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Abstract. A method for real time in flight prediction of the ground impact point of indirect fire projectiles is 
investigated. The projectiles is assumed to be both rigid (non-flexible), and rotationally symmetric about its spin 
axis launched at low and high pitch angles. A six degree of freedom projectile model solution is used to propagate 
the projectile state from an arbitrary point along the trajectory to the ground impact point. The projectiles 
manoeuvring motion depends on the most significant force and moment variations, in addition to gravity. The 
developed computational method gives satisfactory agreement with published data of verified experiments and 
computational codes on atmospheric projectile trajectory analysis for various initial firing flight conditions. 
 
Keywords—Aerodynamic forces and moments, low and high pitch angles 
 

1 Introduction 

 
 

Exterior ballistics existed for centuries as an art before 
its first beginnings as a science. Although a number of 
sixteenth and seventeenth century European 
investigators contributed to the growing body of 
renaissance knowledge, Isaac Newton of England 
(1642-1727) was probably the greatest of the modern 
founders of exterior ballistics. Newton’s laws of motion 
established, without which ballistics could not have 

advanced from an art to a science. Benjamin Robins of 
England (1707-1751) developed the first successful 
ballistic pendulum in 1740, based on an idea proposed 
by the younger Cassini in 1707. Charles Hutton (1737-
1823), who succeeded Robins at Woolwich, obtained 
drag results for spheres between 1787 and 1791 that 
showed close agreement with Robins’ measurements. 
In 1851, Captain Minié of France invented the “Minié 
Ball”, an ogival-cylindrical bullet with a conical base 
cavity to provide obturation in a rifle barrel. After about 
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1850, ballisticians of many countries began experiments 
to improve the accuracy of drag measurements. Francis 
Bashforth of England invented the Bashforth electro-
chronograph, based on circuitry developed by Charles 
Wheatstone, inventor of the Wheatstone bridge. From 
1875 to 1881, the Krupp factory at Meppen Proving 
Ground, Germany, conducted a large number of air 
resistance firings, using three different projectile 
shapes. 
In 1883, General Mayevski analyzed the Krupp firing 
data and formulated his “zone” laws of air resistance for 
a projectile about three calibers long, having a flat base 
and an ogival head with a two-caliber radius. Colonel 
James M. Ingalls of the U.S. Artillery converted 
Mayevski’s results into English units, and based his 
tables on them. Ingall’s Tables were first published as 
Artillery Circular M, in 1900. From 1873 to 1898, the 
Gârve Commission of the French Naval Artillery 
conducted numerous air resistance firings at the Gârve 
Proving Ground, utilizing the Boulengé chronograph, 
which had been developed in Belgium around 1864. 
During the first decade of the century, the German firm 
of Krupp investigated the effect of long slender ogives 
on the drag of small caliber projectiles. In addition, at 
the First World War, the Krupp firm used the ten-
caliber radius ogive design for 210 mm Paris Gun 
projectile, which was used to bombard Paris from 120 
kilometers range. By the end of the First World War, 
ballisticians of many countries had recognized the fact 
that the longer ogives and boattails of the projectiles 
then in current use were not accurately represented. 
From 1922 to 1925, R. H. Kent and H. P. Hitchcock of 
the Ballistics Section, Aberdeen Proving Ground, 
Maryland, conducted resistance firings of a 3.3-inch 
shell called “Type J”. Moreover, from about 1925 until 
the end of the Second World War, they conducted 
numerous yaw card firings, at the same Ballistics 
Section. On the battlefield, it is well known that the 
target effects using artillery systems diminish 
exponentially with the number of rounds fired at a 
particular target. To maximize target effects, rounds 
must be designed to hit a target with a minimum 
number of rounds that impact the target in rapid 
succession [18], [19]. The modern science of the 
exterior ballistics [15] has evolved as a specialized 
branch of the dynamics of rigid bodies, moving under 
the influence of gravitational and aerodynamic forces 
and moments. 
     Pioneering English ballisticians Fowler, Gallop, 
Lock and Richmond [11] constructed the first rigid six-
degree-of-freedom projectile exterior ballistic model. 
Various authors has extended this projectile model for 
lateral force impulses [5]-[13], linear theory in 
atmospheric flight for dual-spin projectiles [3]-[9], 
aerodynamic jump extending analysis due to lateral 
impulsives [7] and aerodynamic asymmetry [6], 
instability of controlled projectiles in ascending or 
descending flight [14]. Costello’s modified linear 

theory [14] has also applied recently for rapid trajectory 
projectile prediction. Exterior ballistics encompasses 
the period from when the projectile has left the muzzle 
until impact with the target. In general, all that the 
exterior ballistician is required to know is the muzzle 
velocity and tip-off and spin rates from the interior 
ballistician, and the physical properties (shape and mass 
distribution) from the projectile designer. In exterior 
ballistics, one generally is concerned with projectiles 
dynamics and stability, the predicted flight path and 
time of flight, and angle, velocity and location of 
impact. The modern science of exterior ballistics has 
evolved as a specialized branch of the dynamics of rigid 
bodies, moving under the influence of gravitational and 
aerodynamic forces and moments [2], [4], [6], [16] 
[17].  

The present work address a full six degrees of freedom 
(6-DOF) projectile flight dynamics analysis for accurate 
prediction of short and long range trajectories of high 
spin and fin-stabilized projectiles. The proposed flight 
dynamic model takes into consideration the influence of 
the most significant force and moment variations, in 
addition to gravity.  

The efficiency of the developed method gives 
satisfactory results compared with published data of 
verified experiments and computational codes on 
dynamics model analysis of short and long-range 
trajectories of spin and fin-stabilized projectiles. 

2 Projectile Model  
The present analysis considers two different types of 
representative projectiles. A projectile of 40mm 
grenade, M781 is presented in Fig. 1, and is used with 
M203 grenade launcher. The M203 grenade launcher is 
a lightweight, single-shot, breech-loaded, pump action 
(sliding barrel), shoulder-fired weapon that is attached 
to an M16 rifle series. The projectile contains an orange 
powdered dye which is dispersed on impact. The 
projectile is blue plastic with white markings. The 120 
mm (Fig. 2) Mortar System provides an organic 
indirect-fire support capability to the manoeuvre unit 
commander. It is a conventional smoothbore, muzzle-
loaded mortar system that provides increased range, 
lethality and safety compared to the World War II-
vintage 4.2-inch heavy mortar system it replaces in 
mechanized infantry, motorized, armored and cavalry 
units. A complete family of 120 mm Enhanced Mortar 
Ammunition is being produced by several government 
and commercial sources. The M933/934 high explosive 
round also received full materiel release and is in 
production. The M929 white phosphorus/smoke 
received full materiel release in the second quarter of 
1999 and is in production. Basic physical and 
geometrical characteristics data of the above-mentioned 
105 mm HE M1 projectile and the non-rolling, finned 
120 mm HE mortar projectile illustrated briefly in 
Table 1. 
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Fig. 1. 40 mm grenade, 
M781, launcher 
ammunition 

 
 

Fig. 2. The non-
rolling finned 120 
mm HE mortar 
projectile 

 
Table 1. Physical and geometrical data of 40 mm and 
120mm projectiles types. 
 
3  Physic Mathematical Trajectory 
Model 
A six degree of freedom rigid-projectile model [1], [8], 
[10], [12] has been employed in order to predict the 
"free" nominal atmospheric trajectory to final target 
area without any control practices. The six degrees of 
freedom flight analysis comprise the three translation 
components (x, y, z) describing the position of the 
projectile’s center of mass and three Euler angles (φ, θ, 
ψ) describing the orientation of the projectile body with 
respect to Fig. 3. 

 

 

 

Fig. 3. No-roll (moving) and earth-fixed (inertial) 
coordinate systems for the projectile trajectory analysis 
with the corresponding orientation definitions (Euler 
angles). 

Two main coordinate systems are used for the 
computational approach of the atmospheric flight 
motion. The one is a plane fixed (inertial frame, IF) at 
the ground surface, which it’s center O1 lies on ground 
surface, as depicted in Fig. 3. The other is a no-roll 
rotating coordinate system that is attached to, and 
moving with, the projectile’s center of mass O2 (no-
roll-frame, NRF, φ = 0) with XNRF axis along the 
projectile’s axis of rotational symmetry positive from 
tail to nose. YNRF axis is perpendicular to XNRF lying in 
the horizontally plane. ZNRF axis oriented so as to 
complete a right-hand orthogonal system. 
Newton’s laws of the motion state that the rate of 
change of linear momentum must equal the sum of all 
the externally applied forces and the rate of change of 
angular momentum must equal the sum of the 
externally applied moments, as shown respectively in 
the following forms: 

                             totF
dt
Vdm

r
r

=                                (1) 

                                totM
dt
Hd r
r

=                                   (2) 

The twelve state variables x, y, z, φ, θ, ψ, , , , u~ v~ w~ p~ , 
q~ and r~  are necessary to describe position, flight 
direction and velocity at every point of the projectile’s 
atmospheric trajectory. Introducing the components of 
the acting forces and moments expressed in the no-roll-
frame, the following 6-DOF equations of motion, with 
respect to time t, are derived: 

φ

NRFNRFNRFif w~cossinv~sinu~coscosx ⋅ψθ+⋅ψ−ψθ=& (3) 

NRFNRFNRFif w~sinsinv~cosu~sincosy ⋅ψθ+⋅ψ+ψθ=& (4)  

               NRFNRFif w~cosu~sinz ⋅θ+θ−=&               (5) 

 

 

 

ψθ
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for the position of projectile’s center of mass and 
                        
                         NRFNRF r~tp~ ⋅+=ϕ θ&                       (6) 
                          
                                  NRFq~=θ&                              (7) 
       

                               NRFr~
cos

1
⋅

θ
=ψ&                       (8) 

 
and for the orientation of the flight body with the 
classical Euler angles φ, θ, ψ. From the two laws of 
Newton’s motion the following equations are derived, 
respectively: 
 

    NRFNRFNRFNRFxNRF w~q~v~r~F~
m
1u~

total
⋅−⋅+=&       (9) 

 

  NRFNRFNRFNRFyNRF w~tr~u~r~F~
m
1v~

total
⋅⋅−⋅−= θ

&  (10) 

 

 NRFNRFNRFNRFzNRF v~tr~u~q~F~
m
1w~

total
⋅⋅+⋅+= θ  (11) 
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   (12) 

where  
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The total force acting on the projectile in Eq. (12) 
comprises the weight , the aerodynamic force  

and Magnus force : 
fW

f

fA
M

                 
fffTOTAL MAWx X~X~X~F~ ++=                 (13) 

 
                   

fffTOTAL MAWy Y~Y~Y~F~ ++=                    (14) 
 
                   

fffTOTAL MAWz Z~Z~Z~F~ ++=                    (15) 
 

The total moment acting on the projectile in Eq. (13), 
(14) and (15) comprises the moment due to the standard 

aerodynamic force , due to Magnus aerodynamic 
force  and the unsteady aerodynamic 
moment : 

mA

mM

mUA
                

mmm UAMATOTAL L~L~L~L~ ++=  
 
              

mmm UAMATOTAL M~M~M~M~ ++=  
 
               

mmm UAMATOTAL N~N~N~N~ ++=  
 

All aerodynamic coefficients are based on Mach 
number and the aerodynamic angles of attack and 
sideslip: 

                     ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=α −

NRF

NRF1

u~
w~

tan                  (16) 

                      ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=β −

NRF

NRF1

u~
v~

tan                     (17)    

The total aerodynamic velocity given in equation: 
 

             V = 2
NRF

2
NRF

2
NRF w~v~u~ ++                 (18) 

 
The weight force in no-roll system is: 

 

                    
⎪
⎭

⎪
⎬

⎫

⎪
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⎪
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f
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⎪
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⎪
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⎫
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⎪
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⎧

θ

θ−

cos
0

sin
mg

 
The aerodynamic force, which acts on the projectile at 
aerodynamic center of pressure, is: 
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⎛
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2
1 ρ 2V refS
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+

δ+ δ

V
w~

)CC(

V
v~

)CC(
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LaD
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2
D0D 2

          (20) 

 
The Magnus, which acts on projectile at the Magnus 
force center of pressure, is: 
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 The moment due to aerodynamic force is: 
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  The moment due to Magnus force is: 
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In addition, for the unsteady moment   is: mUA
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If the independent variable is changed from time t to 
dimensionless arc length l measured in calibers of travel 

                        ∫==
t

0
TdtV

D
1s

D
1l                            (21) 

The following relationship between the arc length and 
time derivatives exist: 

                            ξ=ξ′ &

TV
D                                  (22) 

Application of the previous Eq. (22) yield the following 
6-DOF atmospheric equations of motion expressed in 
the no-roll frame 

   
NRFw~sincos

TV
D

NRFv~sin
TV

D
NRFu~coscos

TV
D

ifx

⋅θψ+

+⋅ψ−⋅θψ=′

 (23) 

  
NRFw~sinsin

TV
D

NRFv~cos
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D
NRFu~sincos
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D

ify

⋅θψ+

+⋅ψ+⋅ψθ=′

  (24) 

     NRFw~cos
TV

D
NRFu~sin
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D

ifz θ+θ−=′       (25) 

             NRFr~tan
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D
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TV
D

θ+=φ′                   (26)                
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The projectile dynamics trajectory model consists of 
twelve highly first order ordinary differential equations 
(23)-(34), which are solved simultaneously by resorting 
to numerical integration using a 4th order Runge-Kutta 
method. In these equations, the following sets of 
simplifications are employed: velocity replaced by 
the total velocity V because the side velocities 

u~
v~ and w~  

are small. The aerodynamic angles of attack α and 
sideslip β are small for the main part of the atmospheric 
trajectory ,V/v~,V/w~ ≈≈ βα  the projectile is 
geometrically symmetrical IXY = IYZ = IXZ = 0, IYY = IZZ 
and aerodynamically symmetric. With the afore-
mentioned assumptions, the expressions of the distance 
from the center of mass to the standard aerodynamic 
and Magnus centers of pressure are simplified. 

4 Aerodynamic Model 
For the projectiles trajectory analysis the constant flight 
dynamic model is based on appropriate constant mean 
values of the experimental average aerodynamic 
coefficients variations taking from official tabulated 
database [15], as shown in Table 2. 

 
Aerodynamic Coefficients 120 

mm   
40 mm   

Drag                               DC 0.14 0.279 

Lift                                 LaC 10.76 2.329 
Pitch Damping               MQC -22.3 -1.8 

Overturning Moment     MAC -15.76 0 
Table 2. Aerodynamic parameters of atmospheric flight 
dynamic model. 

5 Atmospheric Model 
Atmospheric properties of air, like density ρ, are being 
calculated based on a standard atmosphere from the 
International Civil Aviation Organization (ICAO).  
 

6 Initial Spin Rate Estimation 
In order to have a statically stable flight for spin-
stabilized projectile trajectory motion, the initial spin 
rate prediction at the gun muzzle in the firing site us 
important. According to McCoy definitions, the 
following form is used: 

op~

                    )s/rad(D/V2p~ oo ηπ=            (35) 

where is the initial firing velocity (m/s), oV η  the rifling 
twist rate at the gun muzzle (calibers per turn), and D 
the reference diameter of the projectile type (m). 
Typical values of rifling twist η  are 1/30 calibers per 
turn for 40mm projectile. The 120 mm mortar projectile 
has uncanted fins, and do not roll or spin at any point 
along the trajectory. 

 

7 Computational Simulation 
The flight dynamic models of 40 mm grenade and 120 
mm HE mortar projectile types involves the solution of 
the set of the twelve first order ordinary differentials, 
Eqs (23-34), which are solved simultaneously by 
resorting to numerical integration using a 4th order 
Runge-Kutta method, and regard to the 6-D nominal 
atmospheric projectile flight.  

The results give the computational simulation of the 
6-D non-thrusting and non-constrained flight trajectory 
path for some specific spin and fin-projectiles types. 
Initial flight conditions for both dynamic flight 
simulation models with constant and variable 
aerodynamic coefficients are illustrated in Table 3 for 
the examined test cases. 
 

Initial flight 
data 

40mm grenade, 
M781 

120mm mortar 
projectile 

x, m 0.0 0.0 
y, m 0.0 0.0 
z, m 0.0 0.0 
φ, deg 0.0 0.0 
θ, deg 14.7o , 30o   

and 40o 
45o , 65o and 85o 
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ψ, deg 2.0 3.0 
u, m/s 74.7 318.0 
v, m/s 0.0 0.0 
w, m/s 0.0 0.0 
p, rad/s 376.0 0.0 
q, rad/s 0.0 1.795 
r, rad/s 0.0 0.0 

 

Table 3. Initial flight parameters of the projectile 
examined test cases 

8 Results and Discussion 
The flight path trajectory motion with constant 
aerodynamic coefficients of the 40 mm grenade with 
initial firing velocity of 74.7 m/sec, initial yaw angle 2 
degrees, at 14.7o, 30o and 40o, respectively, are 
indicated in Fig. 4. The calculated impact points of the 
above no-wind trajectories with the proposed constant 
aerodynamic coefficients [12] compared with technical 
recognized data. 

The mortar projectile of 120 mm diameter is also 
examined for its atmospheric constant flight trajectories 
predictions in at pitch angles of 45o, 65o, 85o, with 
initial firing velocity of 318 m/s, initial yaw angle 3° 
and pitch rate 1.795 rad/s. The impact points of the 
above trajectories are compared with an accurately 
flight path prediction with McCoy’s trajectory data [15] 
as presented in Fig. 5. 

 From the results of the presented applied method, at 
14.7° pitch angle, the maximum range is 235 m and the 
maximum height is almost 16.7 m, at 30°, the proposed 
trajectory simulation gives 367 m and 60.5 m, and at 
40°gives 398 m and   97 m respectively as shown in 
Fig. 4. 

At 45o, the 120 mm mortar projectile, fired at no 
wind conditions, gives a range to impact at 7,000 m 
with a maximum height at almost 2050 m. At 65o, the 
predicted level-ground range is approximately 5,320 m 
and the height is 3,280 m and at 85o gives 1,235m and 
3,950m respectively. For the same initial pitch angles, 
the 120 mm mortar projectile of McCoy’s data has 
longer range to impact points. 

 
Fig. 4. Impact points and flight path trajectories for 40 
mm projectile 

 
 

Fig. 5. Impact points and flight path trajectories with 
constant aerodynamic coefficients for 120 mm at 
quadrant elevation angles of 45o, 65o and 85o compared 
with McCoy’s model data 
 

 
Fig. 6. Velocity trajectories at elevation angles of 14.7, 
30 and 40 degrees, for 40 mm projectile 
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Fig. 7. Velocity variations of 120 mm, at pitch angles 
of 45, 65 and 85 degrees 
 

Comparative computed trajectories of the 40 mm 
projectile at pitch angles of 14.7°, 30° and 40° are 
indicated in Fig. 8. From the computational results of 
the applied method at 14, 7°, the velocity decreases to 
the value of 59 m/sec at the impact point, at 30 degrees 
decreases to 50 and then grows to the value of almost 
53 m/sec, and at pitch angle of 40 degrees, the 
velocity gives the value of 43 and then grows to the 
value of 53 m/sec. 

Furthermore, the computational results for 120 mm 
projectile at elevation angles of 45°, 65° and 85° are 
illustrated in Fig. 7. At pitch angle of 45 degrees, the 
velocity decreases to the value of almost 170 and then 
grows to the value of 235 m/sec. At pitch angle of 65 
degrees, the velocity decreases to the value of almost 
100 and then grows to the value of 240 m/sec. 
Moreover, at pitch angle of 85 degrees the velocity 
decreases to value of 20 and then grows to the value of 
250 m/sec.  

Figures 8 and 9 show the deflection of the flight 
trajectory at sea level with no-wind for the 40 mm 
projectile at pitch angles of 14.7o , 30o , 45o and for 120 
mm projectile at elevation angles 45o , 65o , 85o 
respectively. The present analysis trajectory of the 40 
mm projectile with initial firing velocity of 74.7 m/sec 
and  positive yaw angle 2 degrees at pitch angles of 
14.7o, 30o , 45o  gives positive (right) deflection at about 
8.7 m, 14.5 m, 17 m respectively. Moreover, the mortar 
projectile of 120 mm diameter with initial firing 
velocity of 318 m/s, initial yaw angle 3 degrees and 
pitch rate 1.795 rad/s, gives always positive values of 
cross range 380 m, 290 m and 65 m at various low and 
high pitch angles, respectively.  

 
Fig. 8. Cross range versus range for 40 mm projectile 

 
Fig. 9. Cross range computational predictions of 120 
mm mortar projectile at elevation angles of 45o, 65o and 
85o 

9 Conclusion 
The complicated six degrees of freedom (6-DOF) 
simulation flight dynamics model is applied for the 
accurate prediction of short and long-range trajectories 
of high and low spin and fin-stabilized projectiles. It 
takes into consideration the Mach number and the total 
angle of attack variation effects by means of the 
constant aerodynamic coefficients. The computational 
results of the proposed synthesized analysis are in good 
agreement compared with other technical data and 
recognized exterior atmospheric projectile flight 
computational models.  
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A List of Symbols 

ta      =   total angle of attack, 22
t aa β+= , deg 

CD    =   drag force aerodynamic coefficient 
CLa    =   lift force aerodynamic coefficient 
CLP  =   roll damping moment aerodynamic 
coefficient 
CMQ=   pitch damping moment aerodynamic coefficient 
CMA=   overturning moment aerodynamic 

coefficient 
CMPA   =   Magnus moment aerodynamic coefficient 
D                =    projectile reference diameter, m 

  F
r

              =   vector sum of all aerodynamic forces  
g                = sea-level acceleration gravity, 9.80665  
m/s2 
H
r

            =   total vector angular momentum of the 
projectile 

IXX             =   projectile axial moment of inertia, kg·m2 

IYY             =   projectile transverse moment of inertia 
about   y-axis through the center of mass, 
kg·m2 

ΙΧΧ, ΙΥΥ, ΙΖΖ   =  diagonal components of the inertia 
 matrix 

   LCGCM       =   distance from the center of mass (CG) to 
the Magnus center of pressure (CM) 
along the station line, m   

LCGCP      =   distance from the center of mass (CG) to 
the aerodynamic center of pressure (CP) 
along the  station line, m 

l                 =    dimensionless arc length 
  M
r

       =    vector sum of all aerodynamic moments 
m                 =    projectile m ass, kg 
p~ , r~,q~  =  projectile roll, pitch and yaw rates in the 

moving frame (NRF), respectively, rad/s 

Sref   =   projectile reference area (
4
D2π ), m2 

   t               =    time 
w~,v~,u~       =    projectile velocity components 

expressed in the no-roll-frame (NRF), 
m/s 

V =  total aerodynamic velocity, m/s 
VT =  total velocity, m/s 

oV  =  total muzzle velocity, m/s 
x, y, z   =    projectile position coordinates in the 

inertial frame (if), m 
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GREEK SYMBOLS 
α, β             =   aerodynamic angles of attack and sideslip, 

deg 
δ                  =    tasin

η  =  rifling twist rate of the machine gun, 
calibers/turn 

ρ =  density of air, kg/m3 
φ , θ, ψ =  projectile roll, pitch and yaw angles, 

respectively, deg 

 

SUBSCRIPTS 
o         =  initial values at the firing site 
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