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on considering both local and global influences. 
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1   Introduction 
In present day online business, making decisions based 
on analyzing the data gathered from previous periods 
has become not a luxury, but a necessity. 
In the same trend, large online salesmen make a 
significant part of their revenue from the sale of 
products which were recommended to the customer by 
some kind of automated system. 
Under these conditions, an entrant on the market of 
online commerce cannot hope to succeed without 
creating a relationship with its customers which will 
allow for repeated sales. Since an online salesman 
interacts with its customers mainly through its website, a 
very important way in which this can be achieved 
include efficient product recommendations. 
The generation of recommendations based on stored 
data recording past user actions has multiple 
applications, from shopping recommendations to 
collaborative based search engines. 
Since the most prevalent form in which the data comes 
is that of click logs or web logs, in a first step it is 
important to be able to extract behavioral characteristics 
from what is generally non structured information. A 
possibility is to consider as characteristics of the user the 
response he/she has at what can be perceived as different 
external stimuli. For example, different types of users 
can be identified if one represents the data in such a 
way. Some users will respond to polls and constantly 
view topics/products while not actually buying anything. 
Differentiated treatment of users with such 
heterogeneous objectives would lead to increasing their 
satisfaction with the service which integrates the 
recommendation engine. 
In what the actual recommendation is concerned, both 
global and local influences are to be considered. By 
global influences we understand behavioral patterns 
which are evident at the level of the entire population of 

users while by local influences we understand the 
similarities that a particular user might have with a 
particular class of other users (local influences are 
geared more toward differentiation). 
While this approach can contribute to the increase of the 
customer base, it is the first approach that is more likely 
to increase revenue in the immediate future. Although 
the objective of the recommendations depends on the 
actual seller’s strategy, this paper details the case where 
the recommendations are based on the preferences of 
users who buy frequent items. 
 
 
2   Problem Formulation 
Shopping recommendations can be generated either by 
taking into account some form of customer feedback 
(such as asking various questions about their preferences 
and building recommendations based on the answers) or 
in a collaborative manner, by building a model for 
customer preferences based on their connections with 
the actions of other customers. 
Since the customers are generally reluctant to answer a 
large number of questions or, indeed, any number of 
questions, the second approach should be preferred. 
Sales in a web based shop are generally distributed in 
the form of a “long tail” distribution there are of course 
two possible recommendation strategies, inspired from 
different marketing strategies. A recommendation 
system can either aim for the average customer (and 
recommend products that he/she would be likely to buy 
in the future) or, as a different strategy, can attempt to 
access the customers interested in less than frequent 
products (thus tapping the “tail” part of the distribution). 
The second strategy consists in recommending 
infrequently bought products to their most likely buyer 
even though the likelihood of an actual purchase might 
be small. 
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2.1 Available data 
If recommendations are to be constructed without the 
explicit feedback of the customers, the data will most 
usually come from the logs the shop keeps of the 
customers’ actions. 
Since the recommendations will most likely be added to 
an existent systems and thus need to use existent data, 
the most general form in which the data exists is a click 
log form (the existent system memorizes all the clicks of 
all the users through the site). The size of such a log can 
be prohibitively large so various optimization concerns 
arise. 
 
 
 2.2 Objectives 
The objective of the recommendation system is 
attempting to produce an accurate system based on the 
analysis of the frequent actions users take. 
The accuracy of such a system is not necessarily a set 
standard as one must balance accuracy with the actual 
technical requirements of the system in the form in 
which it would be actually implemented in a production 
environment (which, if anything, must remain within the 
realm of the possible). 
As such, there is a set of problems which somebody 
interested in implementing the system must consider. 
First of all, frequent set mining can prove extremely 
time consuming on large volumes of data and must be 
optimized as much as possible. It is possible that such 
and optimization will prove insufficient for the 
requirements of a real system and that certain trade-offs 
between accuracy and speed must be considered. 
Another point in which optimization must be considered 
is the clustering step, especially when using a high 
complexity method such as self organizing maps.  
In order to obtain a working system, implementation 
must take into consideration the solution making some 
of the components of the system run offline while 
keeping the others online. By offline we understand 
running the components periodically, not at any 
modification of the underlying data. 
Components which could be run offline in the event that 
the volume of data makes it necessary are the frequent 
pattern mining and clustering. This is acceptable since 
the data they produce reflect global influences which are 
unlikely to change on a short term. Significant 
modifications would have to occur in order for this data 
to have a negative effect on the recommendations. 
The actual recommendation part of the system will be 
run online, as it is based on the preexistent data built 
through frequent pattern mining and clustering. 
 

 
3   Problem Solution 
The system works on a series of steps which will be 
presented in subsequent sections.  
Some of the steps refer to algorithms which can be 
found in other papers and will only be referenced briefly 
as their presentation is outside the scope of this paper. 
The idea is to generate recommendations based on two 
things. First we need to maintain information about each 
user in the form of the sets of actions that he/she 
performed as compared to the general population of 
users. These frequent sets of actions have to be separated 
in action classes such as buying, viewing or reaction to 
polls. These classes will be considered to represent 
characteristics of the users and thus used as a basis for 
the comparison between any two particular users. 
Secondly we must cluster the users based on the 
aforementioned characteristics. As the characteristics are 
based on the general behavior in the population, they 
reflect general tendencies. We are interested to reflect 
the similarities within the groups of similar users, not the 
entire population and thus we must group the users 
according to similarity based on these groups that the 
recommendations will be produced. 
Our approach is based on the clustering of feature 
vectors via self-organizing maps. These feature vectors 
are characteristics of the user defined as behavioral 
classesp[11]. 
By characteristic we understand sets of actions that the 
user has performed which have proven to be relevant 
when compared to the general population of users. 
These sets of actions will be obtained through frequent 
pattern mining, using the “a priori” method. 
This is of course not the only approach possible. On one 
hand, the system could be modified in one of its parts, 
such as replacing “a priori” mining with FP-trees or 
another method of frequent pattern mining. 
In the same line of thought, clustering could be done by 
another method. This could prove advantageous from a 
complexity point of view, as long as a method of 
supplying the number of clusters as an input in the 
system is also provided[12]. 
A number of different general approaches can also be 
applied, such as using genetic algorithms for 
recommendation generation or using models of the 
human immune system[13][14][15][16]. 
 
3.1 Gathering data 
A click log might be represented in the system as in 
table 1 below. It will contain additional information such 
as location of the user and company specific data. Some 
of this information will be ignored in the 
recommendation process, while other can be used in 
order to obtain more accurate data (such as using the 
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referrer to ascertain which of the open pages the user 
actually read). 

User Page … Referrer Action 

13321 311 … x.asp action_buy 

32113 33 … y.asp action_view

32131 dd … y.asp action_buy 

Table 1 
 

Since the information comes from user click logs, on 
one hand it is not separated by the criteria mentioned 
above (it is not separated based on the characteristics the 
analyst decided to take into account). On the other hand, 
a fair amount of pre-processing must be done to 
eliminate useless information. For example, especially 
when analyzing user view data, one cannot the 
conclusion that a user clicking the product has actually 
viewed it. The fact that multiple windows were open 
simultaneously for example should be reflected in pre 
processing (in this particular case, the window which is 
considered to have been viewed should be the one with a 
subsequent action performed in a reasonable amount of 
time). 
Another important aspect is that if the click logs contain 
elements which are irrelevant for the recommendation 
system, these items have to be pruned out of the data. 
Such an example is buy data which is not actually 
connected to real products, such as discounts or 
vouchers. The representation of such entities is, of 
course, dependent on the implementation of the 
underlying system. 
After the elimination of possible irrelevant information, 
the data used to apply the algorithm will come in the 
form of several entities (i.e. tables) each containing 
actions from a particular class. These tables correspond 
to the actions which are considered relevant for 
recommendations, which are not necessarily all possible 
actions. For example, the click logs will most likely 
store the user’s access to his buy history or the help 
pages but these contain little to no useful information in 
what product recommendation is concerned. 
As such, after the data gathering step we will, for 
example, have a table containing buy data (products 
bought by the users), one containing view data (products 
viewed by the users), one containing special offer data 
(the special offers the users actually clicked and read) 
etc. 
A special mention here is that each table corresponding 
to an action has to be pruned again according to the 
specifics of that particular action. For example, the user 
might open multiple windows after a search, but will 
obviously not read all of them simultaneously. In order 
to make the data more relevant, only the page which has 

a follow-up action (a subsequent click on an element of 
the page) will be considered read. Buy data, in turn, 
should not contain all the products that were added to 
the shopping cart, but products which have resulted in 
and actual payment; products added to the cart can be, 
however, used to refine view data. 
It is impossible to present exhaustively all the rules that 
should be applied in order to obtain more accurate data, 
as these are dependent on the underlying system. 
 
 
3.2 Finding patterns with the “a priori” 
algorithm 
For the identification of frequent patterns, one of the 
possible solutions is the a priori algorithm[4][8][9].  
While fairly resource intensive, a fair number of 
optimizations can be done to ignore part of the 
intermediary sets which will not lead to useful results. 
For more details about the optimization of frequent set 
mining, see [1]. 
Also for a more in-depth description of the a priori 
frequent pattern mining algorithm, see [2]. 
One initial choice is if to apply “a priori” to the data as it 
was extracted from the click log or to transform it in 
order to allow for a vertical approach. Representing the 
data in vertical form would have the advantage of easier 
calculation of frequencies but would in turn necessitate 
transforming the input tables. 
In the system described by the present paper, a priori 
mining will be done via a horizontal approach which 
does not require doing further transformations on the 
gathered data. 
“A priori” is an algorithm proposed by R. Agrawal and 
R. Arikant which is built around the idea of using prior 
knowledge of lower order frequent set properties to 
generate higher order sets. By the “order” of a frequent 
set we understand the number of elements it contains. 
The most important property of frequent sets is that any 
subset of a frequent set must also be frequent (a property 
which is called the “a priori” property). As such, a 
candidate set can be eliminated from the process if it 
contains at least an infrequent subset. 
The frequency or infrequency of a set is defined in 
relation to a minimal frequency which is a parameter of 
the algorithm and which must be chosen so as not to 
eliminate any relevant sets while at the same time 
avoiding the inclusion of irrelevant sets. 
The basis of the “a priori” property is the following line 
of reasoning. If an item does not satisfy the frequency 
condition, then any set to which it is added cannot 
possibly have a frequency higher than the item and thus 
will, in turn, not satisfy the condition either. 
The basic a priori algorithm is described in the following 
figure (Fig. 1). 
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Fig.1 Frequent pattern mining 

 
As shown in figure one, the algorithm is basically 
organized in two major steps, one which involves 
generating candidate frequent sets and one which 
eliminates the sets which are infrequent. 
At the beginning of the application of “a priori” the 
generation step will refer to individual items, whose 
frequencies will have to be generated by effectively 
counting all item instances.  
After all items which do not satisfy the frequency 
condition have been eliminated, the next step is to 
generate 2nd order item sets by combining the remaining 
items. This is the generation step which will be repeated 
throughout the algorithm. 
The next step is to verify if the generated sets are 
actually frequent. While the obvious method is to count 
all the instances of the generated sets, this will produce a 
lot of computational overhead and might not be feasible 
with a high amount of data. In order to alleviate this 
problem the algorithm uses the “a priori” property to 
eliminate possible infrequent subsets.  
The next step is to continue the set generation, 
producing 3rd order sets by merging 2nd order sets. After 
the generation step, the “a priori” property is applied in a 
similar manner as on the 2nd level sets in order to 
eliminate sets containing infrequent subsets. 
As a general rule, in order to find frequent sets of order 
k, the “a priori” algorithm will generate them by 

merging sets of order k-1. On this pool of candidate sets, 
it will then apply the “a priori” property in order to 
eliminate the infrequent ones.  

Algorithm: 
P1.Go through one of the tables constructed in 
the data gathering phase and construct the 
frequences of all items. In principle, the 
frequencies are constructed in memory but 
should this be a performance constraint, they 
will be stored in a temporary table. 
P2. Keep only the items for which the frequency 
is larger than a certain limit. 
The frequency threshold should be chosen 
according to the existent data in such a way as to 
balance the information loss and the time needed 
to perform subsequent calculations. 
P3. Construct candidate sets of length i+1 by 
combining itemsets of length i.  
P4. Discard constructed itemsets that fall under 
the frequency limit. A set is also infrequent it it 
contains an infrequent set of any order. 
P5.  Continue generating n element sets based on 
n-1 element sets until no new frequent sets can 
be found. 

As an optimization, sets of n elements can be generated 
based not only on n-1 element sets, but also n-2 element 
sets or n-3 element sets if such sets have count (n-k) 
+count (k) < count (n-1) +count (1) where count(x) is 
the frequency of the set of x level based on the property 
that all subsets of a frequent set must be frequent 
themselves 
The algorithm can be further optimized by exploiting a 
series of properties that the frequent sets have. See for 
example [1]. 
 
3.2.1 Recommendations based on frequent sets only 
While frequent sets do not generate sufficient 
information to permit effective recommendations, they 
are an integral component in the recommendation 
engine. 
The weakness of recommending items based on frequent 
sets only is that such a system will not consider the 
similarities between users. 
The preferences of all users will have similar chance of 
affecting the recommendations although it can be argued 
that the existence of similar sets of items that users find 
interesting is a basis for similarity. 
Recommendations can be constructed based on the 
frequent sets associated to a user. The mechanism we 
propose is presented in the following figure. 
 

 
Fig.2 Recommendations based on frequent patterns 

 
Algorithm: 
P1. Consider the sets extracted for a particular 
user U and a particular characteristic C which 
form S=(s1,s2,...,sn) 
P2. Find all sets sk belonging to the same 
characteristic C of any other user with the 
property that at least one element si of S is a 
subset of sk  (sk contains all the elements in si and 
at least one more element) 
P3. For every superset, extract the set of 
elements M  that are not contained in the subset. 
P4. Eliminate from M the actions that were 
already performed by the user. 

 
The algorithm in figure 2 can also be optimized if 
performance constraints demand it. The number of 
supersets taken into calculations can be adjusted by 
considering supersets only for the sets of maximum size 
(n) or including supersets for sets of lower size (n-k with 
a strictly positive k). 
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While the algorithm described in figure 2 is relatively 
effective in producing items which are likely to be 
interesting to the user, it does so only by estimating 
effects on a global level. The results should be narrowed 
down by taking into account the preferences of the users 
which are behaviorally similar. Furthermore, even for a 
particular user, the algorithm takes into account only the 
actions taken from a particular class of possible actions. 
For example, it can give a viewing recommendation, but 
it ignores which products the user has actually bought. 
Optimization of the result would first involve 
introducing a way to consider the whole of user behavior 
and not just the current category. As such 
recommending similar products to a user currently 
viewing a product must involve not only the products 
the user previously viewed, but also, for example, the 
fact that his reaction was one of interest to a promotion 
involving certain products. 
Secondly, it must be considered that, taking into account 
the whole of the user’s behavior, there might be greater 
similarity between him/her and a certain set of users. 
Should such a similarity exist, those users’ behavior 
should be the basis for recommendation. 
 
 
3.3 Clustering users using self-organizing maps 
In order to find out which users are similar in behavior, 
one can apply as series of algorithms such as K-NN or 
SOM (which is the one we have opted for). The 
advantage of using self-organizing maps for clustering 
users according to preference stems from the fact that 
there is no initial need to know the number of clusters. 
With SOM, the number of clusters itself is produced by 
the algorithm without the necessity of giving the as an 
input[3][5][6][10].  
However, since SOM is a “heavier” algorithm than some 
of the alternatives, in the sense that the needed computer 
time is much bigger, one could presumably run SOM 
just to detect the number of clusters and then use it as a 
basis for the implementation of a “lighter” algorithm. 
Should such an approach prove necessary, the algorithm 
used for clustering in the actual system should probably 
be a variation of naïve Bayes, which would produce 
accurate results with an acceptable loss in accuracy. 
The basic algorithm for SOM based clustering is 
presented below, in figure 3. For a more complete 
description see [3][7]. 

 
Fig.3 SOM clustering 

 
Algorithm 
P1. Define the size of the network (the number 
of input variables, the size of the external layer), 
the learning rate. 
P2. Calculate the time constant, the maximum
radius of the network. 
P3. Allocate random values to the intensities of 
the connections to the external layer. 
P4. Select an user. 
P5. For the selected the user, calculate the 
neuron on the external layer which is closest 
(winning neuron). The distance between an input 
set and the external neurons is calculated via a 
version of edit distance.  
P5. Calculate the radius of the winning neuron’s 
neighbourhood and adjust the intensities for the 
neurons in the neighbourhood with decreasing 
influence from the centre to the borders. 
P6. As long as there are more users, go back to 
step P4. With passing iterations of the algorithm, 
the learning rate and neighbourhood radius are 
affected by a degeneration function. 
P7. Group the users according to which neurons 
on the external layer fire when the input layer is 
activated with the user’s characteristics. 

 
The concept of self-organizing maps was introduced by 
Teuvo Kohonnen and is one of the more popular 
clustering mechanisms[3].  
Self-organizing maps are neural networks which allow 
grouping of the data based on the relations existent in 
the data itself. Their training is unsupervised, without 
the need for external input under the form of training 
sets. 
The characteristics taken into account when classifying 
the users are vectors of frequent sets.  
Each characteristic is a set of frequent actions taken in a 
class of actions. Such a class might be buying or 
viewing. 
As such, a user will be represented as a vector of 
characteristics such as U = (C1,..,Cn), where the number 
of characteristics n is the number of entities constructed 
in the data gathering step. C1 might thus represent 
buying, while C2 might represent viewing. The degree of 
similarity of a user Ui to a user Uj will be represented by 
the sum of the similarities between each of the 
corresponding characteristics of the two users. The use 
of the distance between two users is presented in figure 
4 with d(x,y) the distance function between two users 
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defined as the sum of the distances between each of the 
characteristics of the users. 
Each of the characteristics will be on the form of a set 
vector, with the sets present in a characteristics being 
frequent sets mined through the “a priori” algorithm. A 
characteristic C will thus have the form C = (s1,..,sn), 
where si is a frequent set. 
Distances between two characteristics, which are needed 
to calculate the distance between users are calculated 
based on the appearance of the same frequent sets in 
both characteristics, as shown in figure 5. Sets contained 
in only one characteristic which have a corresponding 
superset in the other are considered relevant based on 
the reasoning that in the future they might generate 
common sets. 
Clustering through self-organizing maps consists of 
mapping the data from the n-dimensional space of the 
input vectors, which in our case represent the users, to a 
2-dimensional space. This of course has the added 
advantage of being able to represent similarities within 
the data in a human readable form. There are of course 
possible optimizations to the representation of the data 
which may reveal further correlations (such as 
representing the outer layer on a torus shape or making it 
3-dimensional). 
The first step in applying the algorithm to the data is 
determining the structure of the network. Also, a series 
of parameters needed in the training of the network have 
to be determined at this stage. 
It must be mentioned that the results on different 
structures of the network applied to the experimental 
data should guide the analyst in determining the best 
solution to be selected. 
A self organizing map is composed from an input layer 
with a number of nodes equal to the number of 
components of the input vectors and an n-dimensional 
output where n is the number of dimensions of the map 
on which we want to represent the input vectors.  
All input nodes are connected to all outer layer nodes 
while there are no connections between input nodes or 
output nodes. The intensities of the connections between 
the input and output nodes will be used for the 
classification of the users after the training process. 
In our case the number of input nodes will be equal to 
the number of relevant characteristics identified in the 
system. The nodes will thus correspond to the different 
actions the users might take (buying, viewing etc.). 
The output layer serves as a map to the similarities 
between the input vectors. Inputs which are more similar 
will appear closer on the map. 
The dimensions of the output map have to be selected 
such as to avoid losing classification accuracy while 
keeping the map at a sufficiently low size. Higher size 
maps need more resources in order to classify the inputs 

so the size must be selected that manages to balance 
accuracy with resource expenditure. 
We opted for an initial outer layer dimension of 10x10 
which proved large enough to allow for separation 
between the clusters of users. Considering that the outer 
layer is relatively small, the needed calculations were 
well within the accepted limits. 
Other parameters which must be decided at this stage are 
the learning rate and the initial radius of the starting 
neighborhood. 
The learning rate controls the speed at which the 
network adapts to changes in the training data and 
should be selected so as to control the network’s 
response to extreme values. 
The initial neighborhood radius will be set to the 
maximum possible (the dimension of one side of the 
outer layer) and then be degenerated as the algorithm 
progresses. 
The next step is to initialize the weights of the 
connections between the input nodes and the outer layer 
nodes. The weights are initialized with small random 
values (0<w<1) for all the connections from input nodes 
to output nodes. 
After the initial preparations, input vectors are selected 
and presented to the network. Since the system must 
adapt while online input vectors will be presented in the 
order in which modifications occur. As a note, this 
process will take place offline, that is the training 
algorithm will be run periodically starting from the 
already determined weights and using as training vectors 
the newly added/modified user vectors. 
As such, the initialization of the weights with small 
random values will only take place on the first run of the 
training algorithm. 
After a vector is selected, the next step is to find which 
output neuron is the winning neuron in relation to the 
input vector. 
The custom distance function used is described in figure 
4 and figure 5.  
 

2),(),( ii yxdyxdist ∑=  
Fig.4 Distance between users 

 
The index i counts the characteristics of a particular 
user. The function d is the actual distance function 
between characteristics, where n is the number of 
common sets the characteristics have, m is the number 
of subsets characteristic xi contains for the sets in yi and 
k is the number of subsets characteristic yi contains for 
the sets in xi. 
 

)(*5.0),( kmnyxd ii ++=  
Fig.5 Distance between characteristics 
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The distance function is justified by the fact that 
similarities are reflected both by the existence of 
identical behavioral patterns for two users but also by 
the possibility of future similarity. The quotient 0.5 used 
as a weight for probable future similarity should actually 
be determined through experimentation on the data. 
After the winning neuron has been found the weights of 
the connections from the input neurons to the winning 
neuron are corrected, as well as the weights of the 
neurons in the neighborhood of the winning neuron. 
Since the network is supposed to stabilize in time, the 
radius of the neighborhood is decreased by multiplying 
it with a degeneration function. 
Also, after each iteration, the learning rate should also 
be decreased. 
The network is retrained continuously (iterative 
approach) by supplying it with new inputs 
corresponding to user actions that were not already 
presented to it.  
This means that when a new user appears, the 
corresponding vector will be trained into the network. 
Also, when a user’s behavior extends, the corresponding 
vector will also be retrained into the network. 

 
 

3.3.1 Recommendations based on clustering and 
frequent sets 
Since we now have a method of grouping the users 
according to their actions in certain categories, we will 
use the information to refine the algorithm presented in 
figure 2. 
The revised algorithm, which takes into account both the 
global and the local influences, is presented below in 
figure 6.  

 
Fig.6 Recommendation algorithm 

 

Since searching for the users in the same cluster can 
generate performance problems and the clusters have a 
high degree of stability, the current cluster to which an 
user is supposed to belong is stored and the inclusion of 
users in clusters is recalculated periodically. 
The algorithm produces a “recommendation basket” 
from which items can be selected, either on an objective 
basis, such as the items that appear as a result of an 
increased level of similarity (higher order supersets) or 
by intersecting the set with a set of items the system 
including such a model has an interest in recommending 
(e.g. top selling products). 
 
 
3.4 Practical concerns 
Depending on the size of the data, some of the 
operations necessary for recommendation generation 
might be more usefully done on a periodical basis 
(offline), while the recommendation system itself would 
function “live” (online).  
For example, the discovery of frequent patterns could be 
done offline. Since they contain a minimal frequency 
level parameter they allow for accuracy preservation 
even in an offline scenario. 
In the same way, the inclusion of users in particular 
clusters can be done offline, as long as the system 
provisions for new users. 
Various performance concerns should be addressed if 
they affect the system, as the development would ideally 
be dynamic that is to say if a certain degree of 
optimization is needed (such as partitioning the data) 
then it should be applied[1]. However, without a 
practical need, optimizations should not be implemented 
if they lead to a loss in accuracy.  
Two schemes hypothetical systems are presented in 
figure 7 and 8 below.   

Algorithm: 
P1. Consider the sets extracted for a particular 
user U and a particular characteristic C which 
form S=(s1,s2,...,sn) 
P2.  Find all users which belong to the same 
cluster with U 
P3. Find all sets sk belonging to the same 
characteristic C of any other user found in P2 
with the property that at least one element si of S
is a subset of sk (sk contains all the elements in si
and at least one more element) 
P4. For every superset, extract the set of 
elements M  that are not contained in the subset. 
P5. Eliminate from M the actions that were 
already performed by the user. 

The system in figure 7 is the one presented in section 
3.2.1, while the system in figure 8 is the improved one. 
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Fig.7 Flow of the recommendation system with 

clustering 
 
As discussed above, the simpler system has a number of 
downsides, stemming mainly from the fact that it does 
not take into account all the characteristics at once. It 
also does not consider the correlations of the current 
user to the other users. 

 
Fig.8 Flow of the recommendation system with 

clustering 

 
As shown above in figure 8, the system has two parts, an 
offline and online one. The operations marked offline 
will only be performed if a large enough interval has 
passed. When a user makes a request, this interval is 
checked and, if necessary, the offline tasks are started in 
the background. 
Whenever a user accesses a page corresponding to a 
product he/she will be presented with product 
recommendations. 
While recommendations are made to the user, the 
system checks if the offline operations have been 
performed. Regardless if the offline operations have 
been started in the background the system then finds the 
users which are located in the same cluster. Parsing the 
sets of the selected users, the system then selects those 
which are supersets of any set associated to the user for 
which recommendations are currently constructed. 
From the selected supersets, the elements which do not 
appear in any of the sets of the user for which the 
recommendations are constructed are selected. This is 
the recommendation basket which can then be used 
according to the marketing objectives of the company 
using the system.  
For example, the recommendation basket can be 
intersected with the list of the most popular products. 
The result of the intersection can then be recommended 
to the user. 
In what the offline part of the system is concerned, if at 
a particular request it is decided to update the data, data 
gathering is started. The tables needed to run frequent 
set mining are reconstructed/updated. 
After the data gathering step, frequent sets are mined via 
the “a priori” algorithm. The next step is to cluster the 
users. Considering the large volume of data, the 
structure of the trained network will be kept and the new 
and modified users will be presented to the network in 
the form of supplemental training data. 

 
 
4   Conclusion 
There are two possible approaches to recommendation, 
one based on direct user feedback, such as through polls, 
one based on collaborative construction of the 
recommendations. 
There are distinct advantages in choosing the latter since 
it does not rely on, even limited, user sincerity and since 
the data, if less informative, is more accurate.  
However, extracting different analyzable characteristics 
can lead to interesting results. 
Recommendation would avoid considering the data as 
homogeneous (such as in the case of using simply page 
id’s as a basis for recommendation). The advantages 
stem from the fact that while actions taken by users, 
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while on a basic level represent accessing certain items, 
can also be considered as pointing to more advanced 
behavioral patterns. 
The solution of constructing characteristics from by 
considering user actions as referring to different 
categories is an intermediary approach, between explicit 
responses to questions, in which case, of course the 
users could give inaccurate answers, and simple access 
of items. 
Using association rules as a basis for recommendation is 
an attempt to generalize past behavior of users in order 
to predict future behavior, or more exactly possible 
candidates for future behavior. 
Limiting the search to users which are significantly 
similar to each other increases the likelihood of accurate 
prediction. In order to obtain such a limitation, user 
clustering must be implemented. While this operation 
can be done by a multitude of means, self-organizing 
maps have the advantage of discovering not only the 
clusters to which the users belong but also the cluster 
number itself. However, there are alternatives so self-
organizing maps which are less resource intensive, 
providing the analyst supplies another means of 
determining the number of clusters (which would then 
become an input of the system). 
If the number of clusters is known or the volume of data 
is too large to apply any other method, naïve Bayes is to 
be considered, as the least demanding clustering method 
in terms of necessary computations. 
As of this moment the system has not been 
implemented; the results of the eventual implementation 
will be published in a future paper at the time that they 
become available. 
A possible extension of the system comes from a 
different commercial approach. As it stands, the system 
tries to recommend the items which have the highest 
likelihood of being bought next. However, an alternate 
approach would be to try to approach the problem of 
increasing sales by tapping into the tail of the 
distribution. 
Such an approach would try to increase the volume of 
sales not by appealing to the regular customers but 
trying to attract the people who would not regularly buy 
at the online shop. 
Online shopping has an advantage in trying to attract 
customers interested in uncommon items due to the 
lower logistic costs compared to traditional stores. 
In present, people make most of their current purchases 
online so the volume of sales compared to traditional 
stores is constantly increasing.  
Under these conditions, an entrant on the market of 
online commerce cannot hope to succeed without 
creating a relationship with its customers which will 
allow for repeated sales. Since an online salesman 
interacts with its customers mainly through its website, a 

very important way in which this can be achieved 
include efficient product recommendations. 
The generation of recommendations based on stored 
data recording past user actions has multiple 
applications, from shopping recommendations to 
collaborative based search engines. 
Generating recommendations based on frequent 
behavioral patterns also has the advantage of being 
easily adapted to user profiling. User profiles would then 
be used not only for decisions regarding the online part 
of the business, but also for the salesman’s public 
relations decisions. 
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