
Adapting Software Engineering Design Patterns for

Ontology Construction

STANISLAV USTYMENKO and DANIEL SCHWARTZ

Department of Computer Science

Florida State University

Tallahassee, FL 32306-4530

USA

ustymenk@cs.fsu.edu, schwartz@cs.fsu.edu

Abstract: - In this paper, we present an argument for designing metadata schemata with design patterns. Design

patterns are structured descriptions of solutions to some class of problems, and are used extensively in various

stages of object-oriented software engineering. We present a use case of collaborative construction of metadata

for a digital library. We explore design challenges this scenario presents and then adapt a pattern called

Composite from a standard software engineering design patterns reference to address parts of these challenges.

Additionally, we propose a new design pattern called History suggested by a collaborative metadata

construction scenario and applicable to a wider class of problems in metadata design.

Key-Words: - Design Patterns, Knowledge Engineering, Object-Oriented Design, Semantic Metadata, Web

Ontology

1 Introduction
Efforts to standardize semantic languages gave

metadata engineers direct access to modeling

paradigms at higher levels of abstraction. Metadata

schema engineering can borrow extensively from a

now relatively mature field of object-oriented (OO)

software engineering (SE) [9], since it is in many

ways analogous to the domain modeling activity of

object-oriented SE processes. This is captured by

the extensive use of the Unified Modeling Language

(UML) in communications among developers of the

newly emerging Semantic Web [17, 18], as well as

by the ongoing effort to map out Web Ontology

Language (OWL) semantics in UML [2, 4, 10]. The

UML and object-oriented metaphors are seen as

both useful tools in metadata schemata and

semantics vocabulary engineering and ways to

utilize skill sets already acquired by an army of

software engineers.

Object-oriented metadata techniques found

acceptance in many research communities in

Information Technology. A prime example of such

acceptance arises in the Learning Systems field and,

particularly, the Learning Objects (LO) community,

concerned with building software for use in

education. Here, the interest in object orientation is

fueled by promise of modularity and reuse (cf. [12]).

Several metadata schema standards have been

developed [13, 14]. Some authors raise justified

objections regarding the appropriateness of the

object oriented technologies as a proper model of

learning technologies [15], citing redundancy and

the vague analogies used. Nevertheless, the basic

notion of an object is a useful abstraction.

Our paper discusses metadata schemata not

limited to learning objects and concentrates on

the use of object-oriented patterns as a design

technique, leaving appropriateness of the model

to further research, as a particular application

domain might dictate. A preliminary version of

this work was presented as [20].

The object-oriented design community had

adopted a concept of design patterns, borrowed

from architectural design [1]. Design patterns are

semi-formal, systematic descriptions of the solutions

for common design problems. They show a

particular commonly occurring problem in a specific

context and then describe a proven method for

solving such a problem.

The goal of patterns is to increase the quality of

design, namely maintainability and extensibility, by

communicating best industry practices. Among

commonly used patterns in object-oriented design

are “Model-View-Controller” for flexible user

interfaces, and “Factory”, which suggests

encapsulating object creation to a special class to

avoid relying on the type information when creating

objects in runtime.

One of the best known catalogues of patterns is

the book [3] by Gamma, Helm, Johnson, and

Vlissides. Often referred to as the “Gang of Four

book” (or GoF), this became a common starting

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS Stanislav Ustymenko, Daniel Schwartz

ISSN: 1790-0832 1057 Issue 6, Volume 5, June 2008

point when discussing patterns. GoF contains 23

popular patterns used in object-oriented software

design.

Following is a short description of the structural

pattern Composite from GoF, which we adapt below

to our metadata schema needs as shown in Figure 1.

In this figure, we use static model UML notation.

Arrow connectors denote inheritance, while

diamond connectors denote aggregation.

Name: Composite

Task description: Supports tree-like structures,

where an object representing a group of objects can

be treated like an individual object. A classic

example is the UNIX file system, where file

directories are treated as files.

Context:

• In many applications, tree-like structures arise,

where groups of elements can be elements of the

bigger structure.

• All element objects have similar behaviour. As

an example, consider a typical graphical user

interface. All elements are rectangular areas

drawn on the screen, and they all respond to user

generated events. The same is true for frames and

windows.

Participating classes:

• Component: A common superclass for Leafs

and Composite, having an interface that allows

an object to be a component of the Composite.

• Leaf: Subclass of Component representing

simple objects.

• Composite: A Component that .contains

collection of other Components. Thanks to

polymorphism, both Leaves and Composites can

be components of a Composite object.

Results:

• It is easier to add new types of components.

• A client program’s architecture is simplified: the

same logic can work with simple and composite

objects.

• Any client that works with simple objects can

also work with composites.

Related patterns: The GoF patterns Decorator,

Flyweight and Iterator.

Metadata schemas, like software in general, have

two facets. First, they are meant to naturally

represent those aspects of a specific domain that are

important for users. Second, they are dictated by the

architecture of the software system they are part of

and constrained by various technological

requirements. Design patterns are meant to address

the second facet, addressing nonfunctional

requirements like extensibility, maintainability and

performance [21]. Ontology languages, namely

OWL, present a class of nonfunctional requirements

related to reasoning and decidability, addressed by

patterns not discussed here.

Figure 1. Composite pattern.

A typical pattern includes the following

elements: (1) name, (2) context, (3) task description,

(4) solution description, and (5) results. Examples

appear in the following Section 3. Pattern catalogs,

like the GoF, organize patterns according to various

categories, creating a valuable resource for both

novice and experienced practitioners.

There are already examples of design patterns for

semantic metadata creation. The Semantic Web

Business Practices task force of the W3C has

created documents to describe different approaches

to using classes as property values and representing

n-ary relationships in OWL and the Resource

Description Framework Semantics (RDFS) [7, 8].

These documents state problems and provide several

alternative solutions, clearly describing the

consequences of using them. Thus they provide

excellent examples of metadata design patterns.

These examples address rather low-level, common

problems and rely on specific features of RDFS and

OWL. They fall into the design patterns category

often called language idioms.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS Stanislav Ustymenko, Daniel Schwartz

ISSN: 1790-0832 1058 Issue 6, Volume 5, June 2008

This paper concentrates on higher-level,

language-independent design patterns. We present a

realistic use case of semantic metadata in the

context of a collaborative information system we are

developing. The metadata schema developed

through the course of this paper is intended to

demonstrate this concept. Completeness and

soundness were sacrificed for simplicity where

necessary.

2 Case Study: Managing Knowledge

Structures for a Digital Archive

2.1 Background
Indexing information in a digital archive requires

extensive metadata schemas, enabling accurate

categorization for navigation and search. Such a

metadata system would include concepts organized

in a taxonomic hierarchy, thesaurus, or more

complex knowledge structure utilizing ontology

semantics. One solution has been proposed to this

end, namely SKOS [16], an RDF [11] vocabulary

for publishing taxonomies.

One obstacle for utilizing ontology schemas for

large and/or evolving archives, such as digital

repositories of research papers [6], is defining an

ontology of concepts to satisfy the needs of the

majority of users, where such users might have

conflicting perspectives on overlapping areas of

inquiry. Ideally, the metadata created should reflect

perspectives of different groups while spanning all

the content, recognizing links between alternative

conceptualizations. At the same time the system

should maximize the quality of the ontology,

keeping inconsistencies to a minimum.

It is our position that this task is best left to the

evolving community of users to carry out. A Web-

based system is to be created that allows users,

individually and through collaboration, to define

ontologies to classify documents in a collection.

Users will form online communities (see, e.g., [22,

23]) around domains of interest, contributing to

ontology engineering through discussions and

collaborative editing. The resulting ontologies then

can be combined on overlapping concepts and used

to improve search in the repository. A user’s

association with ontologies will provide the context

necessary for personalizing his or her search and

browsing experience, identifying items of particular

interest for the user. The collaborative environment

can also be used to create communities of practice,

supporting informal knowledge exchange.

Figure 2. System overview.

2.2 System overview
The overall system is comprised of automated

agents that act on behalf of the human users.

Software agents are broadly defined as software

entities capable of obtaining information from their

environment, reacting to it, communicating with

other agents, and achieving a goal of performing

some complex task on behalf of their users. To

perform this task, agents must acquire an

understanding of their environment, and, to

effectively communicate, they must subscribe to a

common language with agreed upon semantics. This

is illustrated in Figure 2.

The main actors in the system are human users

and computational (software) agents. Each agent

represents one user, and each user has one and only

one agent (unless a user has a reason to have two or

more agents with different beliefs). Software agents

interact within an artificial network of trust relations

(the web of trust) that approximate attitudes each

user has towards other users.

Similarly, we introduce information artifacts

agents that manipulate documents, topic categories

and relations between them. A belief set of an agent

aims to approximate the user’s epistemic attitudes

(knowledge and belief) towards these artifacts.

In our model, each agent represents one user of

the system. Agents act as both information suppliers

and consumers. As a consumer, an agent’s goal is to

find documents relevant to a user’s interests. As an

information supplier, agents make their own

documents available for other agents.

We assume that it is in the best interests of the

human users to make their documents easily

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS Stanislav Ustymenko, Daniel Schwartz

ISSN: 1790-0832 1059 Issue 6, Volume 5, June 2008

searchable, and that they will provide rich metadata

for this purpose.

The users of our system are knowledge workers.

They engage in consuming, producing and

disseminating knowledge. The tangible unit of

knowledge is called a document. There is no

requirement that the document is in fact a text-based

file available electronically. A paper, a book, a

movie, painting or sculpture can be considered a

document. As far as the information system is

concerned, a document is anything that can be

uniquely identified and referenced and is treated as

an atomic informational entity. For the remainder of

this paper, we will also use the term “document” for

document records.

The user has mental attitudes towards documents

and other users. We refer to these attitudes as

knowledge, belief, and trust. Mental attitudes

change over time. We refer to the set of such

attitudes at a given time as the user’s mental state.

References to documents a user is aware of, as well

as a topic taxonomy that reflects the user’s beliefs,

are included in his/her mental state.

Users move from one mental state to another by

performing cognitive actions: they can either

acquire a new belief from another trusted individual

or derive it through some inference step. We can

think of these actions as occurring sequentially. An

agent’s inference activity can be represented as a

finite set of discrete time steps, each associated with

some cognitive action.

To facilitate search and browsing, a user

associates documents with categories or topics: sets

of documents that share some common theme. He

creates a taxonomy by defining relations between

topics. The most common type of relation is the

subtype-supertype relation.

A software agent models mental states through

its belief set. A belief set is a set of statements in

some formal language, designed to express mental

attitudes towards facts. In [19], we developed a

formal logic satisfying this requirement. We can

identify three kinds of beliefs that need to be

represented in a belief set:

• Topic taxonomy, expressed as a set of logic-

based statements with associated belief attitudes.

• Set of document references, together with

statements linking documents and topics.

• Set of statements reflecting the agent’s trust

relationships with other agents.

At any given time, a human mind can harbor

inconsistent beliefs. Inconsistency might not be

apparent until, through cognitive actions, a person

arrives at an absurd conclusion. When this occurs, a

rational thinker re-examines his beliefs, rejecting

those that are less supported or otherwise less

entrenched. The artificial mind and belief set of an

agent should be able to support such behavior.

On each time step, an agent is free to choose a

cognitive action among legal inference rules or to

acquire beliefs from other agents’ beliefs. In effect,

an agent adds to or modifies his belief set. This

choice is guided by considerations not completely

determined by rules of logical inference, namely,

the agent‘s goals and desires. An agent’s actions

include the following:

• Responding to queries for documents.

• Exposing a new document created or discovered

by the user. This includes classifying the

document into one or more of the taxonomic

categories. This action introduces a new named

individual into the domain description,

effectively expanding the language.

• Getting a previously unknown document into the

agent’s belief set. The new document is among

documents exposed by some other agent.

• Discovering facts about taxonomic classification

of a particular document. An agent requests

taxonomic facts from other agents, with the goal

to create a complete description of the document.

In this process, the agent modifies its taxonomic

beliefs.

• Inferring new beliefs from previously acquired

beliefs. This action may be triggered by any of

the previous actions.

• Modifying currently held beliefs to remove a

contradiction.

2.3 Domain Model
The internal metadata schema must support dynamic

evolution of the taxonomy in the community, means

to track changes and user or group ownership for the

individual pieces of metadata as well as larger

structures (thesauri or ontologies), and methods for

merging/combining concepts and relationships from

individual and group ontologies. Common access

and ease of modification can enable consensus

building in the communities, while support for

pluralism (i.e., different perspectives) helps to serve

everyone’s needs in the best way possible.

Types of information a proposed metadata

schema must reflect include:

• Concepts

• Concept labels

• Relationships

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS Stanislav Ustymenko, Daniel Schwartz

ISSN: 1790-0832 1060 Issue 6, Volume 5, June 2008

• Taxonomies/Thesauri

• Users

• User groups

ConceptLabel

Concept Relationship

Thesaurus

User Group

*

1 2 *

*

*
*

*

*

*

Figure 3. Initial domain model.

A UML diagram illustrating the model is shown

in Figure 3. Select object-oriented design patterns

can be applied to this model to help achieve the

stated requirements. Those patterns can be chosen

from existing catalogs (e.g., GoF) and adapted to

accommodate metadata language idioms. This

adaptation entails making minor changes that reflect

the circumstance that metadata engineering has

slightly different goals from software engineering.

For example, in object-oriented software

engineering, objects typically have associated

methods, whereas in metadata engineering, they

don’t.

Our goal is to create a schema that supports this

vocabulary and allows for a straightforward physical

implementation using mature technology (e.g.,

relational database, XML storage, or ontology

management system). From the previous discussion

we can derive two major requirements for the model

of the bibliographic domain:

• Personification. Knowledge elements must be

explicitly associated with agents. Our data model

contains all the knowledge of the multiagent

system, so that every agent has access to the

knowledge of other agents. At the other hand,

each individual knowledge base (or belief set) is

clearly identified.

• Dynamics. The belief revision mechanisms

mentioned above rely on explicit representations

of the agent’s belief evolution in time.

.

 Our domain model implements these

requirements by explicitly representing users

(agents) and by adding a timestamp to each

taxonomy element. Thus, all historic data is always

present in the system. All knowledge elements are

identified both by the timestamp and the user.

 At any given time, different users might have

different views to the same model. The view is

affected by the user’s group membership and

relationships between groups. This allows for great

flexibility and is a great asset in a collaborative

environment where global consensus is unlikely or

undesirable. (We assume this is true for the

bibliographic system we describe).

 The model described above adequately reflects

the domain and can be used when developing the

software implementation. Direct mapping from

objects to database tables facilitates the design of

object-to-relational mappings and thus the initial

development process can be relatively

straightforward. However, several potential

problems can be readily identified:

• Adding new types of statements, classes of

individuals, and relationships require redesign of

a database scheme.

• Developers may want to allow a user to perform

certain common operations with domain objects,

such as create, delete, share with others, and

combine in taxonomies.

 It is conceivable that a taxonomy can have other

taxonomies as parts, though the practicality of such

an approach demands additional investigation.

Objects are subject to change tracking and

permission management, and in this regard there is

no difference between Documents, Statements, and

Taxonomies.

3 Metadata Design Patterns

3.1 Pattern “Composite”
The Composite pattern is a structural pattern from

the GoF book. It composes objects into tree-like

structures for representing part-whole hierarchies,

while allowing uniform treatment for both atomic

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS Stanislav Ustymenko, Daniel Schwartz

ISSN: 1790-0832 1061 Issue 6, Volume 5, June 2008

and composite objects. GoF Chapter 4 defines the

Composite pattern as follows:

Name: Composite

Task description: Support composing objects into

tree-like structures for representing Part-Whole

relationship. It allows clients to uniformly treat

individual and composite objects.

Context:

• Representation of a part-whole hierarchy is

required.

• The same services must be supported by both

atomic and complex objects.

Participating classes:

• Component:
o Declares common interface for objects.

o Contains appropriate default method defini-

tions, common for all classes.

• List:
o Represents leaf nodes of the hierarchy and has

no child nodes.

o Defines primitive nodes’ behavior.

• Composite:
o Defines behavior for objects that contain other

objects.

o Stores (links to) child components.

o Implements functionality specific to child

node manipulation.

• Client:
o Manages objects through the Component

interface.

Results:

• A hierarchy containing both primitive and

composite objects.

• Client architecture is simplified. Clients can

work with individual and composite objects in

the same way, thus simplifying the client code.

• Maintainability is enhanced by simplifying the

task of adding new Component classes. The

client code that works with existing components

will need little or no modification to support new

subclasses of type Leaf or Composite.

• Common design is enforced.

• It is difficult to define constraints on the type of

objects that can be parts of a composite.

Sometimes, it is beneficial to only allow specific

classes of Leafs for a given Composite.

Related patterns: Decorator, Adapter, Iterator,

Visitor, Chain of Responsibility.

Figure 4. Composite pattern.

Objects that form a part-whole hierarchy in the

digital libraries application domain include

concepts, relationships, labels, and taxonomies. We

want to allow a user to perform certain common

operations with such objects: create, delete, share

with others, and combine to form taxonomies. It is

conceivable that a taxonomy can have other

taxonomies as parts, though practicality of such an

approach demands additional investigation. Objects

are subject to change tracking and permission

management, and in this regard there is no

difference between simple objects like Concept Link

and containers like Taxonomy.

.

 Entity

ConceptLabel Concept Relationship

Taxonomy

*

*

Figure 5. Composite pattern unifies classes

through common superclass.

To facilitate uniform treatment, the pattern

recommends defining a common superclass, Entity,

for the domain classes involved. Concepts,

Relationships and Labels are related appropriately.

A thesaurus, in essence, is defined as a collection of

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS Stanislav Ustymenko, Daniel Schwartz

ISSN: 1790-0832 1062 Issue 6, Volume 5, June 2008

Entities. Using the vocabulary of the Composite

pattern as used in the GoF book, Entity is the

Component class, Concepts, Relationships and

Labels are Leafs, and Taxonomy is the Composite.

It is the responsibility of an Entity to define data for

common functionality like versioning, although

obviously it does not define a message interface (as

metadata are not object-oriented software

components and do not define behavior).

3.2. Pattern “History”

This pattern is new and is being introduced here for

the purposes of the digital libraries application.

Evolution of the metadata in a digital library

scenario involves numerous parties modifying the

conceptual structure (taxonomy and documents

being classified). This involves tracking those

changes and allowing undo capability. A user may

choose to only allow his model to be editable by

certain individuals, thus filtering out changes made

by others. In general, our system calls for multiple

versions of metadata. We want to define the

simplest architecture possible to easily track those

changes.

This can be achieved by introducing the new

class we call Event. It decouples changes from the

entities to which the changes are being made and

allows managing changes as first-class objects. The

pattern is defined as follows:

Name: History

Task description: Support versioning and change

management in metadata.

Context:

• Changes occur by inserting and deleting elements

of metadata describing the domain or changing

an element’s content (e.g., its textual

description).

• Metadata consists of atomic elements. Taxonomy

data (the nodes and links) are the characteristic

example.

• Different versions might co-exist.

Participating classes:

• Entity: Metadata element representing an

atomic piece of metadata to manage. In the

context of our application, an Entity might

represent a concept, relationship, or label.

• Subject: Metadata element representing a user-

entity (e.g., an individual user or a group)

initiating the change.

• HistoryEvent: Metadata element representing a

change that has occurred to the model.

Results:

• Versions are defined both by the timestamp and

the user. At any given time, different users might

have different views of the same model. The

view is affected by the user’s group membership

and relationships between groups. This allows

for great flexibility and is a useful asset in a

collaborative environment where global

consensus is unlikely or undesirable. (We assume

this to be true for the bibliographic system we

describe.)

• Events are managed as first-order objects.

• Querying for versions can become computa-

tionally expensive.

• While the schema adds very little in complexity,

actual metadata can become difficult for humans

to analyze. This can become a problem where

human readability is a requirement. This problem

can be alleviated by providing appropriate utility

software.

Related patterns: The GoF pattern Command is

close to History in structure and intent, but it

focuses on behavior aspects not relevant to

metadata. Unlike History, Command does not

address collaboration and multiple simultaneous

versions.

The model for the History pattern is depicted in

Figure 6.

Entity
Subject

User Group

-Date

-Action

HistoryEvent

-Object *

-Event 1

-Action

1

-Author

*

Figure 6. History pattern enables collaboration.

4 Applying Patterns and Implemen-

ting Software
The described patterns are combined, resulting in

the metadata schema depicted in Figure 5. Note how

the two patterns complement each other in this

design: the Composite pattern allows treating

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS Stanislav Ustymenko, Daniel Schwartz

ISSN: 1790-0832 1063 Issue 6, Volume 5, June 2008

taxonomy elements uniformly, while History solves

change management issues for unified metadata

pieces. Each pattern facilitates the other in achieving

its objectives.

This schema supports a dynamic metadata

management system. Metadata is stored in a

relational database. Classes are implemented as

tables. Inheritance is implemented as one-to-one

relationships. Stored procedures are used for

querying Taxonomy classes, allowing the merging

of the Entity table with appropriate subclass tables

(in database parlance, select statements with join

operations).

Figure 7. Refined conceptual model for metadata.

The system will be coded using Enterprise Java

technologies and will employ a Web-based user

interface. This includes a taxonomy browsing

interface, full text search facility for bibliographic

data, collaboration facilities, and an administrative

module. In creating the software architecture, we

use object oriented design patterns. The pattern

based metadata architecture supports object-oriented

design of software. Business logic components

mapped to the concept taxonomy follow the classic

Composite architecture, adding behavior to

metadata structure. The History pattern supports

multi-user collaboration logic and versioning.

Software components for metadata creation will be

designed using Model-View-Controller architecture.

The system will support well-defined metadata

vocabularies for interoperability with similar

systems. Web services can be created to export

vocabulary data using the well-known SKOS [16]

schema. Bibliographic data conform to Dublin Core

vocabulary. The internal pattern-based metadata

schema is sufficiently rich in semantics to yield

useful mappings to SKOS, while providing adequate

flexibility for supporting the information system’s

object-oriented architecture.

To function as a component of the wider

Semantic Web infrastructure, the system should

support well-defined metadata vocabularies for

interoperability. To achieve this, the data must be

exportable to de-facto standard RDF/S and OWL

format. Web services are created to export

taxonomy data using SKOS RDF schema [16].

Additional bibliographic data will conform to

Dublin Core vocabulary. Social network data is

exposed as FOAF [25] graphs.

The internal pattern based metadata schema is

sufficiently rich in semantics to yield useful

mappings to the vocabularies mentioned, while

providing adequate flexibility for supporting the

information system’s object-oriented architecture

and reasoning services. A complete mapping of the

data model’s elements into the established

dictionaries will be provided. Such services can

facilitate incorporation of the information

accumulated in the system into general-purpose

Semantic Web search tools, e.g. Swoogle [24].

Similarly, an extension to our system may facilitate

opportunistic expansion of the system’s knowledge

base using RDF crawling.

4 Conclusions
In this paper, we presented an argument for

designing metadata schemata with design patterns.

We described a simplified scenario of a semantic

information system for collaborative metadata

management for a digital library. We explore design

challenges this scenario presents and then adapt a

pattern called Composite from a standard software

engineering design patterns reference [3] to address

parts of these challenges. Additionally, we created a

new design pattern, History, suggested by the

collaborative metadata scenario and applicable to

wider classes of problems in metadata design.
 Using object-oriented approaches and patterns

has shown to be a useful metaphor for metadata

construction. Along with improving metadata

architecture maintainability and extensibility, using

patterns for metadata facilitates software design that

uses similar principles.
 Further research can take different directions:

• First, an attempt should be made at expanding

the catalogue of patterns for semantic metadata

design. The goal is to design an expandable

framework of orthogonal design patterns suitable

for creating complete maintainable and flexible

metadata architectures. Such patterns may be

adapted from existing software engineering

patterns or may be new ones created specifically

for metadata engineering.

• Second, sufficient experience should be

accumulated applying these patterns in real-

Entity

ConceptLabel

Concept

Relationship

Taxonomy

*
*

Subject

User Group

Event

1

*

-End3

1

-End 4

*

*

1 2

*

UserGroup

* *

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS Stanislav Ustymenko, Daniel Schwartz

ISSN: 1790-0832 1064 Issue 6, Volume 5, June 2008

world information systems. This should provide

us with lessons learned to improve the pattern

language.

• Last, ties between object-oriented paradigm and

formal semantics for metadata such as envisioned

in the ongoing Semantic Web project must be

researched.

References:

[1] C. Alexander, S. Ishikawa, M. Silverstein,

M.Jacobson, and I. Fiksdahl-King, and

S.Angel, A Pattern Language, Oxford

University Press, New York, 1977

[2] D. Djurić, D.Gašević, V.Devedžic, and V.

Damjanović, UML Profile for OWL, Web

Engineering: 4th International Conference,

ICWE 2004, Munich, Germany, July 26-30,

2004, Proceedings, Springer-Verlag GmbH,

2004.

[3] E. Gamma, R. Helm, R. Johnson, and

J.Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software, Addison

Wesley, 1995.

[4] W. Chang, A Discussion of the Relationship

between RDF-Schema and UML, Group Note,

WWW Consortium, 1998.

[5] A. Rector and C. Welty, eds, Simple part-

whole relations in OWL Ontologies, W3C

Editor's Draft, 24 Mar 2005.

[6] NCSTRL – Networked CS Technical Reports

Library., http://www.ncstrl.org.

[7] N. Noy and A. Rector, eds., Defining N-ary

Relations on the Semantic Web, W3C Working

Draft, 21 July 2004.

[8] M. Uschold and C. Welty, eds. Representing

Classes as Property Values on the Semantic

Web, W3C Working Group Note, 5 April 2005.

[9] J. Yoder and R. Razavi, Metadata and

Adaptive Object-Models, Object-Oriented

Technology: ECOOP 2000 Workshops, Panels,

and Posters, Sophia Antipolis and Cannes,

France, June 2000, Proceedings, Springer-

Verlag GmbH, 2000.

[10] S. Brockman, R. Volz, A. Eberhart, and P.

Loffler, Visual modeling of OWL DL

ontologies using UML, ISWC 2004 3rd

InternationalSemantic Web Conference,

Hiroshima Prince Hotel, Hiroshima, Japan, 7-

11 November 2004.

[11] F.Manola and E. Miller, eds., RDF Primer,

W3C Recommendation, 10 February 2004.

[12] I. Douglas, Instructional design based on

reusable learning objects: applying lessons of

object oriented software engineering to

learning systems design, 31st ASEE/IEEE

Frontiers in Education Conference, Reno,

NV, October 10-13, 2001.

[13] IMS (Instructional Management Systems)

Project from Educause.

http://www.imsproject.org/.

[14] ADL Sharable Courseware Object Reference

Model, SCORM.

http://www.adlnet.org/.

[15] M.Sosteric and S.Hesemeir, When learning

object is not an object: A first step towards a

theory of learning objects, International

Review of Research in Open and Distance

Learning, October 2002.

[16] A.Miles and D. Brickley, eds, SKOS Core

Vocabulary Specification, W3C Working

Draft, November 2, 2005.

[17] W3C Semantic Web Activity,

http://www.w3.org/2001/sw/

[18] T. Bernes-Lee, Semantic Web Road map,

W3C Draft, September 1998.

[19] S. Ustymenko and D.G. Schwartz, An Agent-

Oriented Logic for Reasoning about Belief

and Trust, Proceedings of 30th IEEE Annual

International Computer Software and

Applications Conference, Chicago, IL,

September 17-21, 2006, pp. 321-326.

[20] S. Ustymenko and D.G. Schwartz, Applying

Object-Oriented Metaphors and Design

Patterns in Defining Semantic Metadata,

Proceedings of the First On-Line Conference

on Metadata and Semantics Research

(MTSR’05), November 21-30, 2005.

[21] Fazal-E-Amin, Ansar Siddiq, Hafiz Farooq

Ahmad, Aspect Design Pattern for Non

Functional Requirements, in Proceedings of

7th WSEAS Int. Conf. on Applied Computer

and Applied Computational Science (ACACOS

'08), Hangzhou, China, April 6-8, 2008, pp.

141-145

[22] Pierre Maret, Julien Subercaze, Jacques
Calmet, Peer to Peer Model for Virtual
Knowledge Communities, in Proceedings
of the 7th WSEAS International Conference

on Artificial Intelligence, Knowledge

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS Stanislav Ustymenko, Daniel Schwartz

ISSN: 1790-0832 1065 Issue 6, Volume 5, June 2008

Engineering and Data Bases (AIKED'08),

University of Cambridge, Cambridge, UK,

February 20-22, 2008, pp. 365-370

[23] Serena Pastore, Social Networks,

Collaboration and Groupware Software for

the Scientific Research Process in the Web 2.0

World, in Proceedings of the 7th WSEAS

International Conference on Artificial

Intelligence, Knowledge Engineering and

Data Bases (AIKED'08), University of

Cambridge, Cambridge, UK, February 20-22,

2008, pp. 403-408

[24] Li Ding, Tim Finin, Anupam Joshi, Rong Pan,

R. Scott Cost, Yun Peng, Pavan Reddivari,

Vishal C Doshi, and Joel Sachs, Swoogle: A

Search and Metadata Engine for the Semantic

Web, in Proceedings of the Thirteenth ACM

Conference on Information and Knowledge

Management, November 09, 2004

[25] Dan Brickley, Libby Miler, FOAF

Vocabulary Specification 0.91, Namespace

Document 2 November 2007 - OpenID

Edition, http://xmlns.com/foaf/spec/

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS Stanislav Ustymenko, Daniel Schwartz

ISSN: 1790-0832 1066 Issue 6, Volume 5, June 2008

