
On the Parallelism of I/O Scheduling Algorithms
in MEMS-Based Large Storage Systems

EUNJI LEE and KERN KOH

School of Computer Science and Engineering
Seoul National University

56-1 Shillim-dong, Kwanak-gu, Seoul, 151-742
REPUBLIC OF KOREA

{ejlee, kernkoh}@oslab.snu.ac.kr http://oslab.snu.ac.kr

HYUNKYOUNG CHOI and HYOKYUNG BAHN*
Department of Computer Science and Engineering

Ewha University
11-1 Daehyun-dong, Seodaemun-gu, Seoul, 120-750

REPUBLIC OF KOREA
bluechk@nate.com; bahn@ewha.ac.kr http://home.ewha.ac.kr/~bahn

Abstract: MEMS-based storage is being developed as a new storage media that has several salient characteristics
such as high-parallelism, high density, and low-power consumption. Because physical structures of MEMS-based
storage is different from those of hard disks, new software management techniques for MEMS-based storage are
needed. Specifically, MEMS-based storage has thousands of parallel-activating heads, which requires
parallelism-aware request scheduling algorithms to maximize the performance of the storage media. In this paper,
we compare various versions of I/O scheduling algorithms that exploit high-parallelism of MEMS-based storage
devices. Trace-driven simulations show that parallelism-aware algorithms can be effectively used for high
capacity mass storage servers because they perform better than other algorithms in terms of the average response
time when the workload intensity becomes heavy.

Key-Words: MEMS-based storage, Parallelism, Request Scheduling, Scheduling algorithm, Storage.

1 Introduction
MEMS-based storage is one of the leading candidates
as tomorrow’s storage medium. Due to its salient
characteristics such as high-parallelism, low-power
consumption, low cost, and high-density,
MEMS-based storage is anticipated to be used for a
wide range of applications from storage for small
handheld devices to high capacity mass storage
servers [11-14]. However, MEMS-based storage has a
couple of different physical characteristics compared
to a traditional hard disk [1-4]. First, MEMS-based
storage has thousands of heads that can be activated
simultaneously. Second, the media of MEMS-based
storage is a square structure, which is different from
the rotation-based platter structure of disks. Due to
these differences in characteristics, new system
software technologies appropriate for this media have
been issues of recent research [2, 3].

Similar to hard disks, one of the most important
management mechanisms for improving
MEMS-based storage efficiency is request scheduling
[7-9]. However, since the mechanism to access the
storage medium is different from hard disks, a
different approach is required for MEMS-based
storage. Specifically, thousands of parallel-activating
heads make the scheduling problem in MEMS-based
storage even more complicated when considering the
potential performance of the parallel processing
ability.

In this paper, we discuss three requirements of
scheduling algorithms for MEMS-based storage,
namely short positioning delay, high-parallelism, and
low variation of service latency. In terms of these
requirements, we compare various versions of I/O
scheduling algorithms for MEMS-based storage and
then show the effectiveness of parallelism-aware
scheduling algorithms. Simulation results show that
the parallelism-aware request scheduling algorithms

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Eunji Lee, Kern Koh, Hyunkyoung Choi, Hyokyung Bahn

ISSN: 1790-0832 705 Issue 5, Volume 6, May 2009

Magnetic Media

Head
1cm

1cm

2mm

Spring
Region

Magnetic Media

Head
1cm

1cm

2mm

1cm

1cm

2mm

SpringSpring
Region

Spring

Head

Movement direction of Y-axis

M
ovem

ent direction of X
-axis

Fig. 1. Physical structure of a MEMS-based storage device [3]. There are thousands of regions on the magnetic media
and a read/write head for each corresponding region. The magnetic media moves along two directional axes, x and y.

perform better than SPTF (Shortest Positioning Time
First) in terms of the average request delay when the
workload is sufficiently heavy.

The remainder of the paper is organized as follows.
Section 2 explains basic structure of MEMS-based
storage and gives an overview of scheduling
algorithms for MEMS-based storage. We present
parallelism-aware request scheduling algorithms in
Section 3, and show the experimental results in
Section 4. Finally, Section 5 presents the conclusion of
this paper.

2 Related Works

2.1 Basic Structure of MEMS-based Storage

A MEMS-based storage device consists of the
magnetic media (called media sled) that is divided into
regions and groups of heads (called probe tips) used to
access data on the corresponding region. To access
data on a specific (x, y) location, MEMS-based storage
suffers a substantial distance-dependent positioning
time delay similar to disks. Unlike disks, however, the
heads of MEMS-based storage are fixed and magnetic
media itself moves to access data on a specific location.
The movement of the media in the directions of x and y
axes is independent and proceeds in parallel. Thus, the
positioning time timeposition(x, y) for a specific (x, y)
location can be calculated as follows.

timeposition(x, y) = max (timeseek_x, timeseek_y) (1)

where timeseek_x and timeseek_y are the seek times on the
x and y dimensions, respectively. In most current
architectures, timeseek_x is dominant over timeseek_y
because extra settling time must be included to
timeseek_x, but not to timeseek_y. Settling time is the time
needed for the oscillations of the magnetic media to
damp out. This time is dependent on the construction
of the magnetic media and the stiffness of the spring
that sustains the magnetic media [4]. Since media
access is performed in the direction of the y dimension
after positioning, it requires constant media velocity in
the y dimension and zero velocity in the x dimension.
Hence, oscillation in the x dimension leads to off-track
interference after seeking, while the same oscillation
in the y dimension affects only the bit rate of the data
transfer [6].

2.2 Basic Scheduling Algorithms

Scheduling algorithms such as FCFS, which services
requests in the order of arrival, SSTF, which services
requests from smallest to largest seek time [10], and
SPTF, which services requests from the smallest
positioning time, that is, the delay considering both
seek time and rotational latency, to the largest [5],
have been suggested for conventional disks. Griffin et
al. showed that all of these scheduling algorithms
work appropriately when applied to MEMS-based
storage [2] by mapping seek time to the movement
delay on the x-axis direction and rotational latency to

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Eunji Lee, Kern Koh, Hyunkyoung Choi, Hyokyung Bahn

ISSN: 1790-0832 706 Issue 5, Volume 6, May 2009

the movement delay on the y-axis direction.
Some recent studies suggested scheduling

algorithms for MEMS-based storage considering the
physical characteristics of MEMS devices [1, 3]. Yu et
al. suggested a minimum spanning tree based
scheduling algorithm for MEMS-based storage [3].
Since SPTF does not perform well in terms of average
response time for some cases due to its greedy
property, their new algorithm generates a minimum
spanning tree (MST) for pending requests based on
seek distance and schedules the requests by traversing
the tree in double walking order. They show that the
MST-based algorithm shows slightly better
performance than SPTF in terms of average response
time. However, this algorithm incurs additional
overhead in making and rebuilding the MST whenever
a new request arrives. Furthermore, this algorithm
inherits the starvation problem similar to SPTF and
SSTF, in that some requests may be delayed
indefinitely.

Hong et al. suggested the ZSPTF (Zone-based
Shortest Positioning Time First) scheduling algorithm
[1, 17]. They considered the starvation problem of
SPTF. ZSPTF groups the regions of the storage media
into a set of zones based on seek time equivalence.
Zones are serviced by the C-SCAN (Circular Scan)
order, and within a zone, requests are serviced by the
SPTF order. ZSPTF performs a little worse than SPTF
in terms of average response time, but performs better
in terms of the squared coefficient of variation of
response times which means that fairness is improved
and the chance of starvation lessened.

Lee et al. [15, 16] presented a parallelism-aware
request scheduling algorithm called P-SPTF for
MEMS-based storage devices. P-SPTF assigns a
priority value to each (x, y) position in a region and the
position with the highest priority value is scheduled
first. The idea of the algorithm is to assign higher
priority to the position that contains the most number
of requests in each (x, y) position. This allows a large
number of waiting requests to be simultaneously
serviced first, leading to improved average response
time. They also suggested another algorithm, called
PA-SPTF, that incorporates the aging factor to the
P-SPTF algorithm, making it starvation-free.

3 Scheduling Algorithms for
High-Parallelism MEMS-based Storage

Scheduling algorithms of MEMS-based storage for
heavy I/O workload systems should consider the
following three problems. First, the algorithm should
exploit the parallelism of MEMS-based storage. Since
thousands of heads can work simultaneously, it is
more efficient to provide higher priorities to those
locations that have large number of pending I/O
requests. Second, the algorithm should consider the
positioning time of heads. Specifically, minimization
of head movement is important to service pending
requests in the scattered (x, y) positions efficiently.
Third, the algorithm should consider the fairness issue.
Even though efficiency is important, there may be the
starvation problem of requests in some specific
locations. The first two requirements are related to the
efficiency of the scheduling, and the third one is
related to fairness. In Subsection 3.1, we present the
efficiency of scheduling and then we present the
fairness issue of the scheduling in Subsection 3.2.

3.1 Efficiency Issue of Scheduling

The parallelism-aware scheduling algorithm exploits
the fact that there may be pending requests with
identical relative x and y offsets in multiple regions
and that MEMS-based storage can handle these
requests simultaneously. Using this characteristic, the
scheduling algorithm could improve the average
response time by assigning higher execution priority
to the position that has the most number of requests in
each (x, y) position, which we denote as N(x, y).

This parallelism-aware scheduling algorithm can be
combined with any positioning time aware scheduling
algorithm such as SSTF or SPTF, which we refer to as
the positional scheduling algorithm. For the rest of the
paper, we will use the SPTF scheduling algorithm as
the positional scheduling algorithm. With these two
properties, P-SPTF algorithm is presented [15, 16].
Priority in P-SPTF is determined as follows. Let
Priority(x, y) be the priority value to determine the
next request to service. Then, Priority(x, y) is
computed as

Priority(x, y) = N(x, y) / timeposition(x, y) (2)

where N(x, y) is the number of pending requests on
position (x, y) across all regions in the device and
timeposition (x, y) is the positioning time from the current
position to position (x, y) as determined by SPTF. The
request which has the largest value of Priority(x, y) is
selected as the next location to be serviced.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Eunji Lee, Kern Koh, Hyunkyoung Choi, Hyokyung Bahn

ISSN: 1790-0832 707 Issue 5, Volume 6, May 2009

3.2 Fairness Issue of Scheduling

Fairness is an important factor that needs to be
considered for request scheduling algorithms. Greedy
algorithms that only consider the high-parallelism or
short positioning time may not be adequate in terms of
fairness as it may lead to starvation of some requests.
For the SPTF or P-SPTF algorithm, this may happen
when a request is far away from the current position or
there are relatively fewer requests that can be
processed simultaneously. It is likely that eventually
the request will be serviced. However, the response
time for that request can have far larger variance than
the average cases. This implies that some requests are
receiving faster service at the expense of others that
may be suffering starvation.

To alleviate this problem, an aging factor may be
introduced. Lee et al. suggested the PA-SPTF
algorithm that incorporates the aging factor into
P-SPTF. The aging factor considered in PA-SPTF is
the waiting time of the requests. PA-SPTF determines
the request to be serviced using a priority value similar
to P-SPTF. The scheduling priority Priority(x, y) of
each location is determined as

Priority(x, y) = ∑ W(x, y) / timeposition (x, y) (3)

where timeposition(x, y), likewise as in P-SPTF, is the
positioning time from the current position to position
(x, y) and ∑ W(x, y) represents the sum of the waiting
times for requests on the position (x, y). ∑ W(x, y)
incorporates the notion of the number of pending
requests on location (x, y) as well as the aging factor.

There is another way to consider the fairness of the
scheduling that can be used for starvation resistant.
The basic idea is to traverse all positions of the region
during each sweep similar to the SCAN algorithm in
hard disks.

The ZSPTF (zone-based SPTF) algorithm presented
by Hong et al. [1, 17] can be classified into this
category. ZSPTF divides each region into several
rectangular zones. Then, it first services requests in a
zone by the SPTF algorithm and then moves to another
zone chosen by the C-SCAN manner. This algorithm
resolves the starvation problem of SPTF that may
happen to some requests far from the current head
position. However, ZSPTF does not consider the
parallelism of the MEMS-based storage.

3.3 Combining Efficiency and Fairness

Through Subsections 3.1 and 3.2, we have discussed
three requirements of the scheduling algorithm in
MEMS-based storage. The first two requirements,
namely short positioning time and high-parallelism,
are related to efficiency and the third one, low
variation of service latency, is related to fairness.
 SSTF and SPTF consider only the first requirement.
P-SPTF considers the first and the second
requirements while ZSPTF considers the first and the
third requirements. PA-SPTF considers all of these
three requirements.

In this subsection, we present yet another two
scheduling algorithms, called ZSCAN-PSPTF and
ZPSPTF, that combines the idea of P-SPTF and
ZSPTF. Unlike PA-SPTF that combines all
requirements in a single priority measure,
ZSCAN-PSPTF and ZPSPTF use the granularity of
scheduling similar to ZSPTF.

Now, let us look at the algorithm details of the two
algorithms. The first algorithm, ZSCAN-PSPTF,
divides each region into zones similar to ZSPTF. It
first selects a zone and then services all requests in the
zone and moves to another zone. Inter-zone
scheduling is performed by the SCAN order and
intra-zone scheduling is performed by the P-SPTF
order. The second algorithm, ZPSPTF, uses P-SPTF
for both inter-zone scheduling and intra-zone
scheduling.

4 Experimental Results
To assess the effectiveness of the scheduling
algorithms, we have performed trace-driven
simulations. A typical logical block of 512 bytes is
mapped to 8 byte sectors of MEMS-based storage at
the same relative position in 64 different regions,
which are accessed concurrently. Adjacent logical
blocks are allocated sequentially to the y-axis direction
to allow for successive access without repositioning.

In the traces used in our experiments, the
inter-arrival times of requests conform to an
exponential distribution. The request size is also
exponential with a mean of 4KB, and the placement of
requests is uniformly distributed across the entire
device.

To explore a range of workload intensities, we scale
the traced inter-arrival times to produce a range of
average inter-arrival times. For example, a scaling
factor of two generates a workload that is twice more
intense than the original trace. When the total size of
distinct blocks in the trace is larger than the capacity of

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Eunji Lee, Kern Koh, Hyunkyoung Choi, Hyokyung Bahn

ISSN: 1790-0832 708 Issue 5, Volume 6, May 2009

a single MEMS device, we used multiple media sleds.
The sleds move simultaneously and their relative
positions are unchanged.

We compare P-SPTF, PA-SPTF, SPTF, ZPSPTF
and ZSCAN-PSPTF. For ZPSPTF and
ZSCAN-PSPTF, we used 25×3 zones for each region.

Fig. 2 shows the average response times as a
function of the trace scaling factor for the five
algorithms. The shape of the graph is similar to the
results presented by Lee et al. [15, 16] but precise
values are somewhat inconsistent due to different
configurations of the storage device.

As can be seen from Fig. 2, parallelism-aware
scheduling algorithms P-SPTF, PA-SPTF, ZPSPTF,
and ZSCAN-PSPTF perform better than SPTF by a
large margin when the workload intensity becomes
sufficiently heavy. This is because parallelism-aware
scheduling algorithms consider the number of requests
at identical relative positions for request scheduling.
Rapid service of a large number of pending requests

leads to the smaller average response time. Based on
these results, we can conclude that parallelism-aware
scheduling algorithms are more scalable than other
algorithms and can be effective when employed to
large server environments with heavy request streams
such as multimedia and Web servers. However, there
are little performance differences among
parallelism-aware scheduling algorithms such as
P-SPTF, PA-SPTF, ZPSPTF, and ZSCAN-PSPTF.

Fig. 3 shows the squared coefficients of variation of
response times (σ2/µ2) as the trace scaling factor
increases, where σ is the standard deviation of
response times and µ is the average response time. For
this metric, a lower value means that the response time
for each request deviates less from the average case. It
is a metric used to measure starvation resistance and
fairness [5]. By incorporating the aging factor via the
sum of the waiting time, PA-SPTF shows comparable
performance with other algorithms for all ranges of the
experiments.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25 30

Trace scaling factor

Av
er

ag
e

re
sp

on
se

 ti
m

e
(m

s)

PA-SPTF
P-SPTF
ZSCAN-PSPTF
SPTF
ZPSPTF

Fig. 2. Average response time of the algorithms as the trace scaling factor increases.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 5 10 15 20 25 30

Trace scaling factor

Sq
ua

re
d

co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n

PA-SPTF
P-SPTF
ZSCAN-PSPTF
SPTF
ZPSPTF

Fig. 3. Squared coefficient of variation of response times as the trace scaling factor increases.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Eunji Lee, Kern Koh, Hyunkyoung Choi, Hyokyung Bahn

ISSN: 1790-0832 709 Issue 5, Volume 6, May 2009

0

1

2

3

4

5

6

7

8

9

10

PA-SPTF P-SPTF ZSCAN-
PSPTF

SPTF SSTF ZPSPTF

Trace scaling factor = 1

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(m

s)

(a) Average response time when the trace scaling factor is 1.

0

1

2

3

4

5

6

7

8

9

10

PA-SPTF P-SPTF ZSCAN-
PSPTF

SPTF SSTF ZPSPTF

Trace scaling factor = 2

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(m

s)

(b) Average response time when the trace scaling factor is 2.

0

1

2

3

4

5

6

7

8

9

10

PA-SPTF P-SPTF ZSCAN-
PSPTF

SPTF SSTF ZPSPTF

Trace scaling factor = 3

Av
er

ag
e

re
sp

on
se

 ti
m

e
(m

s)

(c) Average response time when the trace scaling factor is 3.

Fig. 4. Average response time of the algorithms when the trace scaling factor is small.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Eunji Lee, Kern Koh, Hyunkyoung Choi, Hyokyung Bahn

ISSN: 1790-0832 710 Issue 5, Volume 6, May 2009

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

PA-SPTF P-SPTF ZSCAN-
PSPTF

SPTF SSTF ZPSPTF

Trace scaling factor = 10

Av
er

ag
e

re
sp

on
se

 ti
m

e
(m

s)

 (a) Average response time when the trace scaling factor is 10.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

PA-SPTF P-SPTF ZSCAN-
PSPTF

SPTF SSTF ZPSPTF

Trace scaling factor = 20

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(m

s)

(b) Average response time when the trace scaling factor is 20.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

PA-SPTF P-SPTF ZSCAN-
PSPTF

SPTF SSTF ZPSPTF

Trace scaling factor = 30

A
ve

ra
ge

 re
sp

on
se

 ti
m

e
(m

s)

(c) Average response time when the trace scaling factor is 30.

Fig. 5. Average response time of the algorithms when the trace scaling factor is large.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Eunji Lee, Kern Koh, Hyunkyoung Choi, Hyokyung Bahn

ISSN: 1790-0832 711 Issue 5, Volume 6, May 2009

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

PA-SPTF P-SPTF ZSCAN-
PSPTF

SPTF SSTF ZPSPTF

Trace scaling factor = 1

S
qu

ar
ed

 c
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

(a) Squared coefficient of variation when the trace scaling factor is 1.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

PA-SPTF P-SPTF ZSCAN-
PSPTF

SPTF SSTF ZPSPTF

Trace scaling factor = 2

S
qu

ar
ed

 c
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

(b) Squared coefficient of variation when the trace scaling factor is 2.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

PA-SPTF P-SPTF ZSCAN-
PSPTF

SPTF SSTF ZPSPTF

Trace scaling factor = 3

S
qu

ar
ed

 c
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

(c) Squared coefficient of variation when the trace scaling factor is 3.

Fig. 6. Squared coefficient of variation of response times when the trace scaling factor is small.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Eunji Lee, Kern Koh, Hyunkyoung Choi, Hyokyung Bahn

ISSN: 1790-0832 712 Issue 5, Volume 6, May 2009

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

PA-SPTF P-SPTF ZSCAN-
PSPTF

SPTF SSTF ZPSPTF

Trace scaling factor = 10

S
qu

ar
ed

 c
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

(a) Squared coefficient of variation when the trace scaling factor is 10.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

PA-SPTF P-SPTF ZSCAN-
PSPTF

SPTF SSTF ZPSPTF

Trace scaling factor = 20

Sq
ua

re
d

co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n

(b) Squared coefficient of variation when the trace scaling factor is 20.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

PA-SPTF P-SPTF ZSCAN-
PSPTF

SPTF SSTF ZPSPTF

Trace scaling factor = 30

Sq
ua

re
d

co
ef

fic
ie

nt
 o

f v
ar

ia
tio

n

(c) Squared coefficient of variation when the trace scaling factor is 30.

Fig. 7. Squared coefficient of variation of response times when the trace scaling factor is large.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Eunji Lee, Kern Koh, Hyunkyoung Choi, Hyokyung Bahn

ISSN: 1790-0832 713 Issue 5, Volume 6, May 2009

Zone-based parallelism-aware algorithms such as
ZSCAN-PSPTF and ZPSPTF do not perform well in
terms of the squared coefficients of variation of
response times in our experiments. Since ZPSPTF
selects a zone to schedule by the P-SPTF order, the
variation of response time can be large. However, it is
not expected that ZSCAN-PSPTF shows large
variation of response time because it uses SCAN as the
inter-zone scheduling algorithm. With a finer-grained
zone size, we could improve the squared coefficient of
variation of response time for ZSCAN-PSPTF.
However, a smaller zone size deteriorates the average
response time because of lower-parallelism. Figs. 4-7
show the performance results separately for each trace
scaling factor.

5 Conclusion
In this paper, we discussed three requirements of
scheduling algorithms for MEMS-based storage,
namely short positioning delay, high-parallelism, and
low variation of service latency. In terms of these
requirements, we compared various versions of
parallelism-aware I/O scheduling algorithms for
MEMS-based storage and then showed the
effectiveness of them through trace-driven simulations.
Experimental results show that parallelism-aware
scheduling algorithms perform better than SPTF in
terms of the average request delays when the workload
is sufficiently heavy.

6 Acknowledgements
This work has been supported by the Korea Research
Foundation Grant funded by the Korean Government
(KRF-2008-314-D00344).

References:

[1] B. Hong, S. Brandt, D. Long, E. Miller, K. Glocer, and Z.

Peterson, “Zone-based Shortest Positioning Time First
Scheduling for MEMS-based Storage Devices,” 11th
IEEE/ACM Symp. Modeling, Analysis, and Simulation
of Computer and Tel. Systems, 2003.

[2] J. Griffin, S. Schlosser, G. Ganger, and D. Nagle,
“Operating system management of MEMS-based
storage devices,” 4th USENIX Symp. Operating Systems
Design and Implementation, pp. 227-242, 2000.

[3] H. Yu, D. Agrawal, and A. Abbadi, “Towards optimal
I/O scheduling for MEMS-based storage,” 20th
IEEE/11th NASA Goddard Conf. Mass Storage Systems
and Technologies, 2003.

[4] J. Griffin, S. Schlosser, G. Ganger, and D. Nagle,
“Modeling and performance of MEMS-based storage
devices,” ACM SIGMETRICS Conf., pp. 56-65, 2000.

[5] B. Worthington, G. Ganger, and Y. Patt, “Scheduling
Algorithms for Modern Disk Drives,” ACM
SIGMETRICS Conf., pp. 241-251, 1994.

[6] S. Schlosser and G. Ganger, “MEMS-based storage
devices and standard disk interfaces: A square peg in a
round hole?” 3rd USENIX Conf. File and Storage
Technologies, 2004.

[7] M. Liu and K. Gao, “High Efficient Scheduling
Mechanism for Distributed Knowledge Discovery
Platform,” WSEAS Transactions on Information Science
and Applications, Vol.6, No.1, 2009.

[8] J. Li, “A Sampling-based Method for Dynamic
Scheduling in Distributed Data Mining Environment,”
WSEAS Transactions on Computers, Vol.8 No.1, 2009

[9] A. J. S. Santiago, A. J. Yuste, J. E. M. Exposito, S. G.
Galan, J. M. M. Marin, and S. Bruque, “A
Dynamic-Balanced Scheduler for Genetic Algorithms
for Grid Computing,” WSEAS Transactions on
Computers, Vol.8, No.1, 2009.

[10] P. Denning, “Effects of scheduling on file memory
operations,” AFIPS Spring Computer Conf., pp.9-21,
1967.

[11] S. Schlosser, J. Griffin, D. Nagle, and G. Ganger,
“Designing computer systems with MEMS-based
storage,” 9th Int’l Conf. Architectural Support for
Programming Languages and Operating Systems, 2000.

[12] P. Vettiger, M. Despont, U. Drechsler, U. Dürig, W.
Häberle, M. Lutwyche, H. Rothuizen, R. Stutz, R.
Widmer, and G. Binnig, “The Millipede – More than
one thousand tips for future AFM data storage,” IBM
Journal Research and Development, Vol.44, No.3,
pp.323-340, 2000.

[13] R. Rangaswami, Z. Dimitrijevic, E. Chang, and K.
Schauser, “MEMS-based disk buffer for streaming
media servers,” Int’l Conf. Data Engineering, 2003.

[14] H. Yu, D. Agrawal, and A. Abbadi, “Tabular
placement of relational data on MEMS-based storage
devices,” Int’l Conf. Very Large Databases, 2003.

[15] H. Bahn, S. Lee, and S. H. Noh, “P/PA-SPTF:
Parallelism-aware Request Scheduling Algorithms for
MEMS-based Storage Devices,” ACM Transactions on
Storage, Vol.5, No.1, 2009.

[16] S. Lee, H. Bahn, and S. H. Noh, “Parallelism-aware
Request Scheduling for MEMS-based Storage
Devices,” 14th IEEE Int’l Symp. Modeling, Analysis,
and Simulation of Computer and Telecommunication
Systems (MASCOTS), 2006.

[17] B. Hong, S. Brandt, D. Long, E. Miller, K. Glocer, and
Z. Peterson, “Using MEMS-based Storage in Computer
Systems – Device Modeling and Management,” ACM
Transaction on Storage, Vol. 2, No.2, pp 139-160, 2006.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Eunji Lee, Kern Koh, Hyunkyoung Choi, Hyokyung Bahn

ISSN: 1790-0832 714 Issue 5, Volume 6, May 2009

