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Abstract: - Query processing over distributed and fragmented databases is more challenging than doing so in a 
centralized environment. In a distributed environment, the DBMS needs to know where each node is located. 
The main role of data localization layer is to localize the query’s data using data distribution information. We 
propose an approach to incorporate the artificial intelligence techniques into a distributed database management 
system (DBMS), namely to extend the core of a distributed CORBA-based environment with deductive 
functionalities of the query and view services during the process of data localization. The basic principles and 
the architecture of the software tool are considered. The implementation and class hierarchy of the object-
oriented theorem prover which is built in the core of distributed CORBA-based system are also discussed. 
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1 Introduction 
The increasing volume of stored data poses new 
challenges to efficient query processing. Queries 
posed over centralized databases may take very long 
times to be answered, since large amounts of data 
need to be accessed. In most of the cases, indexes 
are not enough to increase query performance. A 
solution to this problem may be to distribute and 
fragment data across the network. In fact, lots of 
systems for processing queries over distributed data 
have been proposed [1,4,9,12,16,25,27]. Some 
others focus on adaptive query processing over 
heterogeneous distributed systems [7,8,10,31]. In 
relational databases [23] fragmentation techniques 
have been successfully used to increase query 
performance in distributed databases. By 
fragmenting and distributing the data, queries can be 
sent to specific fragments, avoiding a complete scan 
over large portions of irrelevant data. Query 
processing is the process by which a declarative 
query is translated into low level data manipulation 
operations. Query processing deals with designing 
algorithms that analyze queries and convert them 
into a series of data manipulation operations. 
Besides the methodological issues, an important 
aspect of query processing is data localization. The 
main role of data localization is to localize the 
query’s data using data distribution information. 
The localization layer translates an algebraic query 
on global relations into an algebraic query expressed 
on physical fragments. Localization uses 

information stored in the fragment schema. The 
problem is how to decide on a strategy for executing 
each query over the network.  

New technologies were developed to share data 
scattered on the net. The Object Management 
Architecture (OMA) is an environment defined by 
the Object Management Group (OMG). OMA 
defines a common object model, a common model 
of interaction by means of object invocations and a 
set of common object services and facilities. OMA 
modules consist of the application objects; the 
Common Object Request Broker (CORBA), which 
directs requests and responses between objects; a set 
of common object services, which are the basis 
functions required for object management; and a set 
of common facilities, which are generic object-
oriented tools for various applications [24,26]. 
CORBA is the key communication mechanism of 
OMA, in which objects communicate with each 
other via an Object Request Broker (ORB) that 
provides brokering services between clients and 
servers. CORBA is an open, standard solution for 
distributed object systems. CORBA objects 
communicate directly across a network using 
standard protocols, regardless of the programming 
languages used to create objects or the operating 
systems and platforms on which the objects run. An 
alternative to CORBA infrastructure is the 
Distributed Component Object Model/Object 
Linking and Embedding (DCOM/OLE) 
environment from Microsoft [5,11]. DCOM is 
similar in functionality to CORBA ORB, while OLE 
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is the complete environment for componentization. 
DCOM has the similar goals as CORBA. It can be 
used to develop very advanced distributed systems. 
Unlike CORBA that is language-neutral, DCOM is 
mainly used for WINDOWS applications with 
Microsoft's ActiveX. DCOM object model is quite 
different than the model supported by CORBA 
[14,22].  Borland’s Multi-tier Distributed 
Applications Services (MIDAS) [6] delivers 
distributed applications. MIDAS thin-client 
applications are easy to develop, easy to deploy, 
require zero configuration and automatically update 
server based business logic without re-deploying 
thin-clients. 

CORBA is a middleware that enables 
interoperability and supports distributed object 
computing. As an object-oriented distributed 
computing platform CORBA can be helpful for 
database interoperability [11,24,32]. The 
fundamental contribution is in terms of managing 
heterogeneity and to a lesser extent managing 
autonomy. Heterogeneity in a distributed system can 
occur at the hardware and operating system level, 
communication level, DBMS level and semantic 
level. CORBA deals mainly with platform and 
communication heterogeneities. It is also addresses 
DBMS heterogeneity by means of IDL interface 
definition. However, the real problem of managing 
multiple DBMSs in the sense of a multidatabase 
system requires the development of a global layer 
that includes the global-level DBMS functionality.  

Our work proposes an approach to incorporate 
the artificial intelligence techniques into a 
distributed database management system (DBMS), 
namely to extend the core of a distributed CORBA-
based environment with deductive functionalities of 
the query and view services during the process of 
data localization. The present paper considers an 
architecture and implementation of the distributed 
tool. The structure of this paper is as follows. After 
this introduction, in section 2 the generic layering 
scheme for distributed query processing is 
discussed, in which the first two layers are 
responsible for query decomposition and data 
localization. Section 3 provides some details about 
data localization layer. The architecture and 
implementation of the tool are described in the next 
paragraph. The class hierarchy of the object-
oriented theorem prover which is built in the core of 
distributed CORBA-based system is considered in 
Section 5. The conclusion summarizes the authors’ 
contributions and their future research intentions. 
 
 
 

2 Querying distributed databases 
Query processing over distributed and fragmented 
databases is more challenging than doing so in a 
centralized environment. In a distributed 
environment, the DBMS needs to know where each 
node is located, as well as parameters such as 
communication costs and current load of each node, 
to be used by the query optimizer. Fragmentation 
further adds complexity related to reducing the 
query so it can be executed only in nodes that have 
relevant data to that query answer. In [2,19,23] we 
can find a very good reference about distributed 
databases, and also a methodology for distributed 
query processing in relational databases. The 
general ideas of this methodology can be applied to 
other data models [12,18,25]. More advanced topics 
on distributed query processing, such as 
optimization techniques, execution techniques, 
dynamic replication in the distributed environment, 
caching, architectures, etc., can be found in 
[16,19,28,30]. 

In general, to process a distributed query we 
need to transform a high-level query over the global 
(centralized) view of the distributed data into one or 
more sub-queries of lower level (to be executed over 
the nodes in the distributed environment). We now 
present a summary of fragmentation and query 
processing techniques in the relational model, 
object-oriented model and semi-structured model. 

Ozsü and Valduriez [4,23] present a 
methodology to process distributed queries over the 
relational model. The methodology consists of 
several layers: query decomposition; data 
localization; global optimization; and local 
optimization, as shown in Figure 1. 

The first layer decomposes the query in an 
algebraic query over global relations. In this 
process, syntactic and semantic analyses are 
performed over the submitted query. The query is 
simplified and rewritten in an algebraic form. 
Information about data distribution is not used in 
this layer. 

The data localization layer has as a goal to locate 
query data by using information about data 
distribution (fragmentation and allocation of 
fragments among the nodes). This layer determines 
the fragments that are involved in the query, and 
replaces the references to the global view by 
references to fragments in the algebraic query. This 
replacement can be performed automatically when 
the fragmentation design follows correction rules 
[23,29] such as the reconstruction rule (the global 
database can be reconstructed from its fragments). 

The global optimization layer tries to find a near 
to optimal strategy (or plan) to execute the global 
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query. The optimization is performed, in general, by 
minimizing a cost function. The cost function is 
usually a combination of CPU, communication and 
I/O costs. To databases distributed in slow 
networks, the communication cost must be the most 
important factor in the cost function. 

 

 
 

Fig.1 Generic scheme for distributed query 
processing 

 
After global optimization of the global query, 

sub-queries are generated and sent to the remote 
sites. Each sub-query executed in a given site is 
further optimized using the local site schema in the 
local optimization layer. The results of the remote 
sub-queries are processed by the DBMS according 
to the adopted strategy of final result composition. 
 
 
3 Localization of distributed data 
The initial algebraic query generated by the query 
decomposition step is input to the second step: data 
localization. The initial algebraic query is specified 
on global relations irrespective of their 
fragmentation or distribution. The main role of data 
localization is to localize the query’s data using data 
distribution information. In this step, the fragments 
that are involved in the query are determined and 
the query is transformed into one that operates on 
fragments rather than global relations. As indicated 
earlier, fragmentation is defined through 
fragmentation rules that can be expressed as 
relational operations (horizontal fragmentation by 

selection, vertical fragmentation by projection). A 
distributed relation can be reconstructed by applying 
the inverse of the fragmentation rules. This is called 
a localization program. The localization program for 
a horizontally (vertically) fragmented query is the 
union (join) of the fragments. Thus, during the data 
localization step each global relation is first replaced 
by its localization program, and then the resulting 
fragment query is simplified and restructured to 
produce another “good” query. Simplification and 
restructuring may be done according to the same 
rules used in the decomposition step. As in the 
decomposition step, the final fragment query is 
generally far from optimal; the process has only 
eliminated “bad” algebraic queries. We do not 
consider the fact that data fragments may be 
replicated, although this can improve the 
performance. A naïve way to localize a distributed 
query is to generate a query where each global 
relation is substituted by its localization program. 
This can be viewed as replacing the leaves of the 
operator tree of the distributed query with subtrees 
corresponding to the localization programs. The 
query obtained by this way is called localized query. 
In the reminder of this section for primary 
horizontal fragmentation we present reduction 
techniques that generate simpler queries. The 
horizontal fragmentation function distributes a 
relation based on selection predicates. The 
following example is used in subsequent 
discussions.   

Consider the employees relation EMP(ID, 
MGR_ID, NAME, SALARY). The ID column is a 
primary key for the EMP table and MGR_ID is the 
ID of the manager of the corresponding employee. 
The EMP relation is partitioned into three 
fragments:  

EMP1 = σ SALARY>100,000 (EMP) 
EMP2 = σ 50,000 <SALARY ≤100,000 (EMP) 
EMP3 = σ SALARY≤50,000 (EMP) 

The localization program for an horizontally 
fragment relation is the union of the fragments. In 
our example we have 

EMP = EMP1 U EMP2 U EMP3 
Thus the generic form of any query specified on 
EMP is obtained by replacing it by 
(EMP1 U EMP2 U EMP3). 

The reduction of queries on horizontally 
fragmented relations consists primarily of 
determining, after restructuring the subtrees, those 
that will produce empty relations and removing 
them. Selections on fragments that have a 
qualification contradicting the qualification of the 
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fragmentation rule generate empty relations. Given 
a relation R that has been horizontally fragmented as 
R1, R2, ….., Rn, where Rj = σPj (R), the rule can be 
state formally as follows: 

σPi (R)= ∅ if  ∀x in R: ¬ (pi(x) ∧ pj(x)) 
 
Where pi and pj are selection predicates, x denotes a 
tuple, and p(x) denotes “predicare p holds for x”. 
We now illustrate reduction by horizontal 
fragmentation using the following example query: 
 SELECT * 
 FROM EMP 
 WHERE SALARY=70000 
The generic query is presented on figure 2a. By 
commuting the selection with the union operation, it 
is easy to detect that the selection predicate 
contradicts the predicates of EMP1 and EMP3, 
thereby producing empty relations. The reduced 
query is simply applied to EMP2 as shown on 
Figure 2b. 
 

 
Fig.2 Reduction for horizontal fragmentation 

 
We propose to use theorem proving techniques 

(this issue is the subject of discussion in Section 5) 
to determine the contradicting predicates. 
 
 
4 Architecture of the distributed 
CORBA-based environment 

Figure 3 shows the most important modules that 
make up a distributed system utilizing CORBA 
architecture. The system is based on a special three 
level Client/Server model, which is composed of 
end-users (clients), core system (client+server) and 
DB server. The server side is composed of a set of 
data site in peer-to-peer manner. The core system 
serves as a main controller and receives operations 
from every client. Since the components of the DB 
server on each data site use ODBC API to 

manipulate the local database, so no restrictions of 
local DBMS selection exists. Most of relational 
database products provide ODBC drivers. Using the 
ODBC layer to access local DB provides 
standardized access, which achieves more 
scalability. The user interacts with the system 
through a user interface that simplifies 
communication and hides much of the system 
complexity.  

The CORBA architecture is designed to support 
the distribution of objects implemented in a variety 
of programming languages. A fundamental part of 
the CORBA architecture is the Object Request 
Broker (ORB). An ORB is a software component 
that mediates the transfer of messages from a 
program to an object located on a remote network 
host. The ORB hides the underlying complexity of 
network communications from the programmer. The 
primary responsibility of the ORB is to resolve 
requests for object references, enabling application 
components to establish connectivity with each 
other. The major benefit offered by the ORB is its 
platform-independent treatment of data. The 
Interface Definition Language (IDL) is used to 
define interfaces between application components. 
All components of the architecture and all object 
type defined in the architecture are described and 
constructed as modules with interfaces, which are 
specified in the IDL. CORBA defines a wire 
protocol for making requests to an object and for the 
object to respond to the application making the 
request. The Internet Inter-ORB Protocol (IIOP) 
ensures interoperability between client application 
and server based objects. The IIOP runtime 
communication protocol provides a standard based 
data representation, which allows the objects to be 
located anywhere while removing the need for 
network programming. 

The SQL parser is the master module of the core 
system. The parser is generated with famous lex and 
yacc [33,34,35,36]. Lex [33] is a program generator 
designed for lexical processing of character input 
streams. It accepts a high-level, problem oriented 
specification for character string matching, and 
produces a program in a general purpose language 
which recognizes regular expressions. The regular 
expressions are specified by the user in the source 
specifications given to Lex. The Lex written code 
recognizes these expressions in an input stream and 
partitions the input stream into strings matching the 
expressions. At the boundaries between strings 
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Fig.3 Architecture of the CORBA-based 
environment 

program sections provided by the user are executed. 
The Lex source file associates the regular 
expressions and the program fragments. As each 
expression appears in the input to the program 
written by Lex, the corresponding fragment is 
executed. 

Yacc [34] provides a general tool for imposing 
structure on the input to a computer program. The 
Yacc user prepares a specification of the input 
process; this includes rules describing the input 
structure, code to be invoked when these rules are 
recognized, and a low-level routine to do the basic 
input. Yacc then generates a function to control the 
input process. This function, called a parser, calls 
the user-supplied low level input routine (the lexical 
analyzer ) to pick up the basic items (called tokens ) 
from the input stream. These tokens are organized 
according to the input structure rules, called 
grammar rules; when one of these rules has been 
recognized, then user code supplied for this rule, an 
action, is invoked; actions have the ability to return 
values and make use of the values of other actions. 
SQLStatement is the root rule. When it is called, the 
parsering is to be completed, all decomposition 
operation had been finished. So we need to call the 
correct core system module by the type of SQL 
statement. 
 
SQLStatement: 

 
SELECT \ _statement  

{ call Queries & Views module } 
 

| CREATE\ _table\ _statement  
{ call Schema definition module } 

 
| INSERT \_statement  

{ call Insert function of Update Methods module } 
 

| DELETE \_statement  
{ call Delete function of Update Methods module } 

 
A theorem prover could be built in the core of 

distributed CORBA-based system to provide a 
deductive functionality of the query and view 
services during the process of data localization (this 
issue is the subject of discussion in Section 5). 

The Data Dictionary will be used at three places: 
1. in Query Decomposition, we will save the 

information of a global schema, or we will 
check the correctness of the user input SQL 
string, so we need the global schema of each 
table. 
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2. in Data Localization, we will substitute the 
table with its fragments. Certainly we must 
save the information of fragmentation in 
Data Dictionary. 

3. in Query Optimization, we need statistics of 
each fragment. To sum up, we need the 
global schema, the fragmentation 
information and the statistics information of 
fragments. So we can design our Data 
Dictionary based on above uses. 

 
In a CORBA application, any component that 

provides an implementation for an object is 
considered a server, at least where this object is 
concerned. Being a CORBA server means that the 
component (the server) executes methods for a 
particular object on behalf of other components (the 
clients). A client is a component that consumes 
services provided by a server or servers. Frequently, 
an application component can provide services to 
other application components while accessing 
services from other components. In this case, the 
component is acting as a client of one component 
and as server to the other components (Fig. 4). In 
fact, two components can simultaneously act as 
clients and servers to each other. A server is defined 
as an interface in CORBA IDL. Data passing 
between the client and the server is defined as IDL 
structures. Clients communicate with the object 
through an object reference. When an operation is 
performed on the object reference, network 
communication occurs, operation parameters are 
sent to the server and the actual distributed object 
executes the operation. It then returns any 
appropriate data to the client. On CORBA clients, 
the stubs are the automatically client-side generated 
code from an IDL interface, it is a local mirror 
object of its corresponding remote server-object. 
The stub acts as a proxy for an object that may be 
implemented by the same process, another process, 
or on another (server) machine. The skeletons are 
the automatically server-side generated code from 
an IDL interface providing the code needed to 
register and activate an object. 

Using CORBA as the infrastructure affects the 
upper layers of a multi-database system, since 
CORBA-based environment provides basic database 
functionality to manage distributed objects. If the 
most important database-related services 
(Transaction, Backup and Recovery, Concurrency 
and Query) are available in the ORB 
implementation used, it is possible to develop the 
global layers of a multi-database system on 

CORBA, mainly by implementing the standard 
interfaces of these services for the involved objects. 
A fundamental design issue is the granularity of the 
CORBA objects. In registering a DBMS to 
CORBA, a row in a relational DBMS, an object in 
an object DBMS can be an individual CORBA 
object. If a whole DBMS is registered as a CORBA 
object, the functionality needed to process the 
entities is left to that DBMS. Most commercial 
DBMSs support the basic transaction and query 
primitives, either through their Call Level Interface 
(CLI) library or their XA Interface library. This 
property makes it possible to define a generic 
database object interface through CORBA IDL to 
represent all the underlying DBMSs. CORBA 
allows multiple implementation of an interface. 
Hence it is possible to encapsulate each of the local 
DBMSs by providing a different implementation of 
the generic database object. CORBA provides three 
alternatives concerning the association mode 
between a client request and server method (one 
interface to one implementation, one interface to 
one of many implementations and one one interface 
to multiple implementations). The choice of the 
alternative is dependent both on the data location 
and the nature of the database access requests. If the 
requested data is contained in one database, then it 
is usually sufficient to use the second alternative and 
choose the DBMS that manages that data, since 
DBMSs registered to CORBA provide basic 
transaction management and query primitives for all 
the operations the interface definition specifies. If 
the request involves data from multiple databases, 
then the third alternative needs to be chosen. 
 
 
5 Classes hierarchy of the object-
oriented theorem prover 
Automated theorem proving has long been a 
concern of computer science and artificial 
intelligence [15,17]. State-of-the-art theorem 
provers for first-order logic are highly sophisticated 
and efficient programs [17,20]. Moreover, they are 
very flexible tools and can be tuned to a number of 
applications. First order provers are highly 
optimised for general-purpose reasoning and are 
especially optimised for reasoning with equality. 
They are based on a highly advanced theory of 
saturation algorithms with redundancy [13,20]. 
Recently, there have been papers showing how first 
order provers can be used to reason in theories with 
a rich definitional structure [3,13,17,21]. However, 
the use of an explicit set of inference rules and 
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axioms is not solely applicable to the world of 
mathematical proofs. Any system that depends on 

the consistency of its knowledge base and on the

 
 

 
 

Fig.4 CORBA clients and servers 
 

 
 
 
ability of that base to make deductions also requires 
a reliable inference mechanism. This theorem 
prover works on propositional logic statements that 
have already been translated into clauses of literals 
“or”ed together. For example, the clause 
  P ∨ ¬Q ∨ R  
is represented by [p, ~q, r]. The resolution principle 
describes a way of finding contradictions in a 
database of clauses with minimum use of 
substitution. Resolution refutation proves a theorem 
by negating the statement to be proved and adding 
this negated goal to the set of axioms that are known 
to be true. It then uses the resolution rule of 
inference to show that this leads to a contradiction. 
Once the theorem prover shows that the negated 
goal is inconsistent with the given set of axioms, it 
follows that the original goal must be consistent. 
This proves the theorem. Resolution refutation proof 
involves the following steps:  

 Put the premises or axioms into clause 
form; 

 Add the negation of what is to be proved, in 
clause form, to the set of axioms; 

 Resolve these clauses together, producing 
new clauses that logically follow from 
them; 

 Produce a contradiction by generating the 
empty clause; 

 The substitutions used to produce the empty 
clause are those under which the opposite of 
the negated goal is true. 

 
The resolution rule of inference can be applied 

only to a formula that is a conjunction of clauses. A 
clause is a disjunction of literals. A literal is an atom 
or the negation of an atom. An atom and its negation 
are referred to as complementary literals. Before the 
resolution rule can be applied to any formulae all of 
them have to be converted into equivalent 
conjunctions of clauses. A conjunction of clauses 
being true signifies that each of the clauses is true. 
A formula written as a set of clauses is said to be in 
clause form. The clauses in the set are said to be 
derived from the formula. The prover uses a variant 
of the linear strategy, called ordered linear 
resolution because it orders the literals of each 
clause. For example, if  “[p,q]” is resolved with 
“[~q, r]”, then it produces “[p, r]”. All of these 
clauses are ordered. The linear strategy is a direct 
use of the negated goal and the original axioms: take 
the negated goal and resolve it with one of the 
axioms to get a new clause. This result is then 
resolved with one of the axioms to get another new 
clause, which is again resolved with one of the 
axioms. This method is based on another method 
described by Chang and Lee [13,20]. They used the 
concept of framed literals to keep track of literals 
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that have been used as a resolvent in a previous step. 
These literals are saved rather than just deleted as in 
normal resolution, as knowing what literals have 
already been used can speed up the resolution 
process.  

Figure 5 summarizes the classes hierarchy of the 
ordered linear resolution theorem prover which is 
built in the core system. 
 

 

 
 

Fig.5 Classes hierarchy of the theorem prover 
 
 
 
The ResolveNode and ResolveGraph classes set up 
a structure for performing the ordered linear 
resolution. They are based on the search library. The 
Search class contains the all necessary information 
for describing a state. The Search base class is used 
to keep track of states in the search algorithm. This 
class implements the linked lists of Node * objects. 
The Node base class is derived from the ListNode 
class and defines basic states that will be generated 
during the search process, i.e. it defines the objects 
that the search space consists of. The AONode class 
defines nodes that will be generated in an AND-OR 
search process. It is an abstract class and derived 
from the Node class. The AndNode and OrNode 
classes are derived from the AONode class. They 
are used in the process of an AND-OR search. The 
ResolveNode class represents the nodes in the 
search graph. It contains the resolvent and the side 
clause used with the resolvent to create the next 
resolvent. If the node is the root node, the resolvent 
will be the top clause and the side clause will be 
empty. If the node is a goal clause the resolvent will 
be empty clause. The ResolveGraph class 
implements the search algorithm. The depth-first 
algorithm is chosen. The depth-first search 
immediately goes as deep into the search space as 
possible in hopes of finding a solution quickly. The 
DepthGraph class implements the search algorithm. 
It is derived from the Search class. The 
ResolveGraph class contains the table consisting of 
the axioms to be used in the resolution proof. The 

Clause class represents clauses as used in 
resolution. The Literal class represents literals that 
are part of a propositional statement or clause. A 
Literal object consists of a string, a flag indicating 
whether the literal is negated or not and a flag 
indicating whether the literal is framed or not. 
 
 
6 Conclusion 
CORBA is a well-developed architecture for 
distributed systems. Most of the features required 
for building a distributed system have been included 
in it. In this paper, we reported on our on-going 
project related to distributed databases. In particular, 
we presented our proposed architecture of a 
distributed CORBA-based environment and 
discussed the middleware implementation. The 
CORBA implementation has several distinct 
advantages in the area of legacy integration, 
dynamic interface invocation, load balancing and 
location transparency. CORBA provides support for 
dynamic location and integration of information 
sources while maintaining their autonomy. We 
proposed to use theorem proving techniques to 
determine the contradicting predicates during 
localization layer. An object-oriented theorem 
prover implementation has been proposed which is 
used in the database management system to provide 
a deductive functionality of the query and view 
services. This theorem prover works on 
propositional logic statements. The experimental 
prototype of the toolkit was created. The whole 
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system is developed in the C++ programming 
language. 

The authors intend to extend the functional 
capabilities of the toolkit prototype, improving the 
algorithms incorporated into the theorem prover 
engine and building the tool into a knowledge-based 
distributed information system to support the meta-
knowledge.  
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