected to all outer layer nodes
while there are no connections between input nodes or
output nodes. The intensities of the connections between
the input and output nodes will be used for the
classification of the users after the training process.
In our case the number of input nodes will be equal to
the number of relevant characteristics identified in the
system. The nodes will thus correspond to the different
actions the users might take (buying, viewing etc.).
The output layer serves as a map to the similarities
between the input vectors. Inputs which are more similar
will appear closer on the map.
The dimensions of the output map have to be selected
such as to avoid losing classification accuracy while
keeping the map at a sufficiently low size. Higher size
maps need more resources in order to classify the inputs

so the size must be selected that manages to balance
accuracy with resource expenditure.
We opted for an initial outer layer dimension of 10x10
which proved large enough to allow for separation
between the clusters of users. Considering that the outer
layer is relatively small, the needed calculations were
well within the accepted limits.
Other parameters which must be decided at this stage are
the learning rate and the initial radius of the starting
neighborhood.
The learning rate controls the speed at which the
network adapts to changes in the training data and
should be selected so as to control the network’s
response to extreme values.
The initial neighborhood radius will be set to the
maximum possible (the dimension of one side of the
outer layer) and then be degenerated as the algorithm
progresses.
The next step is to initialize the weights of the
connections between the input nodes and the outer layer
nodes. The weights are initialized with small random
values (0<w<1) for all the connections from input nodes
to output nodes.
After the initial preparations, input vectors are selected
and presented to the network. Since the system must
adapt while online input vectors will be presented in the
order in which modifications occur. As a note, this
process will take place offline, that is the training
algorithm will be run periodically starting from the
already determined weights and using as training vectors
the newly added/modified user vectors.
As such, the initialization of the weights with small
random values will only take place on the first run of the
training algorithm.
After a vector is selected, the next step is to find which
output neuron is the winning neuron in relation to the
input vector.
The custom distance function used is described in figure
4 and figure 5.

2),(),(ii yxdyxdist ∑=
Fig.4 Distance between users

The index i counts the characteristics of a particular
user. The function d is the actual distance function
between characteristics, where n is the number of
common sets the characteristics have, m is the number
of subsets characteristic xi contains for the sets in yi and
k is the number of subsets characteristic yi contains for
the sets in xi.

)(*5.0),(kmnyxd ii ++=
Fig.5 Distance between characteristics

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Andrei Toma, Radu Constantinescu, Floarea Nastase

ISSN: 1790-0832 720 Issue 5, Volume 6, May 2009

The distance function is justified by the fact that
similarities are reflected both by the existence of
identical behavioral patterns for two users but also by
the possibility of future similarity. The quotient 0.5 used
as a weight for probable future similarity should actually
be determined through experimentation on the data.
After the winning neuron has been found the weights of
the connections from the input neurons to the winning
neuron are corrected, as well as the weights of the
neurons in the neighborhood of the winning neuron.
Since the network is supposed to stabilize in time, the
radius of the neighborhood is decreased by multiplying
it with a degeneration function.
Also, after each iteration, the learning rate should also
be decreased.
The network is retrained continuously (iterative
approach) by supplying it with new inputs
corresponding to user actions that were not already
presented to it.
This means that when a new user appears, the
corresponding vector will be trained into the network.
Also, when a user’s behavior extends, the corresponding
vector will also be retrained into the network.

3.3.1 Recommendations based on clustering and
frequent sets
Since we now have a method of grouping the users
according to their actions in certain categories, we will
use the information to refine the algorithm presented in
figure 2.
The revised algorithm, which takes into account both the
global and the local influences, is presented below in
figure 6.

Fig.6 Recommendation algorithm

Since searching for the users in the same cluster can
generate performance problems and the clusters have a
high degree of stability, the current cluster to which an
user is supposed to belong is stored and the inclusion of
users in clusters is recalculated periodically.
The algorithm produces a “recommendation basket”
from which items can be selected, either on an objective
basis, such as the items that appear as a result of an
increased level of similarity (higher order supersets) or
by intersecting the set with a set of items the system
including such a model has an interest in recommending
(e.g. top selling products).

3.4 Practical concerns
Depending on the size of the data, some of the
operations necessary for recommendation generation
might be more usefully done on a periodical basis
(offline), while the recommendation system itself would
function “live” (online).
For example, the discovery of frequent patterns could be
done offline. Since they contain a minimal frequency
level parameter they allow for accuracy preservation
even in an offline scenario.
In the same way, the inclusion of users in particular
clusters can be done offline, as long as the system
provisions for new users.
Various performance concerns should be addressed if
they affect the system, as the development would ideally
be dynamic that is to say if a certain degree of
optimization is needed (such as partitioning the data)
then it should be applied[1]. However, without a
practical need, optimizations should not be implemented
if they lead to a loss in accuracy.
Two schemes hypothetical systems are presented in
figure 7 and 8 below.

Algorithm:
P1. Consider the sets extracted for a particular
user U and a particular characteristic C which
form S=(s1,s2,...,sn)
P2. Find all users which belong to the same
cluster with U
P3. Find all sets sk belonging to the same
characteristic C of any other user found in P2
with the property that at least one element si of S
is a subset of sk (sk contains all the elements in si
and at least one more element)
P4. For every superset, extract the set of
elements M that are not contained in the subset.
P5. Eliminate from M the actions that were
already performed by the user.

The system in figure 7 is the one presented in section
3.2.1, while the system in figure 8 is the improved one.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Andrei Toma, Radu Constantinescu, Floarea Nastase

ISSN: 1790-0832 721 Issue 5, Volume 6, May 2009

Fig.7 Flow of the recommendation system with

clustering

As discussed above, the simpler system has a number of
downsides, stemming mainly from the fact that it does
not take into account all the characteristics at once. It
also does not consider the correlations of the current
user to the other users.

Fig.8 Flow of the recommendation system with

clustering

As shown above in figure 8, the system has two parts, an
offline and online one. The operations marked offline
will only be performed if a large enough interval has
passed. When a user makes a request, this interval is
checked and, if necessary, the offline tasks are started in
the background.
Whenever a user accesses a page corresponding to a
product he/she will be presented with product
recommendations.
While recommendations are made to the user, the
system checks if the offline operations have been
performed. Regardless if the offline operations have
been started in the background the system then finds the
users which are located in the same cluster. Parsing the
sets of the selected users, the system then selects those
which are supersets of any set associated to the user for
which recommendations are currently constructed.
From the selected supersets, the elements which do not
appear in any of the sets of the user for which the
recommendations are constructed are selected. This is
the recommendation basket which can then be used
according to the marketing objectives of the company
using the system.
For example, the recommendation basket can be
intersected with the list of the most popular products.
The result of the intersection can then be recommended
to the user.
In what the offline part of the system is concerned, if at
a particular request it is decided to update the data, data
gathering is started. The tables needed to run frequent
set mining are reconstructed/updated.
After the data gathering step, frequent sets are mined via
the “a priori” algorithm. The next step is to cluster the
users. Considering the large volume of data, the
structure of the trained network will be kept and the new
and modified users will be presented to the network in
the form of supplemental training data.

4 Conclusion
There are two possible approaches to recommendation,
one based on direct user feedback, such as through polls,
one based on collaborative construction of the
recommendations.
There are distinct advantages in choosing the latter since
it does not rely on, even limited, user sincerity and since
the data, if less informative, is more accurate.
However, extracting different analyzable characteristics
can lead to interesting results.
Recommendation would avoid considering the data as
homogeneous (such as in the case of using simply page
id’s as a basis for recommendation). The advantages
stem from the fact that while actions taken by users,

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Andrei Toma, Radu Constantinescu, Floarea Nastase

ISSN: 1790-0832 722 Issue 5, Volume 6, May 2009

while on a basic level represent accessing certain items,
can also be considered as pointing to more advanced
behavioral patterns.
The solution of constructing characteristics from by
considering user actions as referring to different
categories is an intermediary approach, between explicit
responses to questions, in which case, of course the
users could give inaccurate answers, and simple access
of items.
Using association rules as a basis for recommendation is
an attempt to generalize past behavior of users in order
to predict future behavior, or more exactly possible
candidates for future behavior.
Limiting the search to users which are significantly
similar to each other increases the likelihood of accurate
prediction. In order to obtain such a limitation, user
clustering must be implemented. While this operation
can be done by a multitude of means, self-organizing
maps have the advantage of discovering not only the
clusters to which the users belong but also the cluster
number itself. However, there are alternatives so self-
organizing maps which are less resource intensive,
providing the analyst supplies another means of
determining the number of clusters (which would then
become an input of the system).
If the number of clusters is known or the volume of data
is too large to apply any other method, naïve Bayes is to
be considered, as the least demanding clustering method
in terms of necessary computations.
As of this moment the system has not been
implemented; the results of the eventual implementation
will be published in a future paper at the time that they
become available.
A possible extension of the system comes from a
different commercial approach. As it stands, the system
tries to recommend the items which have the highest
likelihood of being bought next. However, an alternate
approach would be to try to approach the problem of
increasing sales by tapping into the tail of the
distribution.
Such an approach would try to increase the volume of
sales not by appealing to the regular customers but
trying to attract the people who would not regularly buy
at the online shop.
Online shopping has an advantage in trying to attract
customers interested in uncommon items due to the
lower logistic costs compared to traditional stores.
In present, people make most of their current purchases
online so the volume of sales compared to traditional
stores is constantly increasing.
Under these conditions, an entrant on the market of
online commerce cannot hope to succeed without
creating a relationship with its customers which will
allow for repeated sales. Since an online salesman
interacts with its customers mainly through its website, a

very important way in which this can be achieved
include efficient product recommendations.
The generation of recommendations based on stored
data recording past user actions has multiple
applications, from shopping recommendations to
collaborative based search engines.
Generating recommendations based on frequent
behavioral patterns also has the advantage of being
easily adapted to user profiling. User profiles would then
be used not only for decisions regarding the online part
of the business, but also for the salesman’s public
relations decisions.

References:
[1] Bart Goethals, Efficient Frequent Pattern Mining –
Ph.D. Thesis, Universiteit Limburg, pp.21-29, 2002
[2] Jiawei Han, Micheline Kamber, Data mining
concepts and techniques 2nd edition, Morgan
Kaufmann Publishing pp.234-239, 2005
[3] Teuvo Kohonen, Self-Organizing Maps 3rd edition,
Springer Publishing, 2000
[4] Ian H. Witten, Eibe Frank, Data Mining: Practical
Machine Learning Tools and Techniques, 2nd Edition
[5] Angel F. Kuri-Morales , Automatic Clustering with
Self-Organizing Maps and Genetic Algorithms
II: an Improved Approach, Proceedings of the 5th
WSEAS International Conference on Neural Networks
and Applications, Udine, 2004
[6] Angel F. Kuri-Morales, Automatic Clustering with
Self-Organizing Maps and Genetic Algorithms", Recent
Advances in Simulation, Computational Methods and
Soft Computing, WSEAS Press, 2002
[7] Francesco Maiorana, Performance improvements of
a Kohonen self organizing classification algorithm on
sparse data sets, Proceedings of the 4th WSEAS/IASME
International Conference on Educational Technologies,
Corfu, 2008
[8] Agrawal, R., Imielinski, T., Swami, A. Mining
associations between sets of items in large databases,
Proceedings of ACM SIGMOD International
Conference on Management of Data, Washinton D.C.,
1993
[9] Agrawal, R., Srikant, R. Fast Algorithms for mining
association rules in large databases. Proceedings of 20th
International Conference on Very Large Databases,
Santiago de Chile, 1994
[10] Charalampos Vassiliou, Dimitris Stamoulis
Drakoulis Martakos, A Recommender System
Framework combining Neural Networks &
Collaborative Filtering Proceedings of the 5th WSEAS
International Conference on Instrumentation,
Measurement, Circuits and Systems, Hangzhou, 2006

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Andrei Toma, Radu Constantinescu, Floarea Nastase

ISSN: 1790-0832 723 Issue 5, Volume 6, May 2009

[11] Xuejun Zhang, John Edwards, Jenny Harding,
Personalised online sales using web usage data mining,
Computers in Industry 58, Elsevier, 2007
[12] Susanne Still, William Bialek, How Many
Clusters? An Information-Theoretic Perspective, Neural
Computation, Volume 16, Issue 12 2004
[13] Zhiyong Zhang ,Olfa Nasraoui Mining search
engine query logs for social filtering-based query
recommendation, Applied Soft Computing ,Volume 8,
Issue 4, Elsevier September 2008
[14] Olfa Nasraoui, Fabio A. González,Cesar
Cardona,Carlos Rojas,Dipankar Dasgupta: A Scalable
Artificial Immune System Model for Dynamic
Unsupervised Learning, GECCO 2003
[15] Olfa Nasraoui,Raghu Krishnapuram Robust Multi-
Resolution Web Usage Mining with Genetic Niche
Clustering (2008)
[16] Wei-Po Lee, Chih-Hung Liu, Providing
Personalized Information Services by Developing
Intelligent Recommender Systems GA

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Andrei Toma, Radu Constantinescu, Floarea Nastase

ISSN: 1790-0832 724 Issue 5, Volume 6, May 2009

http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%236646%232008%23999919995%23696863%23FLA%23&_cdi=6646&_pubType=J&view=c&_auth=y&_acct=C000066996&_version=1&_urlVersion=0&_userid=5379854&md5=6f43b5a17326f8ececb31f33df388c51
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%236646%232008%23999919995%23696863%23FLA%23&_cdi=6646&_pubType=J&view=c&_auth=y&_acct=C000066996&_version=1&_urlVersion=0&_userid=5379854&md5=6f43b5a17326f8ececb31f33df388c51
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/g/Gonz=aacute=lez:Fabio_A=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/c/Cardona:Cesar.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/c/Cardona:Cesar.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/r/Rojas:Carlos.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/d/Dasgupta:Dipankar.html
http://en.scientificcommons.org/olfa_nasraoui
http://en.scientificcommons.org/raghu_krishnapuram

