
Towards a Flexible Tool for Supporting Data Collection & Analysis in
Personal Software Process (PSP)

MOHD HAIRUL NIZAM MD NASIR, AZAH ANIR NORMAN, NOOR HAFIZAH HASSAN

Faculty of Computer Science and Information Technology
University of Malaya 50603 Kuala Lumpur

MALAYSIA.
hairulnizam@um.edu.my , azahnorman@um.edu.my

Abstract: - Personal Software Process (PSP) ultimately provides software engineers an excellent framework
and practice that can help them to improve the quality of their work, by analyzing their performance
statistically and helping them to achieve realistic goals set by them. Besides, PSP offers many benefits to
software engineers. However, through findings and studies, it is found that the Personal Software Process
adoption problem may be caused by the overhead in data collection, manual execution in data analysis, and
inflexibility of process definition. This paper presents in details the factors that influence the PSP adoption
problem and explains the need for automated tool to support the adoption of PSP. It is believed that with the
highly flexible automated tool support, it can give the flexibility to the software engineers to manage their
process definition rather than staying freeze. Other than that, it can minimize the overhead during the data
collection and data analysis phases. Software engineers should be easily monitors, measure and improve their
software development process by using other additional features provided by this tool.

Key-Words: - Personal Software Process, PSP, Automated Tool, Software Process, Flexible Tool.

1 Introduction
‘Software development is a challenging undertaking
that is often critical to the safety of humans and the
welfare of businesses’ described by Zahran in [17].
Since more than forty years ago, the software
development experience has not succeeded in
overcoming this problem. Around 1960’s, the term
“Software Crisis” emerged to describe the software
industry’s inability to provide customers with high
quality products within schedule and budget.
Between 1985 and 1987, two people died and four
others were seriously injured after they received
massive radiation beamed via Therac-25 radiation
therapy machine. Successful investigations revealed
that defective software is among the various factors
leading to this accident Leveson et. al [10]. Another
example is the delay for over 16 months of the
opening of Denver International airport, and over
100 million dollars exceeding the budget in the
construction cost reported by Swartz in [15].

As a result, inspired by the efforts of Deming [1]
and Juran [9].There has been an increase in attention
and focus on the discipline of software engineering.
New software engineering methods, techniques and
tools have been developed to gain more predictable
quality improvement results. They are needed to
manage the complexity inherent in large software
system. Many process standards on organizational

level such as Software Process Improvement and
Capability dEtermination (SPICE), International
Standards Organization (ISO) 9000 for project by
Siyal such as in [19] , Capability Maturity Model
(CMM) by Paulk [11], Capability Maturity Model
Integration (CMM-I), BOOTSRAP; Team Software
Process (TSP) by Humphrey in [8] and eXtreme
Programming (XP) which are deals on team level;
and on individual level namely Personal Software
Process (PSP) by Humphrey [5]. All these standard
models have been proposed to assist organizations,
teams and individuals to achieve results that are
more predictable by incorporating these proven
standards and framework into their software
development process. Therefore, controlling and
improving the processes used to develop software
have been proposed as a primary remedy to these
problems.

This paper specifically will discuss in details the
PSP adoption problems in current software
engineering practices. It also explains the need of an
automated tool in order to solve these identified
problems. The automated tool must incorporate 3
features to support the PSP framework in software
development namely minimized data collection,
automate execution in data analysis, and provide
flexibility in process definition.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

 Mohd Hairul Nizam Md Nasir, Azah Anir Norman,
Noor Hafizah Hassan

ISSN: 1790-0832 1067 Issue 6, Volume 5, June 2008

mailto:hairulnizam@um.edu.my
mailto:azahnorman@um.edu.my

 This paper is divided into 5 sections. The first
section introduced the current situation of software
engineering disciplined, the importance of having
standard software process improvement model and
gave examples of existing software process
standards that are used on an organizational, team
and individual level. The second section gives a
brief overview of the PSP, while the third section
discusses the problems that influence the adoption
of the PSP. The fourth section discusses the
importance of having an automated tool and
presents the features that the automated tool must
have. The last section summarizes the main points
of this paper.

2 Overview of the PSP
The concept of the PSP by Humphrey, originated
from Watts Humphrey of the SEI as a response to
the observation that the CMM was not applicable to
small organizations [6]. Humphrey developed a
software development process similar to CMM level
5 for the smallest possible (individual) organization.

The PSP is a self-improvement framework that
includes defined operations, measurement and
analysis techniques to assist software engineers to
understand and build their own skills in order to
improve their own personal performance. The
purpose of the PSP is to help software engineers to
learn and practice those software methods that are
most effective for them. Each new program written
can give benefit from the collection of the data of
the past projects, and provide new insights to
improve planning, productivity, and quality for
future work.

However, software engineers must adhere to a
thorough and complex process to make this
improvement happen. As illustrated in Figure 1,
there are 7 versions of PSP processes begins at
Level 0.0 and progresses in their process maturity
up to Level 3.0 which involves 76 documents
consisting of forms, process scripts, and instructions
packaged together in PSP to be used by software
engineers to capture performance data. It is
implemented in seven incremental levels. The next
level consists of all the methods in the current level
plus one or more new features.

When a software engineer utilizes the PSP, he or
she initiates it by doing planning task with a set of
predefined worksheet type forms. Then, while
moving through the design, code, compile, and test
phases, he or she uses other forms to maintain
detailed records regarding the time used in each
development phase as well as defects injected into
and removed from the phase. As soon as the project

is completed, there is a final “postmortem” phase in
which the software engineer analyzes all the data
gathered about the project and calculates values
such as Lines of Code (LOC) per Hour and Defects
per Thousand Lines of Code (KLOC). He or she
computes such values for the current project, and
then calculates them again as “to date” values, not
only for the current project, but also for the entire
set of similar projects used in planning. Therefore,
at the most basic level of measurement framework,
the PSP involves two main activities, which are
collecting primary data such as size, defect, and
time measures, and analyzing this data to produce
derived or to-date measures.

Growing evidence shows that the PSP works.
Many researchers have performed studies on the use
and payback of applying the PSP in education and
industrial setting. Some studies show great
improvement in the quality and productivity of the
software developed, while other studies report low
acceptance of the PSP and some show no
improvement at all. Hayes & Over performed an
empirical study in [4] extensively with 298
engineers who spent more than 15,000 hours writing
over 300,000 lines of code and removing about
22,000 defects to examine the effectiveness of the
PSP on the performance of engineers. The results of
the study provide very impressive evidence to
support the effectiveness of the PSP. Over the
projects completed, 50% of the engineers reduced
their size estimation error by a factor of 2.5. Product
quality, which is measured by defects found in the
product at unit test, improves 2.5 times. Other than
that, the median in time estimation and effort
estimation improve 1.75 times higher and median in
overall defect density was reduced by a factor of
1.5. It is notable that PSP improves the performance
in the first four of these dimensions without any loss
in productivity. Another study conducted by Watts
Humphrey reported the results in [7] of 104
engineers taking the PSP course. After analyzing the
data collected from his students, he stated that two
objectives had been achieved namely productivity
and quality, and estimation accuracy. It is reported
that the test defects were reduced by 73.2 percent
while defects density fell gradually from an average
of 116.4 defects per thousand LOC for assignment 1
to 48.9 defects per KLOC for assignment 10.
Besides, the estimation accuracy of the engineers
was also increased, where for assignment 1, the
engineers’ estimation accuracy average is about
32.7 percent whereas for assignment 10, the
estimation accuracy increased to 49.0 percent within
20 percent of their actual time. These results show
that the engineers who took the course improved

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

 Mohd Hairul Nizam Md Nasir, Azah Anir Norman,
Noor Hafizah Hassan

ISSN: 1790-0832 1068 Issue 6, Volume 5, June 2008

better in estimating the amount of time in
completing their assignments.

Fig. 1: The PSP Process Evolution

However, the PSP is still new, and undoubtedly,
it has not been proven to be suitable for everyone. A
study conducted by Shostak [13] against 28
software engineers at CAE Electronic Ltd. who
were provided with the PSP knowledge and training
from McGill University, reports poor adoption of
PSP in industry settings. During the study, the
researchers found that seven months after the end of
the training, only 46.5% of the engineers kept using
the concepts of the PSP. Another study performed
by Disney reported that the quality issue of the data
recorded during data collection and analysis phases
[3]. In her study, she discovered 1539 primary errors
and also 90 errors that indicated deeper problems in
the collection of primary data measurement. She
was also found that incorrect data recorded will lead
to incorrect analysis of said data where it is not only
cause incorrect values in the current project but may
ripple through to future projects.

3 Adoption Problem in PSP

Several studies have shown that the PSP appears to
help in improving software development, but is not
the complete solution to the software development
issue. Originally, PSP has several disadvantages that
may discourage software engineers from using it as
a framework to improve their performance. This
section attempts to clarify the factors that influence
the adoption of the PSP in software engineering
community.

3.1 Overhead in Data Collection and
Analysis
Deploying the PSP to put into practice has
significant effects in terms of cost and degree of
commitment. Through literature findings, PSP is an
empirically based process improvement framework
focusing on individual software engineer, which
requires him or her to create or print out forms. All
significant measures regarding log effort, defects
during software development, size of the software
and other measures, are manually recorded. This
approach collects data about the work product and
processes.

As many efforts is put into producing a high
quality software product, most software engineers
find it troublesome to manually record defect data
into the printed log form. In addition, manual PSP
requires them to use stopwatch to record the
interruption or defect removal time. This manual
data collection significantly increases the engineers’
workload. The forms will be used as an information
reference to sustain project estimation and quality
assurance. After many projects, each engineer
accumulates a large paper database of their
historical data. As a result, this approach creates
extensive overhead and extra workload due to form
filing. Other than that, a large number of different
documents and forms need to be managed and
organized properly, so that they are easily accessible
when required.

Each PSP level introduces new measures to help
engineers to manage and improve their
performance. As a result, the input field required
increases from each level to each level in PSP.
Consider a situation where a software engineer has
reached PSP3.0 level. Even though the software
development project might be small, it has 7 types
of PSP documents and forms that are equivalent to
36 pages, along with hundreds of fields to be filled.
It becomes even harder when all the forms have
correlations with each other. PSP is termed as time
consuming in term of data collection and analyzing
stage. In data collection for example, there are many
PSP forms and each form has many fields that

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

 Mohd Hairul Nizam Md Nasir, Azah Anir Norman,
Noor Hafizah Hassan

ISSN: 1790-0832 1069 Issue 6, Volume 5, June 2008

require the engineers to fill in. In data analysis
process, PSP needs the forms to calculate and
analyze recorded data in order to gauge the
engineers’ performance against software
development work. As shown in Table 1, when the
software engineers are in PSP3.0 level, they are
required to fill in approximately 1115 fields.
Assuming one field takes an average of 15 seconds
to fill-in (including overhead in context-switching
between actual work and recording work, doing
calculation and analysis), a total of 278.8 minutes or
4.65 hours is required for the engineers to
completely fill-in all the fields. This problem is also
supported obviously by Humphrey statement where
‘When the project is completed, it can take up to an
hour to gather all the data together and calculate
performance metrics’ [5].
 The calculation of measures for the PSP, as well
as the process of collecting data, regardless of effort
and defective data, both are repetitive and tedious.
For instance, defect log data are requested in both
Defect Recording Log form and in the Project Plan
Summary. This means overlapping activities occur
and redundant data exist in different documents
within the same software project. If these
overlapping activities and redundant data are
avoided, the time spent in the recording stage can be
minimized.

Modifying data in the PSP requires engineers to
stick to the PSP forms. The forms in the PSP are
very tightly tied to the PSP process and are always
associated with a project and a phase in the
development process. For instance, an engineer
might record “1.00 pm to 4.00 pm, working on
project A” in the testing phase. It seems simple and
trouble-free theoretically, but in practice, it is very
important to define unique projects for every
development activity, determine the phases to be
assigned, and record individual entries each time the
software engineer switches to another different task
or project. This is a cumbersome task.
Problems also occur when changes need to be made
to an entry or process. If the changes are small or
minor such as renaming the phases, it will not be
that difficult. However, for bigger or major changes
such as changing the size measurement or
estimation technique, it will be very complex as it
may affect many forms and scripts. This is because
the PSP data are dependent on each other, and the
forms are connected to each other. Software
engineers must place the PSP forms near them, and
then refer to various values for at least 45 times in
PSP2.0 level, this without taking into account the
size and time estimation.

Adding an additional measure to software
engineers’ work product and processes may cause a
huge psychological overhead to the engineers, and
thus, the possibility of making errors during data
collection and analysis are high. This is proven by
Disney et al. (1998), where significant data quality
issues with manual PSP were found in [2]. In such a
case, not all defects were recorded because the
overhead in recording was too expensive.
Furthermore, higher overhead in recording give a
bad influence against the quality of PSP data.
Without tool support, the quality of the data
collected tends to be low.

Many complain that PSP is psychologically
disruptive, because it requires the engineers to stop
for a second to record the data such as defects or
effort log on the PSP form, and requires them to
“context-switch” between software development
work and process recording. It is recommended that
the engineers keep a stopwatch by their desk to keep
track of all interruptions and effort log. Both
stopping and context-switch process disrupt the flow
state of software development work. In addition, to
be accurate, the PSP requires the engineers to record
“idle time”. As a result, every interruption such as
phone calls generates an additional recording
activity.

The overhead of PSP-style metrics collection and
analysis is one of the major issues in PSP adoption.
In this case, four significant drawbacks regarding
this issue were identified, which are:

3.1.1. Low in manageability and hard to organize
After many projects, an engineer accumulates a
large paper database of his or her historical data. As
a result, this approach creates extensive overhead
due to form filing and the number of different
documents. It is hard for the forms be managed and
organized.

3.1.2. Humans are naturally error prone
Adding an additional measure to an engineer’s work
product and processes may cause a huge
psychological overhead for the engineer.
Unconsciously, when there are hundreds of fields
and forms to fill-in along with extensive overhead in
the data analysis, the possibilities of making error
during data collection and analysis are high. In
addition, it becomes harder when all forms have
correlation with each other. This is proven by
Disney et al, which show higher overhead leads to
data collection error [2].

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

 Mohd Hairul Nizam Md Nasir, Azah Anir Norman,
Noor Hafizah Hassan

ISSN: 1790-0832 1070 Issue 6, Volume 5, June 2008

3.1.3 Manual execution is tedious and increases
 workloads
Practically, engineers are trained to produce high
quality software. If the improvement process model
increases their workload, the adoption possibilities
tend to be low. The need for a fully-automated tool
can combat human assistant. It is paperless, and
thus, the workload on managing the correlated data
from the different projects is reduced.

3.1.4 Time Consuming and Psychologically

Disruptive
There are many PSP forms and each form has
hundreds of fields that require the engineers to fill
in, thus consuming the engineers’ time. Besides,
PSP is psychologically disruptive, where each time
the engineers discover a defect, they must stop their
work and record the defect in their Defect
Recording Log. As a consequence to this, the
engineers will refuse to employ this discipline into
their work since it is better for them to fully-utilize
their time in developing and enhancing their
programming work.

While measurement in PSP has many benefits, it
introduces overhead to the users. The overhead of
manually analyzing and recording these personal
measures by hand will outweigh the benefits of the
process. The improvement process model employed
should not burden the engineers’ shoulders.
Engineers are not supposed to worry about the
improvement effort while they are in the midst of
developing software.

3.2 Freezing of Process Definition
‘Originally, the PSP provides the basic phases for
software development’ [5]. Starting from the
planning phase until the postmortem phase, PSP
covers the basic tasks for developing a software
product. This software model tailors the waterfall
software life cycle model as illustrated in Figure 2.
In PSP1, the Test Report Template is introduced,
where it offers software engineer the control to
determine test cases in the development phases.
When it is time to execute the testing, the test cases
are prepared to run. This development process can
support the V-shaped software development model,
where the test cases are developed as early as the
design phase. At the same time, PSP3.0 can deal
with the spiral life cycle model.

Although these approaches are generic, it does
not allow software engineers to move back and forth
between phases. Rather, software engineers have to

move sequentially through each phase that is
appropriate for the process. For instance, when we
are in the coding phase and then discover a plan
defect, we cannot go back to the planning phase to
fix the defect. In Disney thesis[3], she had classified
this case as a sequence error. ‘The Time Recording
Log shows a student moving back and forth between
phases such as Compile and Test phases, instead of
sequentially moving through the phases appropriate
for the process’ [2].

Fig. 2: Software Process Model of PSP

This limitation enforces process restrictions on
software engineers, thus making the process
improvement too impractical and inflexible.
Moreover, in practice, most contemporary and large
scale software development project cannot be done
using the waterfall or V-shaped life cycle model, but
it is more focused on risk oriented or object oriented
life cycle. As mentioned by Lin et al.,[18] ‘risk is
the traditional manner of expressing uncertainty in
the systems life cycle’ .In a development
environment like IBM’s Visual Age for Java, the
code is automatically compiled as it is saved, thus,
makes the compiling phase needless.
There are diverse development process models used
by software engineers such as rapid prototyping,
evolutionary development model, incremental
development, spiral model and others. On the basis
of their prior experiences, software engineers tend to
utilize the development process that is tailored and
well-suited to their personal needs and the software
development situation, as they know what

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

 Mohd Hairul Nizam Md Nasir, Azah Anir Norman,
Noor Hafizah Hassan

ISSN: 1790-0832 1071 Issue 6, Volume 5, June 2008

adjustments they need to make and when to make
them. The software engineering community has
always emphasized the quality of software design as
primary for the effective achievement of software
development projects [20]. Consider a situation
where a software engineer does some planning work
before design. During his planning process, he
develops a framework for his software development
project and writes down the significant elements
needed, the scheduling and the estimates of
resources and effort required for his project. Once
completed, he then shifts to the design phase. In the
design phase, after thorough observation and
analysis, he makes several changes that affect the
framework he developed during the planning phase.
As a result, he has to backtrack to the previous
phase and make the necessary changes. In this
simple scenario, the engineer does not tailor to the
PSP waterfall model. In his process, he prefers to
use his own creativity to assist him in developing a
better plan.

It should also be noted that the PSP is actually
more on code-centric development activities. It is
geared specifically towards the development of
software, whereby software engineers need to
follow the process flow sequentially, starting from
planning, designing, coding, compiling and finally
testing the system, as illustrated in Figure 2.
However, software engineers do more than just
coding or programming. PSP makes an assumption
that software engineers understand well the user
requirements. But eliciting requirements is a key
task that can be considered as a phase in PSP.
Moreover, an individual software engineer may
wish to add a phase specifically for the non-
production stages such as risk management,
requirements negotiation and formal specification.
They are also required to perform non-programming
activities such as system maintenance, writing
reports, preparing technical presentations and
documentation. If a software engineer is asked to
prepare technical documentation in relation to his
programming work, how can he measure this since
it is not covered in the PSP waterfall model?
Besides, the PSP splits the software development
project into process levels only. In actuality, maybe
a software engineer favours splitting his project into
processes and sub-processes instead, to make it
easier to monitor. But with manual PSP, if there are
many processes along with sub-processes, this
method becomes tedious, complex and difficult to
manage. Whatever forms or fields that can be
customized, should be identified first since the
engineers as the users, are capable of doing such

things as defining or customizing new processes,
adding new phase or deleting a defined process.

Therefore, the improvement process model
should not freeze but rather, support other tasks that
engineers do, so that it can be applied to many other
different processes and can be widely adopted by
the software engineering community. However,
since Humphrey intended that engineers should
modify the PSP for their own needs, the PSP can be
adjusted to fit any of the software development
models mentioned above [6]. ‘The PSP of its
methods should be adjusted to one's own
technology, practice, strengths, and weaknesses’ [6].

4 The Need for an Automated Tool
Support
While the measurements required by the PSP have
many benefits, they introduce overhead to the users.
The overhead of recording these personal measures
by hand and manually performing the analysis
outweighs the benefits of the process. Any
improvement process model employed should not
impose any added burden on software engineers.
Software engineers are not supposed to worry about
their improvement efforts while they are in the
midst of developing software.

In addition, many software engineers have an
automation-oriented mindset and to them, it is very
time consuming to have to look at all the
unnecessary documents during the software
development process. Unnecessary documents here
refer to those documents that are not directly related
to the software development project that they are
currently undertaking. Overhead, either in the
collection or analysis of data can be reduced through
tool support that makes manual recording of time,
defects, and size of program effortless and more
accurate. Therefore, a viable solution concerning
this issue is to provide an automated tool to support
the PSP. This is required in order to simplify the
entire task involved in the PSP by relocating human
effort into an automated tool. This makes data more
convenient and easier to organize, achieving a
paperless working environment.

The absence of an automated tool is one of the
major difficulties in continuing to continue the
usage of this discipline. Thus, it is recognized that
automated support would provide time saving
during development. In the finishing stage of a
project, where performance data is calculated and
posted, time saving would be more noticeable.
However, if an automated tool is poorly designed, it

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

 Mohd Hairul Nizam Md Nasir, Azah Anir Norman,
Noor Hafizah Hassan

ISSN: 1790-0832 1072 Issue 6, Volume 5, June 2008

can lead to a waste of time and effort in using it, as
compared to doing the PSP manually. This section
looks at how the automated tool can be improved by
incorporating the properties mentioned below.

4.1 Towards Minimizing Data Collection
and Analysis
An automated tool should reduce the overhead of
software engineers’ improvement by automating as
much data collection processes and analysis
calculations and conversions as possible. If
engineers do not use automated tools, this means
they need to do a lot of paperwork.

Although PSP requires software engineers to fill-
in hundreds of data fields, in actuality, the PSP data
consists of two types; primary data and secondary
data. Size, time and defects data are considered as
primary data. This type of data is independent and
cannot be derived from any calculations or analysis
against prior data; the only way to obtain this data is
through the collection process. The PSP automated
tool should be able to do as much collection of
primary data as possible and this can be done by
providing electronic data forms which can be easily
accessed on demand. Besides that, whenever
possible, the tool should also be able to collect data
automatically such as timestamp data, so that users
are less likely to record these data, thus avoid
having incomplete and inaccurate data of their work.
For example, users should not have to fill-in time
log entry fields but instead, the users have the power
to override or correct any of this automatically
collected data. In this case, no stopwatch is needed.
This way, timing data can be made accurate to the
second. All these personal measures should be
stored conveniently for later analysis.

Secondary data, on the other hand, refers to data
that are derived from primary data. Secondary data,
such as defect removal efficiency and to-date
percentage, are dependent on and are derived from
prior project data and these data are also known as
“carry-forward values”. Some secondary data are
also derived from performing mathematical
calculations and analysis. Besides, there are larger
amounts of secondary data compared to primary
data with an average ratio of 4.20 as illustrated in
Table 2. The PSP tool should be able to
automatically calculate secondary data, and display
and insert them into the electronic PSP forms. At
this point, if the calculation and analysis processes
are done automatically, the time spent in both
processes can be minimized, thus reducing the
analysis overhead. The core function or requirement
of the PSP automated tool is the ability to reliably

automate all of the PSP calculations. In addition, the
tool should also be capable of performing inter-
project management by calculating and displaying
all “carry-forward values” from a prior project to the
current one. As shown in Table 2 in Appendix B
and Figure 3, if software engineers using an
automated tool to support their data collection and
analysis, the total times spent will reduced by a
factor of 3.31,4.24,4.50,4.85,5.15,6.40 and 7.97 for
PSP level 0,0.1,1,1.1,2,2.1 and 3.0 respectively.
Obviously, it shows a great improvement in terms of
time usage.

Naturally, human beings will make mistakes in
any practice especially when there are a lot of
pressures in doing their work. Therefore, one of the
possible solutions to minimize data errors is by
employing improved automated tool. Automating
much of the data entry, analysis and transfer will
reduce the opportunity to make mistakes. This
improved automated tool will capture and analyze
the significant errors as presented in more detailed
in Disney et al. [2] thesis on the subject of data
quality in PSP. It will also attempt to eliminate
many of the data errors that Disney found. Also,
data consistency is ensured, whereby engineers do
not have to copy the data by hand. Consider a
scenario when changes to one's personal process
would require changes to the forms. The forms are
stored electronically and printed out as needed. If
the forms would have to be changed, changes are
made and then, they are saved to disk. However, a
correction applied across a project can take time,
forcing the recalculation of many fields. The
scenario above is also an example of what is meant
by automated analysis supported by this tool.

Manual versus Automated Tool

0.0

50.0

100.0

150.0

200.0

250.0

300.0

PSP
0

PSP
0.1

PSP
1

PSP
1.1

PSP
2

PSP
2.1

PSP
3

Process Level

To
ta

l T
im

es
 (m

in
s)

Total Times
Using Manual
(mins.)

Improved Total
Times Using
Automated Tool
(mins.)

Fig. 3: Comparison of Total Times between
Manual and Automated Tool Support

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

 Mohd Hairul Nizam Md Nasir, Azah Anir Norman,
Noor Hafizah Hassan

ISSN: 1790-0832 1073 Issue 6, Volume 5, June 2008

4.2 High in Flexibility
‘A phase is defined as a structured task of the
software process’ [5]. ‘A process consists of several
phases with each phase having a unique name. The
PSP phases are structured in an order that is natural
in the development process. However, the tool
should be structured such that the user can run in
any phase he feels comfortable with’ [14].

The freezing of process definition problem can
be solved if software engineers have full control in
determining their own development process. The
automated PSP tool should allow for phase
customization, in which it allows software engineers
to define their own development process and to
follow it. In addition, the tool should not enforce a
specific development process model on software
engineers, like the PSP does. It should offer the
software engineers full control and the ability to
utilize their own creativity in order to determine
their own way of working. If software engineers do
not desire to have a plan phase or to follow a
sequence like the PSP waterfall model in their
software development project, the tool should
support this desire. Software engineers should have
the privilege to define and customize their own
defined process, with the PSP tool continuously
supporting data collection and analysis, based on
their process definition model. In addition, the tool
should allow software engineers to incorporate other
non-programming activities such as system
maintenance, report writing, or documenting with
the PSP. However, if the engineers desire to employ
similar process as the PSP waterfall model, they
may still do so. The aim is to provide an alternative
in order to achieve flexibility through user
customization.

 Figure 4 illustrates the flow chart of the
proposed automated PSP tool. To secure process
data, the tool requires a valid personal password that
is associated with a username for each user to access
the data. Since each user is unique, each user’s data
can be distinguished. For flexibility, users can either
use standard PSP or use their own process
definition. In addition, the users are able to create
and customize new process definitions. It also
allows users to add new sub-processes in their
process definition. The new process definition is
then saved in the personal database once the users
have completed the process. The tool will then
generate the PSP forms and documents, and
continuously support data collection and analysis
based on the users’ process definition model.

Fig. 4: Flow Chart for Process Definition
Customization

5 Conclusions
This paper highlights on the need of a software tool
support for a personal software process. The basic
notions and concepts were extracted from the
Software Engineering Institute, which introduced
Personal Software Process (PSP) concept and
Capability Maturity Model (CMM) [14].

Although the philosophies and disciplines
associated with software engineering at an
individual level have found an expression through
the PSP, it was apparent from findings that there
should be a fully automated tool to support this
manual framework. In this context, fully automated
means that the tool automates the entire process and
level of the PSP including collecting and analyzing
data, managing personal measures, and guaranteeing
data integrity and consistency along with providing
access to the PSP forms. The core requirements of
the PSP automated tool are to facilitate the
collection of personal measures as a complement to
the development process, to put forward the data
collected for analysis, and to provide software
engineers with important process feedbacks and
reports.

Thus two features have been proposed that the
automated tool should have. Firstly, as the core
function, the automated tools must reliably support
data collection, and computation and analysis of
measures which will lead to an increase in the
adoption of personal software process improvement.
Primary data can be collected using electronic forms
provided by the tool and some inserted

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

 Mohd Hairul Nizam Md Nasir, Azah Anir Norman,
Noor Hafizah Hassan

ISSN: 1790-0832 1074 Issue 6, Volume 5, June 2008

automatically, while secondary data can be
automatically computed. Duplicate data need only
be entered once, and will automatically be displayed
on the PSP forms when needed. This can reduce
overhead and time spent during the recording and
analysis stage.

Secondly, as an addition to the PSP tool being
fully automated, flexibility in process definition
should also be taken into consideration. The
automated tool should give the user flexibility in
process definition. To achieve this, the tool must
allow software engineers to define their own
development process and follow it. The automated
tool should not enforce a specific development
process model on the engineers. Nevertheless, if the
software engineers want to employ existing process
models such as the PSP waterfall model, they may
do so. Regardless, the software engineers should be
able to define and customize their own processes,
with the tool continuously supporting data collection
and analysis based upon the defined processes.

The benefits of employing the improvement
process should outweigh its costs. A software
engineer should be able to see the reimbursement of
his improvement efforts as soon as possible after
using the PSP automated tool. However, the notion
and the principles behind the PSP must be first
understood; the tool is just a way of providing a
more convenient working environment for software
engineers.

References:
[1] Deming, W.E., Out of Crisis, MIT Center for

Advanced Engineering Study. Cambridge,
MA.1982

[2] Disney, A. and Johnson, P., Investigating Data
Quality Problems in the PSP. Proceedings of
the ACM SIGSOFT Sixth International
Symposium on the Foundations of Software
Engineering, Vol. 12, No.6.1998, pp.143-152.

[3] Disney, A. M. Data Quality Problems in the
Personal Software Process. M.Sc. Thesis,
University of Hawaii. 1998.

[4] Hayes, W. and Over, J.W. The Personal
Software Process: An Empirical Study on the
Impact of PSP on Individual
Engineers, Technical Report CMU/SEI-97-TR-
001. Software Engineering Institute.
Pittsburgh, PA: Carnegie Mellon University.
1998.

[5] Humphrey, W. S., A Discipline for Software
Engineering. Reading, MA: Addison-Wesley,
1995.

[6] Humphrey, W. S., The Personal Process in
Software Engineering, Proceedings of the

Third International Conference on the
Software Process, Reston, VA, pp. 69-77.

[7] Humphrey, W. S., Using a Defined and
Measured Personal Software Process, IEEE
Software. Vol. 13, No. 5, 1996, pp. 77-88.

[8] Humphrey, W. S. Introduction to the Team
Software Process. Reading, MA: Addison-
Wesley, 2000.

[9] Juran, J. M., Gryna, F. M., Juran’s Quality
Control Handbook, Fourth ed. New York,
New York: McGraw-Hill Book Company,
1998.

[10] Leveson, N.G. and Turner, C.S. An
Investigation of the Therac-25 Accidents,
IEEE Computer, 1993.

[11] Paulk, M. C., The Evolution of SEI's
Capability Maturity Model for Software.
Software Engineering Institute, CMM
Evolution. 1994.

[12] Paulk, M.C., Chrissis, B.M. and Weber,
C., Capability Maturity Model for Software
Version 1.1., Technical Report CMU/SEI-93-
TR-24. Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University. 1993.

[13] Shostak, B. Adapting the Personal Software
Process to industry Software Process
Newsletter #5. 1996.

[14] Software Engineering Institute (1998). Why
Use the PSP – Overview. Pittsburgh, PA:
Carnegie Mellon University. URL :
http://www.sei.cmu.edu/activities/psp/WhyPS
P.htm

[15] Swartz, A.J., Airport 95: Automated baggage
system? , ACM Software Engineering Notes,
Vol. 21, No. 2, pp. 79-83, 1996.

[16] Webb, D. and Humphrey, W., Using the TSP
on the Task View Project, Crosstalk 12. 1999.

[17] Zahran, S., Software Process Improvement:
Practical Guidelines for Business Success.
Reading, Addison-Wesley Professional 1997.

[18] Lin, L., Lee H.M., Lee S.Y., Lee, T.Y. Fuzzy
Evaluation for the Rate of Aggregative Risk in
Software Development, Proceedings of the 6th
WSEAS International Conference on Applied
Computer Science. 2007. pp.43-47.

[19] Siyal, M.Y., A Novel Framework for Business
to Consumer E-Commerce.2nd WSEAS
International Conference on E-Activities.
2003.

[20] Fernandes, S.M., ,Belix J. E., Melnikoff,
S.S.,Spina, E., Confronting Antagonistic
Views of Software Design, 4th WSEAS
International Conference on Applied
Mathematics and Computer Science. 2003. pp.
223-227.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

 Mohd Hairul Nizam Md Nasir, Azah Anir Norman,
Noor Hafizah Hassan

ISSN: 1790-0832 1075 Issue 6, Volume 5, June 2008

http://www.sei.cmu.edu/activities/psp/WhyPSP.htm
http://www.sei.cmu.edu/activities/psp/WhyPSP.htm

APPENDIX A

Table 1: Number of Fields for Each PSP Level

* Header including Name, Date, Program, Program Number, Instructor and Language field in
 each of PSP form
** Log Form including Time Recording Log, Defect Recording Log and Issue Tracking Log
 forms
*** Summary including Project Plan Summary and Cycle Summary forms
**** PIP is known as Personal Improvement Proposal form
***** Templates including Test Report, Task Planning, Schedule Planning, Operational Scenario, Functional

Specification, State Specification and Logic Specification,
******Checklist including Code Review Checklist and Design Review Checklist forms

APPENDIX B

Table 2: Number of Fields for Primary and Secondary

Approximate Fields
Process
Level

*
Header

**
Log
Form

Summary

PIP

Templates

Checklist

Total
Fields

Total
Time
(minutes)

PSP0 14 12 60 0 0 0 86 21.5
PSP0.1 23 12 79 13 0 0 127 31.8
PSP1.0 52 12 89 13 145 0 311 77.8
PSP1.1 76 12 100 13 145 116 462 115.5
PSP2.0 88 12 170 13 145 147 515 128.8
PSP2.1 140 24 197 13 247 147 768 192.0
PSP3.0 198 50 460 13 247 147 1115 278.8
Total 3384

Secondary Data
Approx. Fields

Process
Level

Primary
Data
Approx.
Fields

Derived
From
Calculatio
n

Carry
Forward
Values

Ratio
Secondary
Per
Primary

Total
Times
Using
Manual
(minutes)

Improved Total
Times
Using
Automated Tool
(minutes)

Improved
Factor
(Times)

PSP 0.0 26 60 0 2.31 21.5 6.5 3.31
PSP 0.1 30 80 17 3.23 31.8 7.5 4.24
PSP 1.0 69 172 70 3.51 77.8 17.3 4.50
PSP 1.1 95 247 120 3.86 115.5 23.8 4.85
PSP 2.0 100 277 138 4.15 128.8 25.0 5.15
PSP 2.1 120 345 304 5.41 192.0 30.0 6.40
PSP 3.0 140 437 538 6.96 278.8 35.0 7.97
Average Ratio Secondary/Primary 4.20

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

 Mohd Hairul Nizam Md Nasir, Azah Anir Norman,
Noor Hafizah Hassan

ISSN: 1790-0832 1076 Issue 6, Volume 5, June 2008

	

