
Localization of Distributed Data in a CORBA-based environment

MILKO MARINOV, SVETLANA STEFANOVA
Department of Computer Systems & Technologies

University of Rousse,
8 Studentska St., 7017 Rousse

BULGARIA
MMarinov@ecs.ru.acad.bg, SStefanova@ecs.ru.acad.bg

Abstract: - Query processing over distributed and fragmented databases is more challenging than doing so in a
centralized environment. In a distributed environment, the DBMS needs to know where each node is located.
The main role of data localization layer is to localize the query’s data using data distribution information. We
propose an approach to incorporate the artificial intelligence techniques into a distributed database management
system (DBMS), namely to extend the core of a distributed CORBA-based environment with deductive
functionalities of the query and view services during the process of data localization. The basic principles and
the architecture of the software tool are considered. The implementation and class hierarchy of the object-
oriented theorem prover which is built in the core of distributed CORBA-based system are also discussed.

Key-Words: - Distributed systems, Data localization, CORBA-based architecture, Theorem prover.

1 Introduction
The increasing volume of stored data poses new
challenges to efficient query processing. Queries
posed over centralized databases may take very long
times to be answered, since large amounts of data
need to be accessed. In most of the cases, indexes
are not enough to increase query performance. A
solution to this problem may be to distribute and
fragment data across the network. In fact, lots of
systems for processing queries over distributed data
have been proposed [1,4,9,12,16,25,27]. Some
others focus on adaptive query processing over
heterogeneous distributed systems [7,8,10,31]. In
relational databases [23] fragmentation techniques
have been successfully used to increase query
performance in distributed databases. By
fragmenting and distributing the data, queries can be
sent to specific fragments, avoiding a complete scan
over large portions of irrelevant data. Query
processing is the process by which a declarative
query is translated into low level data manipulation
operations. Query processing deals with designing
algorithms that analyze queries and convert them
into a series of data manipulation operations.
Besides the methodological issues, an important
aspect of query processing is data localization. The
main role of data localization is to localize the
query’s data using data distribution information.
The localization layer translates an algebraic query
on global relations into an algebraic query expressed
on physical fragments. Localization uses

information stored in the fragment schema. The
problem is how to decide on a strategy for executing
each query over the network.

New technologies were developed to share data
scattered on the net. The Object Management
Architecture (OMA) is an environment defined by
the Object Management Group (OMG). OMA
defines a common object model, a common model
of interaction by means of object invocations and a
set of common object services and facilities. OMA
modules consist of the application objects; the
Common Object Request Broker (CORBA), which
directs requests and responses between objects; a set
of common object services, which are the basis
functions required for object management; and a set
of common facilities, which are generic object-
oriented tools for various applications [24,26].
CORBA is the key communication mechanism of
OMA, in which objects communicate with each
other via an Object Request Broker (ORB) that
provides brokering services between clients and
servers. CORBA is an open, standard solution for
distributed object systems. CORBA objects
communicate directly across a network using
standard protocols, regardless of the programming
languages used to create objects or the operating
systems and platforms on which the objects run. An
alternative to CORBA infrastructure is the
Distributed Component Object Model/Object
Linking and Embedding (DCOM/OLE)
environment from Microsoft [5,11]. DCOM is
similar in functionality to CORBA ORB, while OLE

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Milko Marinov, Svetlana Stefanova

ISSN: 1790-0832 1031 Issue 6, Volume 5, June 2008

is the complete environment for componentization.
DCOM has the similar goals as CORBA. It can be
used to develop very advanced distributed systems.
Unlike CORBA that is language-neutral, DCOM is
mainly used for WINDOWS applications with
Microsoft's ActiveX. DCOM object model is quite
different than the model supported by CORBA
[14,22]. Borland’s Multi-tier Distributed
Applications Services (MIDAS) [6] delivers
distributed applications. MIDAS thin-client
applications are easy to develop, easy to deploy,
require zero configuration and automatically update
server based business logic without re-deploying
thin-clients.

CORBA is a middleware that enables
interoperability and supports distributed object
computing. As an object-oriented distributed
computing platform CORBA can be helpful for
database interoperability [11,24,32]. The
fundamental contribution is in terms of managing
heterogeneity and to a lesser extent managing
autonomy. Heterogeneity in a distributed system can
occur at the hardware and operating system level,
communication level, DBMS level and semantic
level. CORBA deals mainly with platform and
communication heterogeneities. It is also addresses
DBMS heterogeneity by means of IDL interface
definition. However, the real problem of managing
multiple DBMSs in the sense of a multidatabase
system requires the development of a global layer
that includes the global-level DBMS functionality.

Our work proposes an approach to incorporate
the artificial intelligence techniques into a
distributed database management system (DBMS),
namely to extend the core of a distributed CORBA-
based environment with deductive functionalities of
the query and view services during the process of
data localization. The present paper considers an
architecture and implementation of the distributed
tool. The structure of this paper is as follows. After
this introduction, in section 2 the generic layering
scheme for distributed query processing is
discussed, in which the first two layers are
responsible for query decomposition and data
localization. Section 3 provides some details about
data localization layer. The architecture and
implementation of the tool are described in the next
paragraph. The class hierarchy of the object-
oriented theorem prover which is built in the core of
distributed CORBA-based system is considered in
Section 5. The conclusion summarizes the authors’
contributions and their future research intentions.

2 Querying distributed databases
Query processing over distributed and fragmented
databases is more challenging than doing so in a
centralized environment. In a distributed
environment, the DBMS needs to know where each
node is located, as well as parameters such as
communication costs and current load of each node,
to be used by the query optimizer. Fragmentation
further adds complexity related to reducing the
query so it can be executed only in nodes that have
relevant data to that query answer. In [2,19,23] we
can find a very good reference about distributed
databases, and also a methodology for distributed
query processing in relational databases. The
general ideas of this methodology can be applied to
other data models [12,18,25]. More advanced topics
on distributed query processing, such as
optimization techniques, execution techniques,
dynamic replication in the distributed environment,
caching, architectures, etc., can be found in
[16,19,28,30].

In general, to process a distributed query we
need to transform a high-level query over the global
(centralized) view of the distributed data into one or
more sub-queries of lower level (to be executed over
the nodes in the distributed environment). We now
present a summary of fragmentation and query
processing techniques in the relational model,
object-oriented model and semi-structured model.

Ozsü and Valduriez [4,23] present a
methodology to process distributed queries over the
relational model. The methodology consists of
several layers: query decomposition; data
localization; global optimization; and local
optimization, as shown in Figure 1.

The first layer decomposes the query in an
algebraic query over global relations. In this
process, syntactic and semantic analyses are
performed over the submitted query. The query is
simplified and rewritten in an algebraic form.
Information about data distribution is not used in
this layer.

The data localization layer has as a goal to locate
query data by using information about data
distribution (fragmentation and allocation of
fragments among the nodes). This layer determines
the fragments that are involved in the query, and
replaces the references to the global view by
references to fragments in the algebraic query. This
replacement can be performed automatically when
the fragmentation design follows correction rules
[23,29] such as the reconstruction rule (the global
database can be reconstructed from its fragments).

The global optimization layer tries to find a near
to optimal strategy (or plan) to execute the global

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Milko Marinov, Svetlana Stefanova

ISSN: 1790-0832 1032 Issue 6, Volume 5, June 2008

query. The optimization is performed, in general, by
minimizing a cost function. The cost function is
usually a combination of CPU, communication and
I/O costs. To databases distributed in slow
networks, the communication cost must be the most
important factor in the cost function.

Fig.1 Generic scheme for distributed query
processing

After global optimization of the global query,

sub-queries are generated and sent to the remote
sites. Each sub-query executed in a given site is
further optimized using the local site schema in the
local optimization layer. The results of the remote
sub-queries are processed by the DBMS according
to the adopted strategy of final result composition.

3 Localization of distributed data
The initial algebraic query generated by the query
decomposition step is input to the second step: data
localization. The initial algebraic query is specified
on global relations irrespective of their
fragmentation or distribution. The main role of data
localization is to localize the query’s data using data
distribution information. In this step, the fragments
that are involved in the query are determined and
the query is transformed into one that operates on
fragments rather than global relations. As indicated
earlier, fragmentation is defined through
fragmentation rules that can be expressed as
relational operations (horizontal fragmentation by

selection, vertical fragmentation by projection). A
distributed relation can be reconstructed by applying
the inverse of the fragmentation rules. This is called
a localization program. The localization program for
a horizontally (vertically) fragmented query is the
union (join) of the fragments. Thus, during the data
localization step each global relation is first replaced
by its localization program, and then the resulting
fragment query is simplified and restructured to
produce another “good” query. Simplification and
restructuring may be done according to the same
rules used in the decomposition step. As in the
decomposition step, the final fragment query is
generally far from optimal; the process has only
eliminated “bad” algebraic queries. We do not
consider the fact that data fragments may be
replicated, although this can improve the
performance. A naïve way to localize a distributed
query is to generate a query where each global
relation is substituted by its localization program.
This can be viewed as replacing the leaves of the
operator tree of the distributed query with subtrees
corresponding to the localization programs. The
query obtained by this way is called localized query.
In the reminder of this section for primary
horizontal fragmentation we present reduction
techniques that generate simpler queries. The
horizontal fragmentation function distributes a
relation based on selection predicates. The
following example is used in subsequent
discussions.

Consider the employees relation EMP(ID,
MGR_ID, NAME, SALARY). The ID column is a
primary key for the EMP table and MGR_ID is the
ID of the manager of the corresponding employee.
The EMP relation is partitioned into three
fragments:

EMP1 = σ SALARY>100,000 (EMP)
EMP2 = σ 50,000 <SALARY ≤100,000 (EMP)
EMP3 = σ SALARY≤50,000 (EMP)

The localization program for an horizontally
fragment relation is the union of the fragments. In
our example we have

EMP = EMP1 U EMP2 U EMP3
Thus the generic form of any query specified on
EMP is obtained by replacing it by
(EMP1 U EMP2 U EMP3).

The reduction of queries on horizontally
fragmented relations consists primarily of
determining, after restructuring the subtrees, those
that will produce empty relations and removing
them. Selections on fragments that have a
qualification contradicting the qualification of the

Fragment
Schema

Fragment
Statistics

Local
Site

Control
Site

Query
Decomposition

Data
Localization

Global
Optimization

Local
Optimization

Global
Schema

Local
Schema

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Milko Marinov, Svetlana Stefanova

ISSN: 1790-0832 1033 Issue 6, Volume 5, June 2008

fragmentation rule generate empty relations. Given
a relation R that has been horizontally fragmented as
R1, R2, ….., Rn, where Rj = σPj (R), the rule can be
state formally as follows:

σPi (R)= ∅ if ∀x in R: ¬ (pi(x) ∧ pj(x))

Where pi and pj are selection predicates, x denotes a
tuple, and p(x) denotes “predicare p holds for x”.
We now illustrate reduction by horizontal
fragmentation using the following example query:
 SELECT *
 FROM EMP
 WHERE SALARY=70000
The generic query is presented on figure 2a. By
commuting the selection with the union operation, it
is easy to detect that the selection predicate
contradicts the predicates of EMP1 and EMP3,
thereby producing empty relations. The reduced
query is simply applied to EMP2 as shown on
Figure 2b.

Fig.2 Reduction for horizontal fragmentation

We propose to use theorem proving techniques

(this issue is the subject of discussion in Section 5)
to determine the contradicting predicates.

4 Architecture of the distributed
CORBA-based environment

Figure 3 shows the most important modules that
make up a distributed system utilizing CORBA
architecture. The system is based on a special three
level Client/Server model, which is composed of
end-users (clients), core system (client+server) and
DB server. The server side is composed of a set of
data site in peer-to-peer manner. The core system
serves as a main controller and receives operations
from every client. Since the components of the DB
server on each data site use ODBC API to

manipulate the local database, so no restrictions of
local DBMS selection exists. Most of relational
database products provide ODBC drivers. Using the
ODBC layer to access local DB provides
standardized access, which achieves more
scalability. The user interacts with the system
through a user interface that simplifies
communication and hides much of the system
complexity.

The CORBA architecture is designed to support
the distribution of objects implemented in a variety
of programming languages. A fundamental part of
the CORBA architecture is the Object Request
Broker (ORB). An ORB is a software component
that mediates the transfer of messages from a
program to an object located on a remote network
host. The ORB hides the underlying complexity of
network communications from the programmer. The
primary responsibility of the ORB is to resolve
requests for object references, enabling application
components to establish connectivity with each
other. The major benefit offered by the ORB is its
platform-independent treatment of data. The
Interface Definition Language (IDL) is used to
define interfaces between application components.
All components of the architecture and all object
type defined in the architecture are described and
constructed as modules with interfaces, which are
specified in the IDL. CORBA defines a wire
protocol for making requests to an object and for the
object to respond to the application making the
request. The Internet Inter-ORB Protocol (IIOP)
ensures interoperability between client application
and server based objects. The IIOP runtime
communication protocol provides a standard based
data representation, which allows the objects to be
located anywhere while removing the need for
network programming.

The SQL parser is the master module of the core
system. The parser is generated with famous lex and
yacc [33,34,35,36]. Lex [33] is a program generator
designed for lexical processing of character input
streams. It accepts a high-level, problem oriented
specification for character string matching, and
produces a program in a general purpose language
which recognizes regular expressions. The regular
expressions are specified by the user in the source
specifications given to Lex. The Lex written code
recognizes these expressions in an input stream and
partitions the input stream into strings matching the
expressions. At the boundaries between strings

EMP1

σ SALARY≤50,000 σ SALARY≤50,000

U

EMP2 EMP3
a) Generic

query

EMP2

b) Reduced
query

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Milko Marinov, Svetlana Stefanova

ISSN: 1790-0832 1034 Issue 6, Volume 5, June 2008

Fig.3 Architecture of the CORBA-based
environment

program sections provided by the user are executed.
The Lex source file associates the regular
expressions and the program fragments. As each
expression appears in the input to the program
written by Lex, the corresponding fragment is
executed.

Yacc [34] provides a general tool for imposing
structure on the input to a computer program. The
Yacc user prepares a specification of the input
process; this includes rules describing the input
structure, code to be invoked when these rules are
recognized, and a low-level routine to do the basic
input. Yacc then generates a function to control the
input process. This function, called a parser, calls
the user-supplied low level input routine (the lexical
analyzer) to pick up the basic items (called tokens)
from the input stream. These tokens are organized
according to the input structure rules, called
grammar rules; when one of these rules has been
recognized, then user code supplied for this rule, an
action, is invoked; actions have the ability to return
values and make use of the values of other actions.
SQLStatement is the root rule. When it is called, the
parsering is to be completed, all decomposition
operation had been finished. So we need to call the
correct core system module by the type of SQL
statement.

SQLStatement:

SELECT \ _statement

{ call Queries & Views module }

| CREATE\ _table\ _statement
{ call Schema definition module }

| INSERT _statement

{ call Insert function of Update Methods module }

| DELETE _statement
{ call Delete function of Update Methods module }

A theorem prover could be built in the core of

distributed CORBA-based system to provide a
deductive functionality of the query and view
services during the process of data localization (this
issue is the subject of discussion in Section 5).

The Data Dictionary will be used at three places:
1. in Query Decomposition, we will save the

information of a global schema, or we will
check the correctness of the user input SQL
string, so we need the global schema of each
table.

TCP/IP Network

ORB

IIOP

User Interface

Component
(Client)

Component
(Client)

CORE SYSTEM

IIOP

ORB

SQL Parser

Update
Methods

Schema
Definition

Queries & Views

THEOREM PROVER

ORB

TCP/IP Network

DB SERVER

ORB

Component
(Server)

Component
(Server)

ODBC Layer
Local DBMS Local DBMS

Component
(Client + Server)

Data
Dictionary

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Milko Marinov, Svetlana Stefanova

ISSN: 1790-0832 1035 Issue 6, Volume 5, June 2008

2. in Data Localization, we will substitute the
table with its fragments. Certainly we must
save the information of fragmentation in
Data Dictionary.

3. in Query Optimization, we need statistics of
each fragment. To sum up, we need the
global schema, the fragmentation
information and the statistics information of
fragments. So we can design our Data
Dictionary based on above uses.

In a CORBA application, any component that

provides an implementation for an object is
considered a server, at least where this object is
concerned. Being a CORBA server means that the
component (the server) executes methods for a
particular object on behalf of other components (the
clients). A client is a component that consumes
services provided by a server or servers. Frequently,
an application component can provide services to
other application components while accessing
services from other components. In this case, the
component is acting as a client of one component
and as server to the other components (Fig. 4). In
fact, two components can simultaneously act as
clients and servers to each other. A server is defined
as an interface in CORBA IDL. Data passing
between the client and the server is defined as IDL
structures. Clients communicate with the object
through an object reference. When an operation is
performed on the object reference, network
communication occurs, operation parameters are
sent to the server and the actual distributed object
executes the operation. It then returns any
appropriate data to the client. On CORBA clients,
the stubs are the automatically client-side generated
code from an IDL interface, it is a local mirror
object of its corresponding remote server-object.
The stub acts as a proxy for an object that may be
implemented by the same process, another process,
or on another (server) machine. The skeletons are
the automatically server-side generated code from
an IDL interface providing the code needed to
register and activate an object.

Using CORBA as the infrastructure affects the
upper layers of a multi-database system, since
CORBA-based environment provides basic database
functionality to manage distributed objects. If the
most important database-related services
(Transaction, Backup and Recovery, Concurrency
and Query) are available in the ORB
implementation used, it is possible to develop the
global layers of a multi-database system on

CORBA, mainly by implementing the standard
interfaces of these services for the involved objects.
A fundamental design issue is the granularity of the
CORBA objects. In registering a DBMS to
CORBA, a row in a relational DBMS, an object in
an object DBMS can be an individual CORBA
object. If a whole DBMS is registered as a CORBA
object, the functionality needed to process the
entities is left to that DBMS. Most commercial
DBMSs support the basic transaction and query
primitives, either through their Call Level Interface
(CLI) library or their XA Interface library. This
property makes it possible to define a generic
database object interface through CORBA IDL to
represent all the underlying DBMSs. CORBA
allows multiple implementation of an interface.
Hence it is possible to encapsulate each of the local
DBMSs by providing a different implementation of
the generic database object. CORBA provides three
alternatives concerning the association mode
between a client request and server method (one
interface to one implementation, one interface to
one of many implementations and one one interface
to multiple implementations). The choice of the
alternative is dependent both on the data location
and the nature of the database access requests. If the
requested data is contained in one database, then it
is usually sufficient to use the second alternative and
choose the DBMS that manages that data, since
DBMSs registered to CORBA provide basic
transaction management and query primitives for all
the operations the interface definition specifies. If
the request involves data from multiple databases,
then the third alternative needs to be chosen.

5 Classes hierarchy of the object-
oriented theorem prover
Automated theorem proving has long been a
concern of computer science and artificial
intelligence [15,17]. State-of-the-art theorem
provers for first-order logic are highly sophisticated
and efficient programs [17,20]. Moreover, they are
very flexible tools and can be tuned to a number of
applications. First order provers are highly
optimised for general-purpose reasoning and are
especially optimised for reasoning with equality.
They are based on a highly advanced theory of
saturation algorithms with redundancy [13,20].
Recently, there have been papers showing how first
order provers can be used to reason in theories with
a rich definitional structure [3,13,17,21]. However,
the use of an explicit set of inference rules and

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Milko Marinov, Svetlana Stefanova

ISSN: 1790-0832 1036 Issue 6, Volume 5, June 2008

axioms is not solely applicable to the world of
mathematical proofs. Any system that depends on

the consistency of its knowledge base and on the

Fig.4 CORBA clients and servers

ability of that base to make deductions also requires
a reliable inference mechanism. This theorem
prover works on propositional logic statements that
have already been translated into clauses of literals
“or”ed together. For example, the clause
 P ∨ ¬Q ∨ R
is represented by [p, ~q, r]. The resolution principle
describes a way of finding contradictions in a
database of clauses with minimum use of
substitution. Resolution refutation proves a theorem
by negating the statement to be proved and adding
this negated goal to the set of axioms that are known
to be true. It then uses the resolution rule of
inference to show that this leads to a contradiction.
Once the theorem prover shows that the negated
goal is inconsistent with the given set of axioms, it
follows that the original goal must be consistent.
This proves the theorem. Resolution refutation proof
involves the following steps:

 Put the premises or axioms into clause
form;

 Add the negation of what is to be proved, in
clause form, to the set of axioms;

 Resolve these clauses together, producing
new clauses that logically follow from
them;

 Produce a contradiction by generating the
empty clause;

 The substitutions used to produce the empty
clause are those under which the opposite of
the negated goal is true.

The resolution rule of inference can be applied

only to a formula that is a conjunction of clauses. A
clause is a disjunction of literals. A literal is an atom
or the negation of an atom. An atom and its negation
are referred to as complementary literals. Before the
resolution rule can be applied to any formulae all of
them have to be converted into equivalent
conjunctions of clauses. A conjunction of clauses
being true signifies that each of the clauses is true.
A formula written as a set of clauses is said to be in
clause form. The clauses in the set are said to be
derived from the formula. The prover uses a variant
of the linear strategy, called ordered linear
resolution because it orders the literals of each
clause. For example, if “[p,q]” is resolved with
“[~q, r]”, then it produces “[p, r]”. All of these
clauses are ordered. The linear strategy is a direct
use of the negated goal and the original axioms: take
the negated goal and resolve it with one of the
axioms to get a new clause. This result is then
resolved with one of the axioms to get another new
clause, which is again resolved with one of the
axioms. This method is based on another method
described by Chang and Lee [13,20]. They used the
concept of framed literals to keep track of literals

Stub

Client-object

pure-client

Object
Implemen-

tation

Skele-

ton

client-server

Server-object

Client-object

Stub

Object
Implemen-

tation

Skele-

ton

Server-object

pure-server

remote
invocation

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Milko Marinov, Svetlana Stefanova

ISSN: 1790-0832 1037 Issue 6, Volume 5, June 2008

that have been used as a resolvent in a previous step.
These literals are saved rather than just deleted as in
normal resolution, as knowing what literals have
already been used can speed up the resolution
process.

Figure 5 summarizes the classes hierarchy of the
ordered linear resolution theorem prover which is
built in the core system.

Fig.5 Classes hierarchy of the theorem prover

The ResolveNode and ResolveGraph classes set up
a structure for performing the ordered linear
resolution. They are based on the search library. The
Search class contains the all necessary information
for describing a state. The Search base class is used
to keep track of states in the search algorithm. This
class implements the linked lists of Node * objects.
The Node base class is derived from the ListNode
class and defines basic states that will be generated
during the search process, i.e. it defines the objects
that the search space consists of. The AONode class
defines nodes that will be generated in an AND-OR
search process. It is an abstract class and derived
from the Node class. The AndNode and OrNode
classes are derived from the AONode class. They
are used in the process of an AND-OR search. The
ResolveNode class represents the nodes in the
search graph. It contains the resolvent and the side
clause used with the resolvent to create the next
resolvent. If the node is the root node, the resolvent
will be the top clause and the side clause will be
empty. If the node is a goal clause the resolvent will
be empty clause. The ResolveGraph class
implements the search algorithm. The depth-first
algorithm is chosen. The depth-first search
immediately goes as deep into the search space as
possible in hopes of finding a solution quickly. The
DepthGraph class implements the search algorithm.
It is derived from the Search class. The
ResolveGraph class contains the table consisting of
the axioms to be used in the resolution proof. The

Clause class represents clauses as used in
resolution. The Literal class represents literals that
are part of a propositional statement or clause. A
Literal object consists of a string, a flag indicating
whether the literal is negated or not and a flag
indicating whether the literal is framed or not.

6 Conclusion
CORBA is a well-developed architecture for
distributed systems. Most of the features required
for building a distributed system have been included
in it. In this paper, we reported on our on-going
project related to distributed databases. In particular,
we presented our proposed architecture of a
distributed CORBA-based environment and
discussed the middleware implementation. The
CORBA implementation has several distinct
advantages in the area of legacy integration,
dynamic interface invocation, load balancing and
location transparency. CORBA provides support for
dynamic location and integration of information
sources while maintaining their autonomy. We
proposed to use theorem proving techniques to
determine the contradicting predicates during
localization layer. An object-oriented theorem
prover implementation has been proposed which is
used in the database management system to provide
a deductive functionality of the query and view
services. This theorem prover works on
propositional logic statements. The experimental
prototype of the toolkit was created. The whole

ListNode

Node

AONode

AndNode

OrNode

ResolveNode

ResolveGraphDepthGraph Search

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Milko Marinov, Svetlana Stefanova

ISSN: 1790-0832 1038 Issue 6, Volume 5, June 2008

system is developed in the C++ programming
language.

The authors intend to extend the functional
capabilities of the toolkit prototype, improving the
algorithms incorporated into the theorem prover
engine and building the tool into a knowledge-based
distributed information system to support the meta-
knowledge.

References:
[1] V. Aguilera, S. Cluet, T. Milo, P. Veltri, D.

Vodislav, Views in a Large Scale XML
Repository, The VLDB Journal, Vol. 11(3),
2002, pp. 238-255.

[2] A. Andrade, G. Ruberg, F. Baiao, V.
Braganholo, M. Mattoso, Efficiently processing
XML queries over fragmented repositories with
PartiX, In: DATAX, Munich, Germany, 2006,
pp.150-163.

[3] S. Andrei, A. Cheng, G. Grigoras, L. Osborne,
Incremental Theorem Proving, Information
Technologies & Control, Vol.3, 2007, pp. 2-9.

[4] C. Binnig, D. Kossmann, E. Lo, M. T. Özsu,
QAGen: Generating Query-Aware Test
Databases, in Proc. ACM SIGMOD
International Conference on Management of
Data, 2007, pp. 341-352.

[5] S. Birnam, Distributed JAVA Platform
Database Development, The Sun Microsystems
Press, 2001.

[6] Borland C++ Builder 5: Developer’s Guide,
Inprise Corporation, 2000.

[7] S. Bottcher, M. Jarke, J.W. Schmidt, Adaptive
Predicate Managers in Database Systems, in
Proc. of 12th Int. Conf. on VLDB, 1986, pp. 21-
29.

[8] S. Chaudhuri, K. Shim, Optimization of
Queries with User-Defined Predicates, ACM
Transactions on Database Systems, Vol. 24,
No 2, 1999, pp. 177–228.

[9] D. Che, K. Aberer, M. T. Özsu, Query
Optimization in XML Structured Document
Databases, VLDB Journal, Vol. 15, No. 3,
2006, pp. 263-289.

[10] A. Deshpande, Z. Ives, V. Raman, Adaptive
Query Processing, Foundations and Trends in
Databases, Vol. 1, No 1, 2007, pp. 1–140.
[Online]: http://www.cis.upenn.edu/~zives/research/aqp-
survey.pdf

[11] R. Geraghty, S. Joyce, T. Moriarty, G. Noone,
COM - CORBA Interoperability, Prentice Hall,
1999.

[12] N. Gupta, J. Haritsa, M. Ramanath, Distributed
Query Processing on the Web, In: ICDE, IEEE
Computer Society, 2000, pp. 1-20.

[13] I. Hatzilygeroudis, H. Reichgelt, ACT-P: A
Configurable Theorem-Prover, Data &
Knowledge Engineering, Vol. 12, 1994, pp.
277-296.

[14] M. Henning, S. Vinoski, Advanced CORBA(R)
Programming with C++, Addison-Wesley
Professional, 2001.

[15] A. Imine, P. Molli, G. Oster, P. Urso, VOTE:
Group Editors Analyzing Tool, in Proc. of 4th
International Workshop FTP, 2003, pp. 179-
186.

[16] Z. G. Ives, A.Y. Halevy, D. S. Weld, An XML
query engine for network-bound data, The
VLDB Journal, Vol. 11, No. 4, 2002, pp. 380-
402.

[17] M. Kaufmann, J. S. Moore, Some Key
Research Problems in Automated Theorem
Proving for Hardware and Software
Verification, RAC, Rev. R. Acad. Client Serie
A. Mat., Vol. 98, No. 1, 2004, pp. 181–195.

[18] G. Kokkinidis, E. Sidirourgos, V.
Christophides, Query Processing in RDF/S-
based P2P Database Systems, Semantic Web
and Peer-to-Peer, S Staab, H Stuckenschmidt
(eds.), Springer-Verlag, 2006. [Online]:
http://139.91.183.30:9090/RDF/publication
s/sqpeer-chapter.pdf

[19] D. Kossmann, The State of the Art in
Distributed Query Processing, ACM Computer
Surveys, Vol. 32, 2000, pp. 422–469.

[20] B. MacCartney, S. McIlraith, E. Amir, T.E.
Uribe, Practical Partition-Based Theorem
Proving for Large Knowledge Bases, in Proc.
of 18th Int. Joint Conference on Artificial
Intelligence (IJCAI ’03), 2003.

[21] M. Marinov, An implementation of a theorem
prover used in deductive object-oriented
databases, in Proc. of 17th International
conference SAER'2003, 2003, pp. 206-210.

[22] R. Marvie, P. Merle, J. Geib, S. Leblanc,
TORBA: Trading Contracts for CORBA, in
Proc. of 6th USENIX Conference on Object-
Oriented Technologies and Systems, 2001.

[23] M. T. Özsu, P. Valduriez, Principles of
Distributed Database Systems, 2nd edition,
Prentice-Hall, Englewood Cliffs, NJ., 1999.

[24] M. T. Özsu, B. Yao, Building Component
Database Systems Using CORBA, In
Component Databases, K. Dittrich and A.
Geppert (eds.), Morgan Kaufmann, 2001, pp.
207-236.

[25] D. Suciu, Distributed Query Evaluation on
Semistructured Data, ACM TODS, Vol. 27,
No. 1, 2002, pp. 1-62.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Milko Marinov, Svetlana Stefanova

ISSN: 1790-0832 1039 Issue 6, Volume 5, June 2008

[26] J. Szymaszek, A. Uszok, K. Zielinski, Building
a Scalable and Efficient Component Oriented
System using CORBA - Active Badge System
Case Study, Distributed Systems Engineering,
Vol. 5, 1998, pp. 203-213.

[27] F. Tian, D. J. DeWitt, Tuple Routing Strategies
for Distributed Eddies, in: Proc. of 29th VLDB
Conference, Berlin, Germany, 2003.

[28] J. Urban, MPTP 0.1 - System Description, in
Proc. of 4th International Workshop FTP,
2003, pp. 171-178.

[29] K. Voruganti, M. T. Özsu, R. Unrau, An
Adaptive Data-Shipping Architecture for Client
Caching Data Management Systems,
Distributed and Parallel Databases, Vol. 15,
No. 2, 2004, pp. 137-177.

[30] N. Wang, K. Parameswaran, D. Schmidt, O.
Othman, The Design and Performance of Meta-
Programming Mechanisms for Object Request
Broker Middleware, in Proc. of 6th USENIX
Conference on Object-Oriented Technologies
and Systems, 2001.

[31] C. Yu, W. Meng, Principles of Query
Processing for Advanced Database
Applications, Morgan Kaufmann, San
Francisco, California, 1998.

[32] W. Zhao, L. E. Moser, P. M. Melliar-Smith,
Unification of Transactions and Replication in
Three-Tier Architectures Based on CORBA,
IEEE Transactions on Dependable and Secure
Computing, Vol. 2, No. 1, 2005, pp. 20-33.

[33] http://www.cs.man.ac.uk/~pjj/cs211/lex/lex.html
[34] http://www.cs.man.ac.uk/~pjj/cs211/yacc/yacc.html
[35] http://dinosaur.compilertools.net/
[36] http://yard-parser.sourceforge.net/cgi-bin/index.cgi

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Milko Marinov, Svetlana Stefanova

ISSN: 1790-0832 1040 Issue 6, Volume 5, June 2008

