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Abstract: Image preprocessing techniques represent an essential part of a face recognition systems, which has a
great impact on the performance and robustness of the recognition procedure. Amongst the number of techniques
already presented in the literature, histogram equalization has emerged as the dominant preprocessing technique
and is regularly used for the task of face recognition. With the property of increasing the global contrast of the
facial image while simultaneously compensating for the illumination conditions present at the image acquisition
stage, it represents a useful preprocessing step, which can ensure enhanced and more robust recognition perfor-
mance. Even though, more elaborate normalization techniques, such as the multiscale retinex technique, isotropic
and anisotropic smoothing, have been introduced to field of face recognition, they have been found to be more of a
complement than a real substitute for histogram equalization. However, by closer examining the characteristics of
histogram equalization, one can quickly discover that it represents only a specific case of a more general concept of
histogram remapping techniques (which may have similar characteristics as histogram equalization does). While
histogram equalization remapps the histogram of a given facial image to a uniform distribution, the target distri-
bution could easily be replaced with an arbitrary one. As there is no theoretical justification of why the uniform
distribution should be preferred to other target distributions, the question arises: how do other (non-uniform) target
distributions influence the face recognition process and are they better suited for the recognition task. To tackle this
issues, we present in this paper an empirical assessment of the concept of histogram remapping with the following
target distributions: the uniform, the normal, the lognormal and the exponential distribution. We perform com-
parative experiments on the publicly available XM2VTS and YaleB databases and conclude that similar or even
better recognition results that those ensured by histogram equalization can be achieved when other (non-uniform)
target distribution are considered for the histogram remapping. This enhanced performance, however, comes at a
price, as the nonuniform distributions rely on some parameters which have to be trained or selected appropriately
to achieve the optimal performance.
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1 Introduction

Image preprocessing techniques represent an essen-
tial part of a face recognition systems, which has a
great impact on the performance and robustness of the
recognition procedure. The main objective of these
techniques is to enhance the discriminative informa-
tion contained in the facial images and to ensure that
environmental factors, such as the ambient illumina-
tion present at the image acquisition stage, do not in-
fluence the process of facial-feature-extraction. Es-
pecially the latter objective is of major importance,
as it is known that the variability induced to a given
subject’s face images by illumination is often larger
than the variability induced to different facial images
by the subject’s identity [1]. Due to this great sus-

ceptibility of face recognition systems to illumination
variations, numerous approaches have been proposed
in the literature to achieve illumination invariant face
recognition.

Land and McCann [2], for example, tried
to achieve illumination invariance through the
illumination-reflection model of digital images. The
model assumes that each image can be represented as
a product of illumination and reflectance, where illu-
mination represents the amount of measured light in-
tensities and reflectance denotes the amount of light
reflected by a given object. Under the assumption that
the illumination component of the model can be ap-
proximated as a blurred, i.e., low pass filtered, ver-
sion of the original image, the illumination insensitive
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reflectance can be computed by dividing the original
image with its illumination.

Based on Lands and McCanns work, Jobson et.
al [3] proposed a multiscale retinex (MSR) technique
where the illumination component of the illumination-
reflectance model is computed as a weighted sum of
the filter outputs of the original image and several
gaussian filters of different widths [4]. In comparison
to the single filter approach the use of several gaussian
filters results in a more stable performance, especially,
when high and low pixel intensity regions need to be
processed efficiently.

Gross and Brajovic [5] showed that illumina-
tion invariance could be achieved with the help of
anisotropic smoothing. In their method the illumina-
tion component of the illumination-reflectance model
is estimated based on the minimization of an energy-
based cost function. The method again presumes that
the illumination component is a blurred version of the
original image, however, the amount of blurring at
each pixel location is controlled by the local image
contrast, hence, the name anisotropic smoothing.

Du and Ward [6] presented a preprocessing tech-
nique based on the wavelet transform. The authors
proposed to apply histogram equalization to the sub-
band image generated by the so-called approximation-
wavelet-coefficients and to emphasize the remaining
subbands generated by the detail-wavelet-coefficients.
Through the histogram equalization step the image
contrast is improved while the second step enhances
the edge information. The final illumination compen-
sated image is obtained by simply employing the in-
verse wavelet transform on the modified coefficient
subbands.

While all of the presented techniques represent
efficient preprocessing methods, the dominant pre-
processing approach most commonly used in face
recognition systems today is histogram equalization.
Here, the pixel intensity values are mapped from their
original distribution to a uniform one, thus improv-
ing contrast and simultaneously compensating for the
illumination-introduced variations in the appearance
of the facial images. Histogram equalization has
proven itself to be a powerful preprocessing technique
capable of improving both, the recognition perfor-
mance as well as the robustness of face recognition
systems; however, it is usually used solely based on
its empirically determined usefulness.

We will show in this paper that histogram equal-
ization represents only a specific case of a more gen-
eral concept where the pixel values of a given image
are altered in such a way that the pixel intensity dis-
tribution fits a predefined one. Rather than fitting uni-
form distributions to images, as it is done in the case
of histogram equalization, we propose to use other,

nonuniform distributions potentially more suitable for
the task of face recognition. We present experimen-
tal results obtained on the XM2VTS and YaleB face
databases which show that fitting lognormal distri-
butions to facial images results in similar recogni-
tion performance as the use of histogram equalization
when identity claims are verified based on images cap-
tured in controlled conditions, while it ensures more
robust performance on facial images severely affected
by illumination variations. We also perform experi-
ments with other distributions and report the compar-
ative results.

The rest of the paper is structured as follows.
Section 2 presents the basic structure and operating
modes of a face recognition system. In Section 3
the basic principles of histogram equalization are de-
scribed. Section 4 details the general procedure of fit-
ting arbitrary distributions to pixel intensity values. In
Section 5 we present the results of various verification
experiments and conclude the paper in Section 6.

2 The structure of face recognition
systems

Face recognition systems are basically pattern recog-
nition systems comprising the following four modules
[7], [8], [9]:

• the image acquisition or sensor modulewhich
captures an image of the users face,

• the preprocessing modulewhich extracts the fa-
cial region from the captured image and normal-
izes it in respect to size and rotation and ul-
timately performs a photometric normalization
procedure on the facial region,

• the feature extraction modulewhich extracts a
set of representative features from the normal-
ized facial region, and

• the matching modulewhich matches the feature
set extracted from the given face image with the
templates/models stored in the systems database
and based on the outcome of the matching pro-
cedure makes a decision regarding the identity of
the user.

An example of the structure of a face recogni-
tion system is presented in Fig. 1. Here, the up-
per row shows the enrollment stage, where a user is
enrolled into the system. In the enrollment stage a
user-model or template is constructed from the feature
vectors extracted from a number of (users) enrollment
face images and stored in the systems database. In
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Figure 1: The structure of a face recognition system: upper row - the enrollment stage, lower row - the recognition
stage

the experiments presented in Section 5 the mean fea-
ture vector of all enrollment images of a given user is
computed during the enrollment stage and used as the
user-model/template.

The lower row of Fig. 1 shows the recognition
stage in a face recognition system. Here, we have to
make a distinction between the two operating modes
of a face recognition system, i.e., the verification and
identification modes. In identification mode, the sys-
tem outputs the identity associated with the image
most similar to the test/query image (in term of feature
vector similarity). Thus, to make a decision regard-
ing the identity of the user, the system has to com-
pare the feature vector extracted from the test/query
image with all templates/models stored in the systems
database. In verification mode, on the other hand, the
user has to explicitly claim an identity (dotted part
of lower row of Fig. 1). The system then simply
compares the feature vector corresponding to the test
image with the template associated with the claimed
identity and based on this comparison either validates
the identity claim or not.

As already indicated in the previous section, we
will focus in this paper on the first part of the pre-
sented processing chain, namely, the preprocessing
module.

3 Histogram equalization

Consider a face imageI(x,y) with N pixels and a total
number ofk grey levels, e.g., 256 grey levels for an 8-
bit image. Histogram equalization tries to transform
the distribution of the pixel intensity values in the
imageI(x,y) into a uniform distribution and conse-
quently to improve the images global contrast. It does
so by better distributing the pixel intensity values, i.e.,
by spreading out the most frequent pixel intensity val-
ues. Formally, histogram equalization can be defined
as follows: given the probabilityp(i) = ni

N
(i.e., the

actual histogram ofI(x,y)) of an occurrence of a pixel
with a grey level ofi, wherei ∈ 0, 1, ..., k − 1 andni

denotes the number of pixels inI(x,y) with the grey
level value ofi, the mapping from a given intensity
valuei to a new transformed oneinew is defined by:

inew =
k−1∑
i=0

ni

N
=

k−1∑
i=0

p(i). (1)

Equation (1) defines a mapping of the pixels’ intensity
values from their original range (0-255) to the domain
of [0,1]. Thus, to obtain pixel values in the original
domain, e.g., the 8-bit interval, the valuesinew have
to be rescaled. A visual example of histogram equal-
ization is presented in Fig. 2.

As we can see, the contrast of the processed im-
age is greatly increased - unfortunately, this also ap-
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Figure 2: A sample image and its histogram before
(upper row) and after (lower row) histogram equaliza-
tion

plies to the background noise present in the facial im-
age. However, it is this property (i.e., contrast en-
hancement) which makes histogram equalization one
of the most often employed (heuristic) preprocessing
techniques in the field of face recognition.

4 From uniform to arbitrary distri-
butions

While transforming the pixel intensity distribution of
a facial image to a uniform one (as it is done with his-
togram equalization) was empirically shown to pro-
vide enhanced face recognition performance when
compared to unprocessed facial images, it is still just
a useful heuristic, which represents a specific case of
a more general concept of histogram remapping tech-
niques. In this class of techniques, the target distribu-
tion is not limited to a uniform distribution, but can
represent an arbitrary one, such as the normal, the
lognormal, the exponential or any other distribution.
There is no guarantee that the uniform distribution is
best suited for the face recognition task, thus, other
options of histogram remapping have to be evaluated
as well. In the remainder of this section, we will first
review the basic concepts governing histogram remap-
ping techniques and then provide examples for three
well-known distributions.

4.1 Histogram remapping

The first step common to all histogram remapping
techniques is the transformation of the pixel intensity

values of the given image via the rank transform. The
rank transform is basically a histogram equalization
procedure which renders the histogram of the given
image in such a way that the resulting histogram ap-
proximates the uniform distribution. Here, each pixel
value in aN dimensional imageI(x,y) is replaced
with the index (or rank)R the pixel would correspond
to if the image pixels were ordered in an ascending
manner. For example, the most negative pixel value is
assigned a ranking of 1 while the most positive value
is assigned a ranking ofN . The described procedure
is equivalent to the one presented in Section 3, the
only difference is in the way the new, mapped pixel
intensity values are computed and in the domain they
are mapped to.

Once the rankR of each image pixel is de-
termined, the general mapping function to match
the target distributionf(x) may be calculated from
[10],[11]:

N − R + 0.5

N
=

∫
t

x=−∞

f(x)dx, (2)

where the goal is to findt. Obviously, the right hand
side represents the target cumulative distribution func-
tion (CDF) while the left hand side represents a scalar
value. If we denote the CDF withF (x) and the scalar
on the left withu, then the mapped valuet is found by
computing the following expression:

t = F−1(u), (3)

whereF−1 denotes the inverse of the CDF, i.e.,

4.2 Normal distribution mapping

The first distribution considered in this paper in the
normal distribution. The expression for the normal
curve is given with the following expression:

f(x) =
1

σ
√

2π
exp(

−(x − µ)2

2σ2
), (4)

whereµ denotes the mean value andσ > 0 represents
the standard deviation.

When implementing the histogram mapping tech-
nique with the target being the normal distribution, we
have to select two parameters, i.e.,µ andσ. As we
will rescale the mapped pixel values to the 8-bit inter-
val (for visualization purposes), the choice ofµ does
not influence the outcome of mapping procedure, we
do, however set it to 0, forσ, on the other hand, we
select the value of 1, so the target distribution used
in the experiments presented in Section 5 is the stan-
dard normal distribution. A visual example of the per-
formed histogram remapping is shown in Fig. 3. Here
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Figure 3: A sample image and its histogram after
mapping the histogram to a normal distribution

the same input image was used as for the example in
Fig. 2. Note that the pixel values for the mapped im-
age had to be inverted, i.e., subtracted from the value
of 255, which is a consequence of ordering the pixel
values in an ascending manner. The appearance of the
image (inverted or not) has no direct impact on the
recognition.

4.3 Lognormal distribution mapping

The second distribution considered in this paper is the
lognormal distribution. Here, the expression for the
density function is given by:

f(x) =
1

σ
√

2π

exp(−(ln x − µ)2/2σ2)

x
, (5)

where the parametersµ andσ > 0 again define the
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Figure 4: A sample image and its histogram after
mapping the histogram to the log-normal distribution:
upper row -σ = 0.2, lower row:σ = 0.7

shape of the distribution. Note thatx ≥ 0. For our ex-
periments we used two values ofσ, i.e.,σ = 0.2 and

σ = 0.7. Visual examples of the transforms (again
inverted) for both values ofσ are shown in Fig. 4.

4.4 Exponential distribution mapping

The last distribution considered in this paper is the ex-
ponential distribution which forx ≥ 0 can be defined
as follows:

f(x) = λ exp(−λx). (6)

Hereλ denotes the parameter of the distribution often
called the rate parameter. For our experiments the rate
parameterλ was set to the value of 1. An example of a
transformed image using this distribution is presented
in Fig. 5
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Figure 5: A sample image and its histogram after
mapping the histogram to the exponential distribution
with λ = 1

Note that similar to the the previous examples, the
pixel values have again been inverted.

5 Experiments and results

This section describes the experiments performed to
assess the presented histogram remapping techniques.
First, the databases employed in the assessment are
briefly introduced and then the actual experiments
with the corresponding results are presented.

5.1 Experimental databases

Two popular face databases were used to assess
the usefulness of the presented histogram remapping
techniques: the XM2VTS [12] and the YaleB [13]
databases.

The first database contains 2360 facial images
(corresponding to 295 subject), which were captured
in controlled conditions, i.e., in frontal view, with
a uniform background, with controlled illumination,
etc. Each of the 295 subjects of the database is ac-
counted for with 8 facial images recorded during four
separate recording session and over a period of ap-
proximately five months [14]. Clearly, most of the
variability in the appearance of the facial images of
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Figure 6: Sample images from the XM2VTS database

a given subject is session induced. Thus, the im-
ages differ in the pose of the face, the head-rotation,
presence/absance of glasses, mustaches and makeup,
different hairstyle, etc. Some examples of the facial
images of a subject from the XM2VTS database are
shown in Fig. 6.

The second database used in our experiments, i.e.,
the YaleB database [15], contains images of only 10
subjects. These images, however, exhibit large vari-
ations in pose and illumination. The database com-
prises a total of5760 grey-scale facial images in 576
viewing conditions (9 poses× 64 illumination con-
ditions). However, as we are interested only in the
impact of the illumination variations on the verifica-
tion performance, we use only the subset of the fa-
cial images from the YaleB database with frontal pose,
i.e., a subset of640 facial images. Some examples of
the images from the employed frontal-pose-subset are
shown in Fig. 7.

The presented databases were selected for testing
purposes to allow us to assess the feasibility of the his-
togram remapping techniques on facial images cap-
tured in controlled as well as uncontrolled conditions.
Note that an efficient normalization technique is ex-
pected to ensure similar (or better) error rates as those
achieved with unprocessed facial images, when iden-
tity claims have to be verified based on facial images
captured in controlled conditions, and to improve the
error rates, when identity claims have to be verified
based on facial images captured under severe illumi-
nation variations.

In the experiments presented in the next section
linear discriminant analysis (LDA) was used as the
feature extraction technique and the cosine similarity
measure was employed as the scoring function for the
nearest neighbor classifier [16].

5.2 Experiments on the XM2VTS database

All experiments on the XM2VTS database were per-
formed in accordance with the first configuration of
the established experimental protocol associated with
the database [14]. The protocol defines which im-
ages should be used for training, which for parame-
ter tuning and which for testing. The protocol rep-
resents a closed-set verification protocol1 and defines
that the results of a given series of verification ex-
periments are reported by means of the false rejec-
tion error rate (frr), which measures the percentage
of falsely rejected clients, the false acceptance error
rate (far), which measures the percentage of falsely
accepted impostors, and the total error rate (ter), de-
fined as ter=far+frr.

In a face recognition system operating in verifi-
cation mode the claim of the identity of a person pre-
sented to the system results in the test/query face im-
age being transformed into the so-called ”live” fea-
ture vector, and matched against the template asso-
ciated with the claimed identity. If the live feature
vector and the template display a degree of similar-
ity that is higher than a predefined decision threshold,
the claim of identity is verified, otherwise the claim of
identity is rejected [17]. Unfortunately, the two error
rates FAR and FRR both depend on the value of the
decision threshold. Thus, selecting a decision thresh-
old which ensures a low FAR, result in an increase
of the FRR and vice versa, a decision threshold that
ensures a low FRR results in an increase of the FAR.
Obviously, a decision threshold which ensures prede-
fined values of the FAR and FRR has to be chosen
to allow for a fair comparison of different face veri-

1In a closed-set protocol the images used for training ones fea-
ture extraction technique and the images used for enrolling a user,
i.e., building a user model, coincide.
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Figure 7: Sample images from the YaleB database

fication systems. This threshold defines an operating
point at which different face verification systems can
be compared. The equal error rate (EER) operating
point, i.e., the threshold which ensures that the FAR
equals FRR, is a popular operating point commonly
used in comparative assessments and will, therefore,
also be employed in our experiments. Of course, an
evaluation image set is needed to determine the value
of the decision threshold which ensures equal error
rates. This threshold is then simply used on the test
images set to simulate real operating conditions.

Prior to the experiments, the facial images were
first aligned and then cropped to a standard size of
100 × 100 pixels in accordance with the manually
marked eye coordinates. This way we ensured that our
results are comparable with other results presented in
the literature. Some examples of the preprocessed im-
ages are shown in Fig. 8. Note that assessing the per-
formance of the preprocessing techniques with auto-
matically localized facial regions is beyond the scope
of this paper. The reader should, however, refer to
[18], [19], [20], [21], [22] and [23] to get an overview
of existing face detection/localization techniques.

Figure 8: Examples of preprocessed images from the
XM2VTS database

After the alignment and cropping procedures, five
sets of images were produced, which formed the ba-
sis for our experiments. The first set contained images
which have not been further processed (denoted as UP
in Tables 1, 2, and 3), the second contained images
processed with histogram equalization (HQ), the third
set comprised images with a fitted normal distribution
(NM), the forth set featured images with a lognormal
distribution (LN) and the fifth set contained images
with an exponential distribution (EX). The results of
the verification experiments conducted on all five im-
age sets for the evaluation set are presented in Table
1 and for the test set in Table 2. The total error rates
for the experiments on the two images sets are also
presented in Fig. 9.

Table 1: The error rates at the equal error operating
point for different preprocessing techniques - evalua-
tion set

Methos UP HQ NM LN EX

FRR(%) 3.50 3.00 2.83 3.00 4.33

FAR(%) 3.55 2.97 2.84 3.02 4.08

TER(%) 7.05 5.97 5.67 6.02 8.41

Table 2: The error rates at the equal error operating
point for different preprocessing techniques - test set

Methos UP HQ NM LN EX

FRR(%) 3.25 2.50 2.50 2.50 3.25

FAR(%) 3.73 3.39 2.96 3.19 4.18

TER(%) 6.98 5.89 5.44 5.69 7.43
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Figure 9: The values of the TER for the evaluation
and test images sets of the XM2VTS database

From the results we can see that histogram equal-
ization, lognormal distribution and normal distribu-
tion fitting provided similar verification errors, all out-
performing the unprocessed images2. The only im-
age set resulting in higher error rates than the orig-
inal images was the set with the exponential distri-
bution. Based on these first results we can conclude
that other distribution besides the uniform also en-
sure lower error rates (when fitted to facial images)
than those achievable with unprocessed images. It is
also interesting to see that three out of the four tested
preprocessing techniques actually improved the ver-
ification performance when compared to the unpro-
cessed images. This finding suggest that the assessed
techniques are useful not only for image normaliza-
tion (as will be shown in the next series of our ex-
periments), but for image enhancement as well. This
finding is supported by the fact that the images from
the XM2VTS database have already been free of illu-
mination induced appearance changes.

5.3 Experiments on the YaleB database

As already indicated in Section 5.1, we used the640
images with frontal pose for our experiments on the
YaleB database [15]. Hence, for every subject in the
database, we made use of 64 images - each captured
in different illumination conditions. The 640 images
were distributed into five subsets depending on the
extremity in illumination and were preprocessed in
a similar fashion as the images from the XM2VTS
database. Some examples of the preprocessed facial
images from the five subsets are presented in Fig. 10.

In our experiments the first subset (with the most

2Note that the results for the lognormal distribution corre-
spond toσ = 0.2, which performed better on the XM2VTS
database than the variant withσ = 0.7.

Figure 10: Examples of preprocessed images from
the five subsets of the YaleB database (from top- to
bottom-row): subset 1, subset 2, subset 3, subset 4
and subset 5

controlled-like conditions) was used for training and
enrollment, while the remaining subsets were em-
ployed for testing. Such an experimental setup re-
sulted in highly miss-matched conditions for the ver-
ification procedure and posed a great challenge to the
preprocessing techniques. On the other hand, it en-
sured real-life conditions, as the enrollment process is
usually supervised and, hence, the training/enrollment
images are always of good quality.

The five techniques, i.e., UP, HQ, NM, LN and
EX, already used in the experiments on the XM2VTS
database were employed to produce five image sets.
Based on these sets again a series of identification ex-
periments was performed. The results of these exper-
iments in terms of the rank one recognition rate are
presented in Table 3 and Fig. 11. Note that the rank
one recognition rate is defined as the percentage of
tested images that were correctly identified.

Histogram equalization and normal distribution
fitting again resulted in a similar performance with
significantly higher recognition rates than those
achieved with the unprocessed images. However, even
better results were achieved when the histogram of the
images was mapped to the lognormal (here a value of
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Figure 11: Rank one recognition rates for the five subsets of the YaleB database

Table 3: The rank one recognition rates for the Yale
database

Methos UP HQ NM LN EX

subset 2 100 100 100 100 100

subset 3 99.2 100 100 100 99.2

subset 4 47.1 63.6 61.4 78.6 72.1

subset 5 11.6 62.1 63.7 87.9 84.2

σ = 0.7 was used) and exponential distributions.
Based on the results obtained on both databases

we can conclude that mapping the histograms of facial
images to lognormal distributions ensures the most
consistent recognition performance. It achieves sim-
ilar results as histogram equalization when facial im-
ages captured in controlled conditions are subjected
to the recognition process and outperforms histogram
equalization when images with illumination induced
appearance variations are used for the recognition.
However, even though distribution fitting may re-
sult in better recognition performance than histogram
equalization, there is also a disadvantage to it, as each
distribution relies on one or more parameters which
have to be determined in advance and can have a great
impact on the face recognition performance.

6 Conclusion

We have presented an empirical assessment of the im-
pact histogram remapping has on the performance of
a face recognition system. In a comparative evalu-
ation where in the first step four target distributions
were mapped to the facial images and in the second
step the mapped images were employed for assess-

ing the performance of a LDA-based face recogni-
tion system, the best and most consistent results were
achieved when a lognormal distribution was used as
the target distribution for the histogram remapping.
Our results suggest that other distributions besides the
uniform can also ensure enhanced and robust recogni-
tion performance, in some cases even surpassing his-
togram equalization, but at the expense that one or
two parameters determining the shape of the prede-
fined distribution have to be set in advance or through
some additional training procedure. Our future work
in respect to histogram remapping will, therefore, be
focused on:

• assessing the performance of face recognition
systems with other target distributions (which
have not been considered in this paper),

• finding a way of automatically determine the op-
timal parameters for the given target distribution,
and

• combining histogram remapping techniques with
other preprocessing approaches such as the mul-
tiscale retinex technique or anisotropic smooth-
ing.
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thentication using a hybrid approach.Journal of
Electronic Imaging17, 2008, pp. 1–11.

[18] K. Sundaraj, Real-Time Face Detection us-
ing Dynamic Background Substraction,WSEAS
Transactions on Information Science and Appli-
cations5, 2008, pp. 1531–1540.

[19] Y. Gizatdinova, J. Erola and V. Surakka, Auto-
matic Real Time Localization of Frowning and
Smiling Faces under Controlled Head Rotations,
WSEAS Transactions on Signal Processing4,
2008, pp. 463–473.

[20] A. Bottino and S. Cumani, A Fast and Robust
Method for the Identification of Face Landmarks
in Profile Images,WSEAS Transactions on Com-
puters7, 2008, pp. 1250–1259.

[21] O. Jesorsky, K.J. Kirchberg and
R.W. Frischholz, Robust face detection us-
ing the Hausdorff distance,Proceedings of
the International Conference on Audio- and
Video-based Biometric Person Authentication,
AVBPA’01, 2001, pp. 90–95.

[22] P. Viola and M. Jones, Robust Real-Time Object
Detection,Proceedings of the Second Interna-
tional Workshop on statistical and Comutational
Theories of Vision - Modelling, Learning, Com-
puting and Sampling, 2001, pp. 1–25.

[23] E. Hjelmas and B.K. Low, Face Detection: A
Survey, Computer Vision and Image Under-
standing83, 2001, pp. 236-274.

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Vitomir Struc, Janez Zibert, Nikola Pavesic

ISSN: 1790-0832 529 Issue 3, Volume 6, March 2009




