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Abstract: MEMS-based storage is being developed as a new storage media that has several salient characteristics 
such as high-parallelism, high density, and low-power consumption. Because physical structures of MEMS-based 
storage is different from those of hard disks, new software management techniques for MEMS-based storage are 
needed. Specifically, MEMS-based storage has thousands of parallel-activating heads, which requires 
parallelism-aware request scheduling algorithms to maximize the performance of the storage media. In this paper, 
we compare various versions of I/O scheduling algorithms that exploit high-parallelism of MEMS-based storage 
devices. Trace-driven simulations show that parallelism-aware algorithms can be effectively used for high 
capacity mass storage servers because they perform better than other algorithms in terms of the average response 
time when the workload intensity becomes heavy.    
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1   Introduction  
MEMS-based storage is one of the leading candidates 
as tomorrow’s storage medium. Due to its salient 
characteristics such as high-parallelism, low-power 
consumption, low cost, and high-density, 
MEMS-based storage is anticipated to be used for a 
wide range of applications from storage for small 
handheld devices to high capacity mass storage 
servers [11-14]. However, MEMS-based storage has a 
couple of different physical characteristics compared 
to a traditional hard disk [1-4]. First, MEMS-based 
storage has thousands of heads that can be activated 
simultaneously. Second, the media of MEMS-based 
storage is a square structure, which is different from 
the rotation-based platter structure of disks. Due to 
these differences in characteristics, new system 
software technologies appropriate for this media have 
been issues of recent research [2, 3].  

Similar to hard disks, one of the most important 
management mechanisms for improving 
MEMS-based storage efficiency is request scheduling 
[7-9]. However, since the mechanism to access the 
storage medium is different from hard disks, a 
different approach is required for MEMS-based 
storage. Specifically, thousands of parallel-activating 
heads make the scheduling problem in MEMS-based 
storage even more complicated when considering the 
potential performance of the parallel processing 
ability.  

In this paper, we discuss three requirements of 
scheduling algorithms for MEMS-based storage, 
namely short positioning delay, high-parallelism, and 
low variation of service latency. In terms of these 
requirements, we compare various versions of I/O 
scheduling algorithms for MEMS-based storage and 
then show the effectiveness of parallelism-aware 
scheduling algorithms. Simulation results show that 
the parallelism-aware request scheduling algorithms 
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Fig. 1. Physical structure of a MEMS-based storage device [3]. There are thousands of regions on the magnetic media 
and a read/write head for each corresponding region. The magnetic media moves along two directional axes, x and y. 

perform better than SPTF (Shortest Positioning Time 
First) in terms of the average request delay when the 
workload is sufficiently heavy.  

The remainder of the paper is organized as follows. 
Section 2 explains basic structure of MEMS-based 
storage and gives an overview of scheduling 
algorithms for MEMS-based storage. We present 
parallelism-aware request scheduling algorithms in 
Section 3, and show the experimental results in 
Section 4. Finally, Section 5 presents the conclusion of 
this paper. 

 
 
2   Related Works  
 
2.1 Basic Structure of MEMS-based Storage 
 
A MEMS-based storage device consists of the 
magnetic media (called media sled) that is divided into 
regions and groups of heads (called probe tips) used to 
access data on the corresponding region. To access 
data on a specific (x, y) location, MEMS-based storage 
suffers a substantial distance-dependent positioning 
time delay similar to disks. Unlike disks, however, the 
heads of MEMS-based storage are fixed and magnetic 
media itself moves to access data on a specific location. 
The movement of the media in the directions of x and y 
axes is independent and proceeds in parallel. Thus, the 
positioning time timeposition(x, y) for a specific (x, y) 
location can be calculated as follows. 

timeposition(x, y) = max ( timeseek_x, timeseek_y )       (1) 

where timeseek_x and timeseek_y are the seek times on the 
x and y dimensions, respectively. In most current 
architectures, timeseek_x is dominant over timeseek_y 
because extra settling time must be included to 
timeseek_x, but not to timeseek_y. Settling time is the time 
needed for the oscillations of the magnetic media to 
damp out. This time is dependent on the construction 
of the magnetic media and the stiffness of the spring 
that sustains the magnetic media [4]. Since media 
access is performed in the direction of the y dimension 
after positioning, it requires constant media velocity in 
the y dimension and zero velocity in the x dimension. 
Hence, oscillation in the x dimension leads to off-track 
interference after seeking, while the same oscillation 
in the y dimension affects only the bit rate of the data 
transfer [6].  
 
2.2 Basic Scheduling Algorithms 
 
Scheduling algorithms such as FCFS, which services 
requests in the order of arrival, SSTF, which services 
requests from smallest to largest seek time [10], and 
SPTF, which services requests from the smallest 
positioning time, that is, the delay considering both 
seek time and rotational latency, to the largest [5], 
have been suggested for conventional disks. Griffin et 
al. showed that all of these scheduling algorithms 
work appropriately when applied to MEMS-based 
storage [2] by mapping seek time to the movement 
delay on the x-axis direction and rotational latency to 
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the movement delay on the y-axis direction.  
Some recent studies suggested scheduling 

algorithms for MEMS-based storage considering the 
physical characteristics of MEMS devices [1, 3]. Yu et 
al. suggested a minimum spanning tree based 
scheduling algorithm for MEMS-based storage [3]. 
Since SPTF does not perform well in terms of average 
response time for some cases due to its greedy 
property, their new algorithm generates a minimum 
spanning tree (MST) for pending requests based on 
seek distance and schedules the requests by traversing 
the tree in double walking order. They show that the 
MST-based algorithm shows slightly better 
performance than SPTF in terms of average response 
time. However, this algorithm incurs additional 
overhead in making and rebuilding the MST whenever 
a new request arrives. Furthermore, this algorithm 
inherits the starvation problem similar to SPTF and 
SSTF, in that some requests may be delayed 
indefinitely. 

Hong et al. suggested the ZSPTF (Zone-based 
Shortest Positioning Time First) scheduling algorithm 
[1, 17]. They considered the starvation problem of 
SPTF. ZSPTF groups the regions of the storage media 
into a set of zones based on seek time equivalence. 
Zones are serviced by the C-SCAN (Circular Scan) 
order, and within a zone, requests are serviced by the 
SPTF order. ZSPTF performs a little worse than SPTF 
in terms of average response time, but performs better 
in terms of the squared coefficient of variation of 
response times which means that fairness is improved 
and the chance of starvation lessened.  

Lee et al. [15, 16] presented a parallelism-aware 
request scheduling algorithm called P-SPTF for 
MEMS-based storage devices. P-SPTF assigns a 
priority value to each (x, y) position in a region and the 
position with the highest priority value is scheduled 
first. The idea of the algorithm is to assign higher 
priority to the position that contains the most number 
of requests in each (x, y) position. This allows a large 
number of waiting requests to be simultaneously 
serviced first, leading to improved average response 
time. They also suggested another algorithm, called 
PA-SPTF, that incorporates the aging factor to the 
P-SPTF algorithm, making it starvation-free.  

 
 
3 Scheduling Algorithms for 
High-Parallelism MEMS-based Storage 
  

Scheduling algorithms of MEMS-based storage for 
heavy I/O workload systems should consider the 
following three problems. First, the algorithm should 
exploit the parallelism of MEMS-based storage. Since 
thousands of heads can work simultaneously, it is 
more efficient to provide higher priorities to those 
locations that have large number of pending I/O 
requests. Second, the algorithm should consider the 
positioning time of heads. Specifically, minimization 
of head movement is important to service pending 
requests in the scattered (x, y) positions efficiently. 
Third, the algorithm should consider the fairness issue. 
Even though efficiency is important, there may be the 
starvation problem of requests in some specific 
locations. The first two requirements are related to the 
efficiency of the scheduling, and the third one is 
related to fairness. In Subsection 3.1, we present the 
efficiency of scheduling and then we present the 
fairness issue of the scheduling in Subsection 3.2. 
 
3.1 Efficiency Issue of Scheduling  
 
The parallelism-aware scheduling algorithm exploits 
the fact that there may be pending requests with 
identical relative x and y offsets in multiple regions 
and that MEMS-based storage can handle these 
requests simultaneously. Using this characteristic, the 
scheduling algorithm could improve the average 
response time by assigning higher execution priority 
to the position that has the most number of requests in 
each (x, y) position, which we denote as N(x, y).  

This parallelism-aware scheduling algorithm can be 
combined with any positioning time aware scheduling 
algorithm such as SSTF or SPTF, which we refer to as 
the positional scheduling algorithm. For the rest of the 
paper, we will use the SPTF scheduling algorithm as 
the positional scheduling algorithm. With these two 
properties, P-SPTF algorithm is presented [15, 16]. 
Priority in P-SPTF is determined as follows. Let 
Priority(x, y) be the priority value to determine the 
next request to service. Then, Priority(x, y) is 
computed as 

Priority(x, y) = N(x, y) / timeposition(x, y)         (2) 

where N(x, y) is the number of pending requests on 
position (x, y) across all regions in the device and 
timeposition (x, y) is the positioning time from the current 
position to position (x, y) as determined by SPTF. The 
request which has the largest value of Priority(x, y) is 
selected as the next location to be serviced.  
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3.2 Fairness Issue of Scheduling 
 
Fairness is an important factor that needs to be 
considered for request scheduling algorithms. Greedy 
algorithms that only consider the high-parallelism or 
short positioning time may not be adequate in terms of 
fairness as it may lead to starvation of some requests. 
For the SPTF or P-SPTF algorithm, this may happen 
when a request is far away from the current position or 
there are relatively fewer requests that can be 
processed simultaneously. It is likely that eventually 
the request will be serviced. However, the response 
time for that request can have far larger variance than 
the average cases. This implies that some requests are 
receiving faster service at the expense of others that 
may be suffering starvation.  

To alleviate this problem, an aging factor may be 
introduced. Lee et al. suggested the PA-SPTF 
algorithm that incorporates the aging factor into 
P-SPTF. The aging factor considered in PA-SPTF is 
the waiting time of the requests. PA-SPTF determines 
the request to be serviced using a priority value similar 
to P-SPTF. The scheduling priority Priority(x, y) of 
each location is determined as  

Priority(x, y) = ∑ W(x, y) / timeposition (x, y)         (3) 

where timeposition(x, y), likewise as in P-SPTF, is the 
positioning time from the current position to position 
(x, y) and ∑ W(x, y) represents the sum of the waiting 
times for requests on the position (x, y). ∑ W(x, y) 
incorporates the notion of the number of pending 
requests on location (x, y) as well as the aging factor.  

There is another way to consider the fairness of the 
scheduling that can be used for starvation resistant. 
The basic idea is to traverse all positions of the region 
during each sweep similar to the SCAN algorithm in 
hard disks.  

The ZSPTF (zone-based SPTF) algorithm presented 
by Hong et al. [1, 17] can be classified into this 
category. ZSPTF divides each region into several 
rectangular zones. Then, it first services requests in a 
zone by the SPTF algorithm and then moves to another 
zone chosen by the C-SCAN manner. This algorithm 
resolves the starvation problem of SPTF that may 
happen to some requests far from the current head 
position. However, ZSPTF does not consider the 
parallelism of the MEMS-based storage. 
 
3.3 Combining Efficiency and Fairness 
 

Through Subsections 3.1 and 3.2, we have discussed 
three requirements of the scheduling algorithm in 
MEMS-based storage. The first two requirements, 
namely short positioning time and high-parallelism, 
are related to efficiency and the third one, low 
variation of service latency, is related to fairness.  
   SSTF and SPTF consider only the first requirement. 
P-SPTF considers the first and the second 
requirements while ZSPTF considers the first and the 
third requirements. PA-SPTF considers all of these 
three requirements.  

In this subsection, we present yet another two 
scheduling algorithms, called ZSCAN-PSPTF and 
ZPSPTF, that combines the idea of P-SPTF and 
ZSPTF. Unlike PA-SPTF that combines all 
requirements in a single priority measure, 
ZSCAN-PSPTF and ZPSPTF use the granularity of 
scheduling similar to ZSPTF.   

Now, let us look at the algorithm details of the two 
algorithms. The first algorithm, ZSCAN-PSPTF, 
divides each region into zones similar to ZSPTF. It 
first selects a zone and then services all requests in the 
zone and moves to another zone. Inter-zone 
scheduling is performed by the SCAN order and 
intra-zone scheduling is performed by the P-SPTF 
order. The second algorithm, ZPSPTF, uses P-SPTF 
for both inter-zone scheduling and intra-zone 
scheduling.  

 
 

4   Experimental Results  
To assess the effectiveness of the scheduling 
algorithms, we have performed trace-driven 
simulations. A typical logical block of 512 bytes is 
mapped to 8 byte sectors of MEMS-based storage at 
the same relative position in 64 different regions, 
which are accessed concurrently. Adjacent logical 
blocks are allocated sequentially to the y-axis direction 
to allow for successive access without repositioning.  

In the traces used in our experiments, the 
inter-arrival times of requests conform to an 
exponential distribution. The request size is also 
exponential with a mean of 4KB, and the placement of 
requests is uniformly distributed across the entire 
device.  

To explore a range of workload intensities, we scale 
the traced inter-arrival times to produce a range of 
average inter-arrival times. For example, a scaling 
factor of two generates a workload that is twice more 
intense than the original trace. When the total size of 
distinct blocks in the trace is larger than the capacity of 
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a single MEMS device, we used multiple media sleds. 
The sleds move simultaneously and their relative 
positions are unchanged.    

We compare P-SPTF, PA-SPTF, SPTF, ZPSPTF 
and ZSCAN-PSPTF. For ZPSPTF and 
ZSCAN-PSPTF, we used 25×3 zones for each region. 

Fig. 2 shows the average response times as a 
function of the trace scaling factor for the five 
algorithms. The shape of the graph is similar to the 
results presented by Lee et al. [15, 16] but precise 
values are somewhat inconsistent due to different 
configurations of the storage device.  

As can be seen from Fig. 2, parallelism-aware 
scheduling algorithms P-SPTF, PA-SPTF, ZPSPTF, 
and ZSCAN-PSPTF perform better than SPTF by a 
large margin when the workload intensity becomes 
sufficiently heavy. This is because parallelism-aware 
scheduling algorithms consider the number of requests 
at identical relative positions for request scheduling. 
Rapid service of a large number of pending requests 

leads to the smaller average response time. Based on 
these results, we can conclude that parallelism-aware 
scheduling algorithms are more scalable than other 
algorithms and can be effective when employed to 
large server environments with heavy request streams 
such as multimedia and Web servers. However, there 
are little performance differences among 
parallelism-aware scheduling algorithms such as 
P-SPTF, PA-SPTF, ZPSPTF, and ZSCAN-PSPTF. 

Fig. 3 shows the squared coefficients of variation of 
response times (σ2/µ2) as the trace scaling factor 
increases, where σ is the standard deviation of 
response times and µ is the average response time. For 
this metric, a lower value means that the response time 
for each request deviates less from the average case. It 
is a metric used to measure starvation resistance and 
fairness [5]. By incorporating the aging factor via the 
sum of the waiting time, PA-SPTF shows comparable 
performance with other algorithms for all ranges of the 
experiments.  
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Fig. 2. Average response time of the algorithms as the trace scaling factor increases. 
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Fig. 3. Squared coefficient of variation of response times as the trace scaling factor increases. 
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(a) Average response time when the trace scaling factor is 1. 
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(b) Average response time when the trace scaling factor is 2. 
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(c) Average response time when the trace scaling factor is 3. 

 
Fig. 4. Average response time of the algorithms when the trace scaling factor is small. 
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 (a) Average response time when the trace scaling factor is 10. 
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(b) Average response time when the trace scaling factor is 20. 

 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

PA-SPTF P-SPTF ZSCAN-
PSPTF

SPTF SSTF ZPSPTF

Trace scaling factor = 30

A
ve

ra
ge

 re
sp

on
se

 ti
m

e 
(m

s)

 
(c) Average response time when the trace scaling factor is 30. 

 
Fig. 5. Average response time of the algorithms when the trace scaling factor is large. 
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(a) Squared coefficient of variation when the trace scaling factor is 1. 
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(b) Squared coefficient of variation when the trace scaling factor is 2. 
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(c) Squared coefficient of variation when the trace scaling factor is 3. 

 
Fig. 6. Squared coefficient of variation of response times when the trace scaling factor is small. 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Eunji Lee, Kern Koh, Hyunkyoung Choi, Hyokyung Bahn

ISSN: 1790-0832 712 Issue 5, Volume 6, May 2009



0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

PA-SPTF P-SPTF ZSCAN-
PSPTF

SPTF SSTF ZPSPTF

Trace scaling factor = 10

S
qu

ar
ed

 c
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

 
(a) Squared coefficient of variation when the trace scaling factor is 10. 
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(b) Squared coefficient of variation when the trace scaling factor is 20. 
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(c) Squared coefficient of variation when the trace scaling factor is 30. 

 
Fig. 7. Squared coefficient of variation of response times when the trace scaling factor is large. 
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Zone-based parallelism-aware algorithms such as 
ZSCAN-PSPTF and ZPSPTF do not perform well in 
terms of the squared coefficients of variation of 
response times in our experiments. Since ZPSPTF 
selects a zone to schedule by the P-SPTF order, the 
variation of response time can be large. However, it is 
not expected that ZSCAN-PSPTF shows large 
variation of response time because it uses SCAN as the 
inter-zone scheduling algorithm. With a finer-grained 
zone size, we could improve the squared coefficient of 
variation of response time for ZSCAN-PSPTF. 
However, a smaller zone size deteriorates the average 
response time because of lower-parallelism. Figs. 4-7 
show the performance results separately for each trace 
scaling factor. 
 
5  Conclusion 
In this paper, we discussed three requirements of 
scheduling algorithms for MEMS-based storage, 
namely short positioning delay, high-parallelism, and 
low variation of service latency. In terms of these 
requirements, we compared various versions of 
parallelism-aware I/O scheduling algorithms for 
MEMS-based storage and then showed the 
effectiveness of them through trace-driven simulations. 
Experimental results show that parallelism-aware 
scheduling algorithms perform better than SPTF in 
terms of the average request delays when the workload 
is sufficiently heavy. 
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