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Abstract: - This paper proposes an improved particle swarm optimization (PSO). In order to increase the 
efficiency, suggestions on parameter settings is made and a mechanism is designed to prevent particles fall into 
the local optimal. To evaluate its effectiveness and efficiency, this approach is applied to multimodal function 
optimizing tasks. 16 benchmark functions were tested, and results were compared with those of PSO, 
HNMPSO and GA-PSO. It shows the proposed method is both robust and suitable for multimodal function 
optimization. 
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1 Introduction 
As many optimization problems become more 
complex, stronger and more robust optimization 
algorithms are always needed. The advancement of 
powerful computers and evolutionary algorithms 
render the capability of solving the global 
optimization of complex system [1]. Among the 
considered tools are Meta-heuristics who solve a 
problem that involves an empirical search or 
optimization method. Classical meta-heuristic 
algorithms include Particle swarm optimization 
(PSO), Genetic algorithm (GA), Simulation 
algorithm (SA) and Ant Colony Optimization (ACO) 
etc. are the classical heuristic algorithms. Among 
these, Particle swarm optimization (PSO) is a new 
and popular stochastic optimization technique which 
developed by Kennedy and Eberhart [2]. The 
development of this algorithm follows from the bird 
and fish flocks moving and finding goals and foods 
in nature. There is always a leader as well as the best 
performance of the particles in the entire population. 
The leader leads the group in moving. All members 
of the group follow the leader. As above, the 
mechanism of PSO simulates this kind of behavior to 
search the optimal solution. 
Compared with GA, PSO has some attractive 
characteristics. They have memory, so knowledge of 
the best solutions is retained by all the particles. The 
process of basic GA includes selectivity, crossover 
and mutation. Mutation is an important step which 

prevents the chromosome from falling into local 
minima. Similarly, there are two positive constants 
in PSO velocity and location update formula. They 
are the parameter of cognition and social, 
respectively. These parameters determine the relative 
effect of the convergence efficiency and the 
capability of escape local optimal. In general, both of 
them are setting to the same number.  
Usually PSO is considered because of the ease of 
implementation and effectiveness. It can solve 
continuous problem and obtain the good 
performance. So far, PSO has been successfully 
applied in various fields. There were still many 
researchers who developed improved PSO. Most of 
them improved the performance accuracy, 
robustness or efficiency. This study is another 
attempt to further improve the performance of PSO. 
The rest of the paper is organized as follows: 
Literature survey is discussed in Section 2. We will 
introduce methodology in Section 3, includes 
original PSO and SRPSO. The setting of the 
conducted numerical experiment is explained in 
Section 4. This section also shows the experimental 
results. Finally, the conclusion and future work is 
presented in the last section. 
 
2 Literature Survey 
Particle swarm optimization algorithm was first 
described in 1995 by James Kennedy and Russell C. 
Eberhart [2]. Nowadays, PSO has been widely 
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applied in many research areas and real-world 
engineering fields, such as, task assignment and 
scheduling [3] [4], odor source localization [5], 
power plants [6], phase balancing [7], data clustering 
[8], image process [9], demand forecast [10] [11] , 
identification [12] and layout design [13] [14].  
    One of the first applications of PSO to multimodal 
problems was performed in 1998 by Kennedy [15]. 
In the paper the problem is to locate the global 
optimum in a fitness landscape with multiple local 
optima. The results of several versions of PSO 
where compared with the results of GA, the result 
shows that performs of PSO was better. In 2003, 
Susana and Carlos [16] presented two hybrid particle 
swarm optimization algorithms that incorporate a 
mutation operator similar to the one used in 
evolutionary algorithm. This hybridization of PSO 
improved the performance when dealing with 
multimodal functions. 
Zielinski and Laur [17] found the appropriate 
parameter combination for a multi-objective Particle 
Swarm Optimization algorithm from Design of 
Experiments and interaction effects of different 
parameters were discovered. A adaptive control was 
applied to the parameters which are incorporated in 
the update equations of PSO.  
Park et al. [18] proposed an improved hybrid PSO 
(HPSO), which combines the conventional PSO 
framework with the crossover operation of genetic 
algorithm. By applying the crossover operation in 
PSO, it not only discourages premature convergence 
to local optimum but also explores and exploits the 
promising regions in the search space effectively. In 
addition, Hao et al. [19] presented a crossover step is 
added to the standard PSO. The crossover is between 
each particle’s individual best position. After the 
crossover, the fitness of the individual best position 
is compared with that of the two offspring, and the 
best one is selected as the new individual best 
position. The crossover can help the particles jump 
out of the local optimization by sharing the others’ 
information. The experiment on five benchmark 
functions shows that the modified PSO is more 
effective to find the global optimal solution than 
other methods.  
Coelho [20] presented a Quantum-behaved PSO 
(QPSO) using chaotic mutation operator. The 
application of chaotic sequences based on chaotic 
zaslavskii map instead of random sequences in 
QPSO is a powerful strategy to diversify the QPSO 
population and improve the QPSO’s performance in 
preventing premature convergence to local minima. 
Finally they applied QPSO to solve a well-studied 
continuous optimization problem of mechanical 
engineering design. Ling et al. [21] also proposed 

new hybrid particle swarm optimization which 
incorporates a wavelet-theory-based mutation 
operation. It applied the wavelet theory to enhance 
the PSO in exploring the solution space more 
effectively for a better solution. This method applied 
to solve a suite of benchmark test functions and 
three industrial applications. 
Fan et al. [22] developed the hybrid Nelder–Mead 
(NM)–Particle Swarm Optimization algorithm based 
on the NM simplex search method and PSO. Wang 
et al. [23] also developed a hybrid technique based 
on particle swarm optimization algorithm combined 
with the nonlinear simplex search method(HNM-
PSO). This approach is applied to multimodal 
function optimizing tasks and compared with NS-
PSO and CPSO. Kao and Zahara [24] proposed 
hybrid method which combining two heuristic 
optimization techniques, genetic algorithms and 
particle swarm optimization, for the global 
optimization of multimodal functions. Denoted as 
GA-PSO, this hybrid technique incorporates 
concepts from GA and PSO and creates individuals 
in a new generation not only by crossover and 
mutation operations as found in GA but also by 
mechanisms of PSO. The results of various 
experimental studies using a suite of 17 multimodal 
test functions taken from the literature have 
demonstrated the superiority of the hybrid GA-PSO 
approach over the other four search techniques in 
terms of solution quality and convergence rates. The 
authors also compared the result of GA-PSO and 
NM-PSO. The outcomes proved GA-PSO better 
than NM-PSO. 
In this study, the parameter setting of PSO will 
be discussed and modified thoroughly. Besides, 
a novel and powerful mechanism will be 
designed. This improved algorithm will be 
introduced in next section. 
 
3 Methodology 
3.1 Particle Swarm Optimization 
In nature, the birds and fishes flock to reach their 
food and goal. There is a leader who leads the group 
in moving. All members of the group follow the 
leader. PSO simulates a commonly observed social 
behavior, where particles of swarm tend to follow 
the global best particle.     

Particles continuously update their velocity and 
position, and try to find optimal solutions. The 
procedure of PSO is described as follows: 
1) Initialization: In a population of potential 
solutions, the population size is problem-dependent 
and the most commonly used in literature is often 
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between 20 and 50, and each particle is assigned a 
randomized velocity. 
2) Velocity and Location Update: The particle’s 
velocity ( new

idV ) and position ( old

idx ) are updated as 
follows: 
        )(1
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where [0.5  / 2]w rand= +  is an inertia weight and 
rand a uniformly generated random number between 
0 and 1. c1 and c2 are two positive constants between 
0 and 2. They are the parameters of cognition and 
social, respectively. Pid is the best location in the 
neighbourhood of the particle and Pgd is the global 
best location of all particles. old

idV  and old

idx are the 
particle’s previous velocity and position, 
respectively. new

idx  is the new location of a particle 
and can be updated by equation (2), after new

idV is 
computed by equation (1) 
3)  Evaluation and Location Update of Pid and Pgd: 
The fitness value of each particle can be computed 
by the objective function. If the new value of Pid or 
Pgd is better than the old ones, the values of Pid and 
Pgd will be updated.  
4) Termination: Step (2) and step (3) are repeated 
until the termination conditions are met. 
 
3.2 Cognitive and Social Parameter Setting 
A particle’s new velocity is based on Pid and Pgd 
with the respective weights of c1 and c2. Clearly, c1 
and c2 determine the relative effect of social 
knowledge (Pgd old

idx- )and cognitive knowledge (Pid 
- old

idx ). Usually, the two parameters are assigned the 
same value. If this is the case, new position of a 
particle will tend to be located between Pid and Pgd. 
It may slow down the convergence of particles 
toward to the global best location and thus affect the 
efficiency of the search.  
A setting of assigning a larger value to c2 with 
respect to c1 is suggested in the proposed algorithm. 
This setting put more weight on Pgd when 
determining the new velocity of a particle. Thus, the 
new location of the particle will be closer to the 
global best location and the convergence is 
accelerated. 
In order to observe the parameter setting which 
affects particle’s convergence efficiency, the 
effect of the balance setting (c1=1.5, c2=1.5) is 
compared with unbalance setting (c1=0.5, c2=2.5) 

for multimodal functions problem (ES). The 
fitness convergent behavior and particles 
distribution of the balance parameter setting PSO 
and the unbalance parameter setting PSO are 
illustrated in Fig. 1 and Fig. 2. 
 

 
Fig. 1 Particles distribution and Fitness convergence 

behavior (Balance parameter setting of PSO) 

 
Fig. 2 Particles distribution and Fitness convergence 

behavior   (Unbalance parameter setting of PSO) 
 
The total number of iteration in the experiment is 80. 
The particles distribution is drawn when the 
iteration is 1, 20, 40, 60 and 80. The result of PSO is 
not completely converged until experiment end in 
Fig. 2. On the other hand, when the parameter 
setting is unbalance in PSO, the convergent 
efficiency increases and particle distribution 
decreases. The particles converge after about 20 
iterations. 
The result shows that the convergence is more 
effective when the parameter c2 is set greater than c1 
in PSO. But this setting also increases the risk of 
particles fall into the local optimal. Therefore, the 
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“Selective Particle Regeneration” mechanism is 
designed in next section to prevent this situation 
happened. 
 
3.3 Selective Regenerated Particle Swarm 
Optimization 
In this paper, Selective Regeneration Particle 
Swarm Optimization (SRPSO) is proposed with two 
major modifications on PSO. Suggestion on setting 
of c1 and c2 is made and mechanism of regeneration 
of selective particles is designed. The procedure of 
SRPSO is illustrated Table 1. 
 
3.4 Selective Particle Regeneration 
The suggested parameter setting that c2 is greater 
than c1, may be able to improve the efficiency of 
convergence, but it also increases the risk of 
particles falling into local optimums. Therefore, a 
“Selective Particle Regeneration” mechanism is 
designed. It is a new operation in which is similar to 
the mutation mechanism in GA. Generally speaking, 
as a particle becomes closer to local optimal 
location, the possibility of this particle escaping 
from it decreases, especially with the suggested 
parameter setting. The “Selective Particle 
Regeneration” mechanism first computes the 
distance, in terms of fitness value, between a 
particle and global best particle (Pgd). For particles 
with distances to the global best particle smaller 
than a predetermined value, f, d% of these particles 
will be randomly selected and regenerated.  
The purpose of particle regeneration is to help some 
of the particles that are close to the global best 
particle escape from local optimum if the current 
global best particle represents a local optimal 
solution. However, the current global best particle 
may still contain valuable knowledge that may lead 
to better solutions. Therefore, partial knowledge 
carried by the global best particle will be adopted 
when generating new locations of the selected 
particles. More specifically, when determining the 
value of a specific dimension for the new location of 
a particle, the value of the same dimension of the 
current global best location is adopted with a 
probability of c. With a probability of (1– c), the 
value is randomly generated. 
Finally, it is desired for these regenerated particles 
not to move toward the global best particle right 
away. Therefore, as opposed to setting c2 to be 
greater than c1 as suggested previously, c1 is given a 
value larger than c2 instead when determining the 
new velocities of the regenerated particles. By doing 
so, greater weight is assigned to cognitive 
knowledge. This setting, however, applies only to 

the determination of velocities for particles that are 
just regenerated. The setting of c1 and c2 remains as 
suggested in section 3.2.  
 

Table 1 The procedure of SRPSO 
1. Randomly population initialization 
2. Fitness Evaluation  
3. For each particle{ 
4.     If the particle is regenerated 
5.         Setting 1.(Set c2 to be greater than c1)   
6.     Else 
7.         Setting 2.(Set c1 to be greater than c2)   
8.     End 
9.     Velocity and Location Update  
10. } 
11. For each particle{ 
12.    If the particle is close to Pgd 
13.        Selective Particle Regeneration  
14.            .Distance Calculation 
15.             Particle Selection 
16.             Particle Regeneration 
17.             Parameter Modification 
18.    End 
19. } 
20. If the termination condition is met 
21.    Stop 
22. Else 
23.   Go to line 2. 
24. End 

 
4 Experiment and Result 
4.1 Experiment Setting 
In order to evaluate the performance of the proposed 
algorithm, SRPSO and PSO are applied to solve 
continuous multimodal function problems. The 
SRPSO and PSO algorithm were coded in Matlab 
2007a and the simulations were run on an AMD 
1.7G CPU with memory capacity 1024 MB. Each 
test was performed 30 times for PSO and SRPSO. 
The termination condition is that the number of 
function evaluation is reached. 
16 benchmark multimodal functions were selected 
for the experiment. The collection provides a 
balance of simple and difficult functions. These 
functions have been used in various particle swarm 
studies [25] [26]. Table 2 summarizes the 
characteristics of these benchmark functions. 
Functions were implemented at a lowest dimension 
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of 2 and at a highest dimension of 30. In all cases, 
there are minimization problems. E.G. is the Error 
Goal which is the search accuracy. If the fitness is 
lower than E.G., it will be considered and marked as 
“success”. Xmin and Xmax are the boundary of search 
space for each benchmark function. 
 
          Table 2 Parameters for each test function 

Function Branin Easom Shubert 
Dimension 2 2 2 

E.G. 10-6 10-6 10-6 
Xmin -5 -100 -10 
Xmax 15 100 10 

Function Zakharov Hartmann Rastrigin
Dimension 2, 10 3 10, 30 

E.G. 10-6, 10-3 10-3 10-6, 10-3

Xmin 5 0 5.12 
Xmax 10 1 5.12 

Function Griewank Sphere Power 
Dimension 10, 30 20, 30 20 

E.G. 10-3, 10-1 10-2, 10-1 10-2 
Xmin -300 100 -1 
Xmax 600 100 1 

Function Rotated Ackley Schwefel
Dimension 20 30 30 

E.G. 10-2 10-1 10-1 
Xmin -65.536 -30 -500 
Xmax 65.536 30 500 

 
4.2 Experiment Setting 
After thorough tests and experiments, we proposed 
the parameters setting for SRPSO in Table 3. N  is 
the dimension of benchmark function. F.E. is the 
function evaluation. It is also determined by N which 
is 50 × N × Particle Size. The initial population is 
randomly generated. Both parameter c1 and c2 are 
1.5 in PSO. 

Table 3 Parameter setting 
Parameter c1 c2 f d 

Value 0.5 2.5 E.G.×10 40% 

Parameter c Partice 
Size F. E. 

Value 30% 5 N  50×N× Particle Size
 
4.3 Experimental Result 
The results for the all benchmark functions are 
provided in Table 4 to Table 6. Fig. 4 to Fig. 7 
provide more insight into the convergence behaviors 
of PSO and SRPSO. Opt. is the optimal solution of 

each benchmark functions. If the value is smaller 
than 10-6, we assume that is very close to zero. It 
will be replaces with “0”. We also provide the 
convergence figures for some benchmark functions. 
We have used various benchmark functions to 
compare SRPSO and PSO.  
As can be seen clearly, SRPSO outperformed PSO 
in all benchmark functions. The average, worst, best 
values of SRPSO are pretty close to the optimal 
solutions. The relatively low standard deviation 
shows the robustness of SRPSO. For low- 
dimension or simple problems, the performances of 
SRPSO and PSO are not much different. But for 
high-dimensions or complex problems, the 
performances of SRPSO are obvious better than 
PSO.  Fig. 3 to Fig. 6 present the convergence 
behaviors of function Branin, Rastrigin, Rotated 
hyper and Schwefel. Most of outcomes of PSO 
exhibit slower convergence. On the other hand, the 
convergence of SRPSO is faster and the solution are 
close to the global optimum. Especially in Rastrigin, 
SRPSO converges to the global optimum in about 
200 iterations. PSO does not convergence until 
experiment termination which is 500 time iterations. 
We applied SRPSO and PSO methods to calculate 
the success rate and convergence using CPU times 
and average number of function evaluation value 
which is shown in Table 7. For all benchmark 
function, SRPSO exhibits a significantly high 
success rate compared with PSO. CPU time and the 
number of function evaluation constitute the 
computation cost. Even if PSO needs less CPU time 
and Function Evaluation in Easom and Shubert, the 
results do not reach to global optimum in these two 
functions. In constrast, SRPSO successfully found 
them in both functions. Aside of Easom and Shubert, 
the outcomes of SRPSO are superior to PSO in 
every aspect. Especially in complex or high 
dimension function, SRPSO clearly reduces 
computation cost. Therefore, we conclude that 
SRPSO is more efficient, robust and accurate than 
PSO in multimodal function problem.  
 
4.4 Comparison with other methods 
SRPSO is compared with two Hybrid method in this 
section. The parameters of SRPSO are the same to 
Table 2. The number of function evaluation is equal 
to the references. The Hybrid Nelder Mead and 
Particle swarm optimization (HNMPSO) [23] and 
hybrid Genetic algorithms and Particle swarm 
optimization (GA-PSO) [24] were developed by 
Wang et al. and Kao et al. These two algorithms 
have been applied to solve continuous multimodal 
function. In order to compare SRPSO with 
HNMPSO and GA-PSO, we applied SRPSO to 
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solve 9 and 17 test functions in these experiments. 
Experimental data obtained from these test functions 
are given in Table 8 and Table 9. Average error is 
the average of the errors between the best successful 
points found and the known global optimum. In 
Table 8, the Numbers of Function Evaluation (1) is 
set the same to the reference. SRSPO obtains the 
obviously superior performances to HNMPSO. In 
order for further comparison, we reduce the number 

of function evaluation in SRPSO (Numbers of 
Function Evaluation (2)) and also obtain the better 
outcomes. The results of GA-PSO and SRPSO are 
shown in Table 9. There are 17 benchmark 
functions, more than half outcomes of SRPSO are 
better than GA-PSO. We conclude that SRPSO 
approach remains quite competitive as compared to 
HNMPSO and GA-PSO. 

 
Table 4 Fitness value for low dimension test function 

 Branin 
(2) 

Easom 
(2) 

Shubert 
(2) 

Zakharov 
(2) 

Hartmann 
(3) Method 

Opt. 0.3978 -1 -186.7309 0 -3.8634 
Avg. 0.3978 -1 -186.7309 0 -3.8634 
Worst 0.3978 -1 -186.7309 0 -3.8634 
Best 0.3978 -1 -186.7309 0 -3.8634 SRPSO 

Std 0 0 0 0 0 
Avg. 0.5352 -1 -185.6815 0 -3.8617 
Worst 1.7596 -1 -182.5775 0 -3.8524 
Best 0.3979 -1 -186.7309 0 -3.8634 PSO 

Std 0.4302 0 1.3510 0 0.0034 
 

Table 5 Fitness value for 10-dimension and 20-dimension test function 

 Rastrigin 
(10) 

Zakharov
(10) 

Griewank
(10) 

Sphere 
(20) 

Power 
(20) 

Rotated 
hyper(20)Method 

Opt. 0 0 0 0 0 0 
Avg. 0 0 0 0 0 0 
Worst 0 0 0 0 0 0 
Best 0 0 0 0 0 0 SRPSO 

Std 0 0 0 0 0 0 
Avg. 3.2733 0 0 0 0 0.0102 
Worst 5.9445 0 1.01e-5 0 0 0.0766 
Best 1.9899 0 0 0 0 7.0e-4 PSO 

Std 1.6553 0 0 0 0 0.0235 
 
 

Table 6 Fitness value for 30-dimension test function 

 Sphere 
(30) 

Rastrigin 
(30) 

Griewank 
(30) 

Ackley 
(30) 

Schwefel 
(30) Method 

Opt. 0 0 0 0 0 
Avg. 0 0 0 0 4e-4 
Worst 0 0 0 0 4e-4 
Best 0 0 0 0 4e-4 SRPSO 

Std 0 0 0 0 0 
Avg. 0 21.98 0 0 6.02e+3 
Worst 0 32.83 0 0 7.41e+3 
Best 0 11.93 0 0 4.31e+3 PSO 

Std 0 7.45 0 0 946.80 
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Fig. 3 Comparison of convergence behaviors in Branin for SRPSO and PSO 

 
 
 

 
Fig. 4 Comparison of convergence behaviors in Rastrigin for SRPSO and PSO 

 
 

 

 
Fig. 6 Comparison of convergence behaviors in Rotated hyper for SRPSO and PSO 
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Fig. 7 Comparison of convergence behaviors in Schwefel for SRPSO and PSO 

 
 

Table 7 The rate of success, CUP time and mean function evaluations for each test function 

Success Rate CPU Time Function 
Evaluation Test function 

SRPSO PSO SRPSO PSO SRPSO PSO 
Branin(2) 100% 8% 0.1993 0.2524 320 456 
Easom(2) 100% 16% 0.1966 0.1054 240 156 
Shubert(2) 100% 28% 0.3521 0.2374 902 525 

Zakharov(2) 100% 12% 0.2370 0.2485 429 511 
Hartmann(3) 100% 100% 0.3517 0.4881 915 1005 
Rastrigin(10) 100% 20% 1.8109 7.5093 12830 25452 
Zakharov(10) 100% 52% 1.0695 3.560 6338 12826 
Griewank(10) 100% 56% 0.9091 1.6760 3465 4055 
Sphere (20) 100% 100% 2.8095 7.5478 13373 13437 
Power(20) 100% 100% 3.1918 3.3049 10522 11782 

Rotated hyper(20) 100% 90% 27.1361 81.9268 45778 90764 
Sphere(30) 100% 100% 6.0869 11.3652 32158 56165 

Rastrigin(30) 100% 6% 17.0125 34.0801 86476 124354
Griewank(30) 100% 100% 9.2486 17.1423 27263 45935 

Ackley(30) 100% 100% 11.1187 18.5299 36659 55352 
Schwefel(30) 100% 0% 23.9948 25.9907 117762 125638

 
Table 8 Results provided by SRPSO and HNM-PSO for 9 test functions 

Average Fitness Average 
Fitness Test function 

Numbers of 
Function 

Evaluation(1)  SRPSO HNMPSO

Numbers of 
Function 

Evaluation(2) SRPSO 
Branin(2) 1466 0.39789 0.39789 1000 0.39789 
Easom(2) 2599 -1 -1 1600 -1 
Shubert(2) 14727 -186.7309 -186.73 2000 -186.7309 

Zakharov(2) 1089 6.0915e-9 4.567e-7 800 2.5354e-8 
Hartmann(3) 3889 -3.8634 -3.8634 2000 -3.8634 

Shekel(4) 8348 -10.5364 -8.0113 6000 -10.5364 
Hartmann(6) 6135 −3.32237 -3.265 3000 −3.32237 
Rastrigin(10) 5418 8.3050 9.7901 4000 11.6010 
Zakharov(10) 22036 3.14e-8 9.1628e-7 10000 8.33e-7 
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Table 9 Results provided by SRPSO and GA-PSO for 17 test functions 
Average Error 

Test function 
Number of  
Function 

Evaluation  SRPSO GA-PSO 

Branin RCOC(2) 8254 8.6e-8 9e-5 
Easom(2) 809 1.2e-2 3e-5 

Goldstein Price(2) 25706 3.1e-12 1.2e-4 
Branin(2) 174 1e-2 1e-5 
Shubert(2) 96211 3.9e-13 7e-5 

Rosenbrock(2) 140894 1e-10 6.4e-4 
Zakharov(2) 95 1e-2 7e-5 

De Joung 206 1.e-5 4e-5 
Hartmann(3) 2117 2.5e-6 2.0e-4 

Shekel(5) 529344 3.8e-6 1.4e-4 
Shekel(7) 56825 2.2e-5 1.5e-4 

Shekel(10) 43314 9e-5 1.2e-4 
Rosenbrock(5) 1358064 4.8e-6 1.3e-4 
Zakharov (5) 398 1.2e-3 1.3e-4 
Hartmann(6) 12568 1.1e-4 2.4e-4 

Rosenbrock(10) 5319160 8e-4 5e-5 
Zakharov(10) 872 2.5e-4 0 

 
4 Conclusion and Future work 
In this paper, an improved Particle Swarm 
Optimization algorithm, SRPSO, was proposed. 
There are two major modifications in this algorithm. 
In order to increase the efficiency, the “Cognitive 
and Social Parameter Setting” is modified in the first 
stage, after that, “Selective Particle Regeneration” 
was designed to prevent particles fall into the local 
optimal.   
The SRPSO was thoroughly investigated and applied 
to solve continuous multimodal function 
optimization. 16 wide variety benchmark multimodal 
functions were selected for the experiment and 
compared to original PSO. The results include the 
average, worst, best, and standard deviation of fitness 
value and convergence behaviors. SRPSO is 
completely to improve global optimality of the 
solution attained. The outcome presents that SRPSO 
is better than PSO in every aspect. We also compared 
with other competitive methods which were 
developed by some researchers. The results lead us 
to allege that SRPSO is an efficient, accurate, and 
robust method for continuous multimodal function 
optimization problem. 
Future work may focus on investigating the best 
parameter setting and reduce the parameter in 
SRPSO. Furthermore, SRPSO may be applied to the 
areas of engineering process control, data cluster, 
image process, data pattern and simulation and 
identification. Finally, SRPSO is a robust and 
accurate method for continuous problem, solving 
discrete problem would also be worth studying 
further. 
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Sphere (20, 30 variables): 

f(x) ∑
=

=
n

i
ix

1

2 ; 

 
Power (20 variables): 

f(x)= ∑
=

+
n

i

ix
1

1 ; 

 
Rotated Hyper (20 variables): 

f(x) ∑ ∑
= =

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

n

i

i

j
ix

1

2

1

2 ; 

 
Ackley (30 variables): 
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