
Context-Dependent Extensible Syntax-Oriented Verifier
with Recursive Verification

Nhor Sok Lang
University of Tokushima

Course of Info Sci. & Intel. Syst.
Tokushima

JAPAN
soklang@is.tokushima-u.ac.jp

Takao Shimomura
University of Tokushima

Dept. of Info Sci. & Intel. Syst.
Tokushima

JAPAN
simomura@is.tokushima-u.ac.jp

Quan Liang Chen
University of Tokushima

Course of Info Sci. & Intel. Syst.
Tokushima

JAPAN
quan@is.tokushima-u.ac.jp

Kenji Ikeda
University of Tokushima

Dept. of Info Sci. & Intel. Syst.
Tokushima

JAPAN
ikeda@is.tokushima-u.ac.jp

Abstract: In order to develop Web applications of high quality, it is important to apply efficient frameworks to
standardize the process of development in projects, or apply useful design patterns to produce the program code that
can easily be enhanced. However, it is not enough. In addition to these efforts, we have to check the programs to
see whether they keep various kinds of rules such as verification items for security which are common for all kinds
of Web applications, and verification items for coding styles or code conventions which are pertain to each project.
This paper proposes a verification method for the syntax-oriented verifier, and describes the implementation of
its prototype system, SyntaxVerifier. SyntaxVerifier makes it possible to detect syntactical objects based on their
syntactic contexts. It realizes a recursive verification which makes it easy to dynamically trace a syntax tree in a
verification process itself.

Key–Words: Customaizable, Extensible, Recursive, Syntax analysis, Verification

1 Introduction

In order to develop Web applications of high quality,
it is important to apply efficient frameworks to stan-
dardize the process of development in projects [1],
[2], [3], [4], or apply useful design patterns to pro-
duce the program code that can easily be enhanced
[5]. However, it is not enough. In addition to these
efforts, we have to check the programs to see whether
they keep various kinds of rules such as verification
items for security which are common for all kinds of
Web applications [6], [7], [8], and verification items
for coding styles or code conventions which are per-
tain to each project [9]. Tools that assist these kinds
of verification are often incorporated into a part of in-
tegrated development environments [10]. However, in
most of the existing tools [11], [12], [13], their ver-
ification items are determined in advance, or even if
verification items can be added, they only permit ad-
dition of the conditions of a part of program code to
be verified. Moreover, it is difficult to add verification

items that check a sequence of program code that ap-
pear at multiple locations of the programs. Web appli-
cation programs consist of servlets, Java classes, JSP,
HTML, JavaScript, and others. The authors developed
a pattern-oriented verifier [14] to make it easy to ver-
ify JSP pages containing HTML, Java, and JavaScript
code. On the other hand, servlets and Java classes are
programs written in Java language. Verifying these
programs only by using patterns has its limitations.
To supplement the previous verifier and incorporate
it, we have developed a new verifier which is syntax-
oriented. This paper proposes a verification method
for the syntax-oriented verifier, and describes the im-
plementation of its prototype system, SyntaxVerifier.
SyntaxVerifier makes it possible to detect syntactical
objects based on their syntactic contexts. It realizes a
recursive verification which makes it easy to dynami-
cally trace a syntax tree in a verification process itself.

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE & APPLICATIONS

Nhor Sok Lang, Takao Shimomura, Quan Liang Chen, Kenji Ikeda

ISSN: 1790-0832 44 Issue 2, Volume 5, February 2008



2 Verification method

2.1 Definition of verification items

2.1.1 Verification conditions

What items should be verified depends on program-
ming languages, applications, and projects. As for
verification items related to program syntax, for exam-
ple, there are some such as (1) Variable names should
start with lowercase letters; (2) Comparative opera-
tors such as �� and � should be replaced with ��
and �, respectively [9]; or (3) The number of meth-
ods included in a class should not exceed 30 [15].
When a source program is syntactically analyzed, an
abstract syntax tree will be obtained. The abstract
syntax tree is a tree consisting of non-terminal sym-
bols (such as methodDef and if) and terminal symbols
(such as Identifier and Literal). Syntax-oriented veri-
fication is made by traversing this abstract syntax tree.
In the SyntaxVerifer, instead of a node of the syntax
tree, the following verification condition is specified
as a target object to be verified in the abstract syntax
tree.

node node ... Terminal Terminal ... [with] Modi-
fiers(modifier modifier ...)

Node is a non-terminal symbol in the abstract syn-
tax tree, and Terminal is a terminal symbol. This ver-
ification condition makes it possible to verify termi-
nal symbols in a specific context. For example, if
“if cond Binary” is specified as a verification condi-
tion, only binary operators in the conditional parts of
if statements can be verified. Verification condition
“methodDef varDef Identifier” lets local variables in
method definitions be target objects to be verified. A
terminal symbol is specified as Terminal or Termi-
nal(value). Terminal(value) lets a terminal symbol
that has a specific value be a target object. For exam-
ple, “Binary(GT) Binary(GE)” lets binary operators�
and �� be target objects. “Modifiers(modifier mod-
ifier ...)” specifies the modifiers (such as private and
static) that are attached to the terminal symbols. This
lets only the terminal symbols that have those modi-
fiers be target objects. For example, “Modifiers(static
private)” allows only private and static variables or
methods to be verified.

2.1.2 Verification items

After a target symbol is detected from a program,
whether it is appropriately written will be judged.
This judgment is made by a verifier class. The ver-
ifier class judges whether the detected symbol is ap-
propriately written in the program. Verification items
are defined in verification-item definition files. Figure

Lowercase Variable Name

LowercaseVariableName

varDef Identifier

package ver;

import javacProcess.ver.*;

public class LowercaseVariableName extends Verifier {

    public void verify(String terminalSymbol, 

    String verifiedText, String[] modifiers, int lineNo, 

    int columnNo) throws Exception {

        addMessage(verifiedText + " (Line " + lineNo + 

        ", Column " + columnNo + ")");

        for (int i = 0; i < modifiers.length; i++) {

            if (modifiers[i].equals("final")) {

                return;

            }

        }

        char c = verifiedText.charAt(0);

        if (!Character.isLowerCase(c)) {

            addProblem();

        }

    }

}

(a) Definition of verification item

(b) Verification class

Figure 1: Definition of a verification item

1 (a) shows a verification-item definition file for vari-
able name verification. It contains a verification-item
name, a verifier class name, and a verification con-
dition. Because the verification condition is “varDef
Identifier”, all variable names in the program will be
verified. When a variable is detected in a variable def-
inition of the program, it will be passed to Lowerca-
seVariableName verifier class to be verified.

2.2 Verification Processes

2.2.1 A flow of verification processes

The system syntactically analyzes a program, obtains
an abstract syntax tree, detects target symbols, which
are specified as a verification condition, and then in-
vokes a verifier class. Figure 2 illustrate a flow of
these verification processes. (1) The SyntaxVerifier
system reads all verification-item definition files *.ver
in the conf/ directory, and builds the menu items of
the “Verifiers” menu. (2) When a user reads a source
program and (3) they choose one of the menu items of
the “Verifiers” menu, the system will display a verifier
window that corresponds to the chosen verification
item. (4) The system starts a Java compile. (5) The
Java compiler reads again the verification-item defi-
nition file that corresponds to the chosen verification
item, and loads the corresponding verifier class. (6) It
analyzes the source program to obtain an abstract syn-
tax tree, and then by traversing the tree in preorder,
invokes the verifier’s verify() method to pass detected
symbols. (7) The abstract class Verifier, which is a
parent class of the verifier, outputs verification results
into files. (8) The SyntaxVerifier system reads these
verification results from the files, and then displays

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE & APPLICATIONS

Nhor Sok Lang, Takao Shimomura, Quan Liang Chen, Kenji Ikeda

ISSN: 1790-0832 45 Issue 2, Volume 5, February 2008



Syntax-Oriented Verifier

Syntax-Oriented Verifier Process Javac Process

Verifier Window

Source File Va.ver Va.class

Javac compiler

Verifier

Syntax tree

verify()

Va.detected

Va.message

Figure 2: Verification method

them in the verifier window.

2.2.2 Detection of target objects to be verified

While the Java compiler is traversing the abstract syn-
tax tree, if it detects a target symbols, it will invoke
the verifier’s verify() method. To traverse the abstract
syntax tree, the visitor design pattern [5] is used. In
this system, a class named AST is defined to tra-
verse child nodes for each node in the abstract syn-
tax tree. AST class provides visitNode(node) method
for each node type. This visitNode(node) method in-
vokes child.accept(this) for a child node of the node.
After an instance ast of AST class is created, when
node.accept(ast) is invoked for a node in the ab-
stract syntax tree, ast.visitNode(node) will be invoked.
Therefore, when topLevel.accept(ast) is invoked for
the top level node of the abstract syntax tree, all nodes
of the tree can be traversed in turn.

topLevel.accept(ast)—
�ast.visitTopLevel(topLevel)—�....—
�child.accept(ast)—�ast.visitChild(child)—�....

Figure 3 (a) shows an example of traced nodes,
which are obtained when a program is analyzed. Fig-
ure 3 (b) shows the lists of non-terminal symbols and
terminal symbols contained in the abstract syntax tree.

To detect target symbols that satisfy a verifica-
tion condition while traversing an abstract syntax tree,
the system uses two stacks, syntaxStack and verify-
ingStack. For a current node in the abstract syntax
tree, syntaxStack records its ancestor nodes. When
a sequence of nodes (such as “if cond binary”) that
matches the verification condition is found in syn-
taxStack, verifyingStack will records the location of
the sequence. When verifyingStack is not empty, if
the system detects a target symbol that meets the ver-

(a) Syntactic trace of a source program 

(b) Syntactic and terminal symbols 

Figure 3: Syntax analysis of a source program

ification condition, it will invoke the verifier’s ver-
ify() method. In fact, this invocation of verifiers also
makes use of the visitor pattern [5]. If verifyingStack
is not empty, whenever the system visits a node in the
abstract syntax tree, it will invoke the target symbol
classes. These target symbol classes will invoke the
verifier’s verify() method only when they receive a
node that corresponds to their symbol types (See Fig.
13).

2.2.3 Verifier classes

When a target symbol is found, a verifier’s verify()
method is invoked. The following parameters are
passed to the verify() method as shown in Fig. 1 (b).

1. a detected symbol

2. the value of the detected symbol

3. a list of modifiers attached to the symbol

4. the location (line and column numbers) of the
symbol in the source program

The verifier class extends abstract class Verifier.
A variety of methods Verifier provides can be used in
the verifier class for verification. Table 1 shows an
example of these methods. In addition, each node of
the abstract syntax tree contains a lot of information
(such as a name, a value, a line number, and a column
number). The verifier class can use the methods these
nodes provide to verify the detected symbols in more
detail.

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE & APPLICATIONS

Nhor Sok Lang, Takao Shimomura, Quan Liang Chen, Kenji Ikeda

ISSN: 1790-0832 46 Issue 2, Volume 5, February 2008



Methods Functions
int numOfNodesInStack() Return the number of nodes in the stack
String getSymbolName(int n) Return the name of the n’th node in the stack
String[] getModifiers(int n) Return the modifiers of the n’th node in the stack
void addProblem() Mark this node as a problem
void addMessage(String message) Add a message to be displayed in the Verifier main window
boolean analyze(String verification, Perform recursive verification by specifying
String className) a verification definition and its verifier class
Tree getNode(int n) Return the n’th node in the stack

Table 1: Example of verification methods

The verifier, which is shown in Fig. 1 (b), checks
whether a variable name starts with a lowercase let-
ter. By using addMessage() method, it adds a mes-
sage that consists of the name of a detected variable,
a line number and a column number to the buffer of
the Verifier. This message will be shown in the Syn-
taxVerifier main window when the “Verify” button is
clicked in the variable name verifier window (See Fig.
6). Then, if modifier “final” is not attached to the vari-
able and its name does not start with a lowercase let-
ter, the verifier will invoke addProblem() method to
inform Verifier that this variable has a problem. These
problematic variables will be marked as problems in
the source text of the variable name verifier window
(See Fig. 6).

3 SyntaxVerifier

3.1 SyntaxVerifier windows

3.1.1 Window configuration

As shown in Fig. 4, the SyntaxVerifier system dis-
plays a verifier window for each verifier to show its
verification results. When the source text is modified
in one verifier window, this modification will be im-
mediately reflected in the other verifier windows.

This system provides Standard Verifier and Total
Verifier as predefined verifiers. In the Standard Ver-
ifier, programmers can enter a verification condition
and see the verification results right away. When we
construct a customized verifier class, we can also use
this Standard Verifier to see whether its verification
condition is valid or not in advance. Total Verifier
shows the verification results of all the verifiers that
are registered in the SyntaxVerifier system at a time.
The displayed results may be complicated because the
verification results of multiple verification items are
displayed at a time. However, it is convenient when
we check whether the verification of all verification

Verifier
Main

Lowercase
Variable

Greater
operator

Update
Static

Total
Verifier

Standard
Verifier

Customized

Verifiers

Predefined

Verifiers

Figure 4: SyntaxVerifier windows

items is completed or not after we finish checking a
series of verification items.

3.1.2 Verification result display

A verifier window shows the source text to display
verification results on it. As a result of verification,
the parts of code that have been judged inappropriate
will be marked as problems (See Fig. 6). To imple-
ment this function, the abstract class Verifier, which is
a parent class of each verifier class, outputs the verifi-
cation results into files as shown in Fig. 5 and Fig. 2.
Figure 5 (a) shows the contents of a *.detected file that
records the locations at which problems exist. It con-
sists of a line number, a column number, a judgment,
and the value of a detected symbol. The line number
and the column number identify the location of a de-
tected symbol. If a detect symbol has no problem, it
will be marked light green in the source text of the ver-
ifier window. If a detect symbol has a problem, it will
be marked light pink. The value of a detected symbol
(such as “NumOfStudents”) will be used to show it in
the “Target” field of the verifier window (See Fig. 6).

Figure 5 (b) shows the contents of a *.message
file that records the messages a verifier class added by

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE & APPLICATIONS

Nhor Sok Lang, Takao Shimomura, Quan Liang Chen, Kenji Ikeda

ISSN: 1790-0832 47 Issue 2, Volume 5, February 2008



2 28 - NumOfCountries

4 22 NG NumOfStudents

5 22 - num

6 27 - isOK

7 23 - numOfVacantSeats

10 12 NG Big

15 16 NG Large

20 37 - args

(a) lowercaseVariableName.detected

(b) lowercaseVariableName.message

1 34

NumOfCountries (Line 3, Column 29)

2 33

NumOfStudents (Line 5, Column 23)

3 23

num (Line 6, Column 23)

4 24

isOK (Line 7, Column 28)

5 36

numOfVacantSeats (Line 8, Column 24)

6 24

Big (Line 11, Column 13)

7 26

Large (Line 16, Column 17)

8 25

args (Line 21, Column 38)

Figure 5: Display method of Verification results

invoking the addMessage() method. This file records
index, length and a message itself. Index indicates that
this message is related to the index-th detected sym-
bol in the abstract syntax tree. Length indicates the
length of the following message. Indexes will be used
for merging multiple *.message files when a recursive
verification is performed (See Fig. 8).

3.2 Examples of verification

3.2.1 Lowercase variable verifier

An example of verification, where it is verified
whether a variable name starts with a lowercase letter,
is described below. We first create a verification-item
definition file “LowercaseVariableName.ver” shown
in Fig. 1 (a). The verification-item name is “Low-
ercase Variable Name”. This name will be registered
as a menu item of the “Verifiers” menu in the Syn-
taxVerifier main window. The verifier class name is
“LowercaseVariableName”. As a verification condi-
tion, “verDef Identifier” is specified. This makes the
system detect variable names, which are identifiers in
the variable definitions of the program.

Next, we create LowercaseVariableName verifier
class. Figure 1 (b) shows the source program of this
class. While the abstract syntax tree is being tra-
versed, every time a variable name is found in a vari-
able definition, the verify() method of the verifier class
will be invoked. If modifier “final” is not attached to
the detected variable and its name does not start with
a lowercase letter, this verifier class will invoke the
addProblem() method to inform Verifier that this vari-

Lowercase variable name verifier window

Verifier output in the main window

Figure 6: Lowercase variable verifier window

able has a problem.
Figure 6 shows a verifier window for this variable

name verification. Variables that start with uppercase
letters are marked light pink while variables that start
with lowercase letters are marked light green. When
the “Next” button is clicked, only the variables that
start with uppercase letters can be traversed. When
the “Verify” button is clicked, some messages will be
shown in the SyntaxVerifier main window, which have
been added by the addMessage() method invocation of
the verifier class.

3.2.2 Standard verifier

Figure 7 shows some examples of verification per-
formed by the Standard Verifier, which is a system-
predefined verifier. In Fig. 7 (a), “topLevel Identifier”
is entered as a verification condition. When the “De-
tect” button is clicked, all identifiers of the program
will be detected. In Fig. 7 (b), “varDef Identifier” is
entered as a verification condition. Only the identifiers
included in variable definitions are detected.

4 Recursive verification

4.1 A flow of recursive verification

Let’s consider a little more complicated verification,
where the abstract syntax tree needs to be traversed
twice. For private static variables, we here verify
whether their updates will be made synchronously

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE & APPLICATIONS

Nhor Sok Lang, Takao Shimomura, Quan Liang Chen, Kenji Ikeda

ISSN: 1790-0832 48 Issue 2, Volume 5, February 2008



(a) Detection of all identifiers

(b) Detection of identifiers in variable definitions

Figure 7: Example of Standard verifiers

when they are updated inside instance methods. (1)
First, we need to detect all private static variables in a
program. (2) Then, for each of these variables, if it is
updated inside an instance method, we need to verify
whether the update is made by a synchronized method
or inside a synchronized statement.

We can detect those variables with a verification
condition “varDef Identifier with Modifiers(private
static)”. To find where these variables are updated
in the program and check whether they are updated
synchronously, a verifier class might be able to tra-
verse the abstract syntax tree by itself. However, this
way of verification will make the size of the verifier
class larger, and make its processes more complicated.
Therefore, this system has made it possible to dynam-
ically perform the second verification inside the first
verifier class. The first verifier class can perform a re-
cursive verification by invoking the analyze() method
with a new verification condition and a new verifier
class (See Table 1).

Figure 8 illustrates a flow of the recursive verifi-
cation. This figure follows Fig. 2. (7) When a ver-
ify() method invokes an analyze() method in a veri-
fier class, the Java compiler is started. (8) It reads the
verification-item definition file for a new verification
item, and then loads a new verifier class. (9) It ana-
lyzes the source program to obtain an abstract syntax
tree, and then by traversing the tree in preorder, in-
vokes the verifier’s verify() method to pass detected
symbols. (10) The abstract class Verifier, which is a
parent class of the verifier, outputs verification results
into files.

In this recursive verification, a verifier class at
each level outputs its verification results into files.
Verifier class Va at level 0 invokes a verifier class
at level 1 each time a target symbol is detected, and
finally, outputs its verification results, which are a
Va.detected file and a Va.message file. If the verifier
class at level 1 is invoked when the index-th symbol is
detected in the verifier class at level 0, it will output a
Va.index.detected file and a Va.index.message file.

The SyntaxVerifier system merges all of these
files (Va.*.detected and Va.*.message) to show the
verification results in the verifier window at level
0. Va.*.detected files will be sorted in the order of
line and column numbers. Va.*.message files will be
merged so that the messages will construct a hierar-
chical structure with respect to their levels and in-
dexes. For example, let the contents of Va.message,
Va.1.message and Va.2.message files be as follows:

Va.message
1 length1
message1
2 length2
message2
Va.1.message
3 length3
message1.3
Va.2.message
4 length4
message2.4

If these Va.*.message files are merged, the result
will be as follows:

message1
�TAB�message1.3
message2
�TAB�message2.4

4.2 An example of recursive verification

Figure 9 shows a verification item for detecting pri-
vate static variables. Private static variables can be de-
tected with a verification condition “varDef Identifier
with Modifiers(private static)” (See Fig. 9 (a)). For
each detected private static variable verifiedText, ver-
ifier class UpdatePrivateStatic specifies a new verifi-
cation condition “methodDef Identifier(verifiedText)”
and a new verifier class SynchronizedUpdate, and
then invokes analyze() method to ask a new verifier to
perform a recursive verification (See Fig. 9 (b)). If de-
tected private static variables verifiedText are referred

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE & APPLICATIONS

Nhor Sok Lang, Takao Shimomura, Quan Liang Chen, Kenji Ikeda

ISSN: 1790-0832 49 Issue 2, Volume 5, February 2008



Javac Process Javac Process

analyze()

Va.class

Javac compiler

Verifier

Syntax tree

verify()

Va.detected

Va.message

Vb.class

Javac compiler

Verifier

Syntax tree

verify()

Va.n.detected

Va.n.message

Figure 8: Recursive verification method

package ver;

import javacProcess.ver.*;

public class UpdatePrivateStatic extends Verifier {

    public void verify(String terminalSymbol, 

    String verifiedText, String[] modifiers,

    int lineNo, int columnNo) throws Exception {

        String verification = 

        "methodDef Identifier(" + verifiedText + ")";

        String fullClassName = "ver.SynchronizedUpdate";

        boolean isProblem = 

        analyze(verification, fullClassName);

        if (isProblem) {

            addProblem();

        }

    }

}

Update private static variables

UpdatePrivateStatic

varDef Identifier with Modifiers(private static)

(a) Definition for UpdatePrivateStatic

(b) UpdatePrivateStatic class

Figure 9: Verifier class definition 1 for recursive veri-
fication

to in method definitions, the new verifier class Syn-
chronizedUpdate will further verify them. If a vari-
able is judged to be inappropriate in the recursive ver-
ification, verifier class UpdatePrivateStatic will finally
judge it to be wrong.

Figure 10 shows the verifier class Synchro-
nizedUpdate that verifies whether a detected variable
will be updated by a synchronized method or inside
a synchronized statement if it is updated inside an in-
stance method. This verifier checks nodes contained
in the syntaxStack in turn to judge whether the de-
tected variable is updated, whether it is included in
a synchronized statement, whether it is included in a
synchronized method definition, or whether it is in-
cluded in a static method definition.

Figure 11 shows an example of this recursive ver-
ification. Variables isOK and numOfVacantSeats have

package ver;

import javacProcess.ver.*;

public class SynchronizedUpdate extends Verifier {

    public void verify(String terminalSymbol, 

    String verifiedText, String[] modifiers,

    int lineNo, int columnNo) throws Exception {

        boolean isUpdated = false;

        boolean synchronizedStatement = false;

        boolean synchronizedMethod = false;

        boolean instanceMethod = true;

        int numOfNodesInStack = numOfNodesInStack();

        for (int level = 0; level < numOfNodesInStack; 

        level++) {

String symbolName = getSymbolName(level);

if (symbolName.equals("unary") || 

symbolName.equals("lhs")) {

    isUpdated = true;   

} else if (symbolName.equals("synchronized")) {

    synchronizedStatement = true;

} else if (symbolName.equals("methodDef")) {

    String[] methodDefModifiers = getModifiers(level);

    for (int i = 0; i < methodDefModifiers.length; i++) {

        if (methodDefModifiers[i].equals("synchronized")) {

            synchronizedMethod = true;

        } else if (methodDefModifiers[i].equals("static")) {

            instanceMethod = false;

        } 

    }

}

        }

        if (isUpdated && instanceMethod && 

        !(synchronizedStatement || synchronizedMethod)) {

            addProblem();

        }

    }

}

Figure 10: Verifier class definition 2 for recursive ver-
ification

been detected as private static variables. Although
variable isOK is detected as a private static variable, it
is marked light green because it has no problem. Vari-
able numOfVacantSeats is marked light pink because
it is against this verification item. The marking on
lines 7 and 8 in variable definitions is a result of the
verification made by UpdatePrivateStatic verifier. On
the other hand, the marking on lines 12, 17, 29 and
30 in method definitions is a result of the verification
made by SynchronizedUpdateverifier.

5 Extension of verified syntax

5.1 Extension of non-terminal symbols

An abstract syntax tree is created by the Java compiler.
Therefore, some non-terminal symbols might not be
explicitly included in the tree. The SyntaxVerifier sys-
tem has enabled any type of non-terminal symbols to
be included in the tree if they are needed for verifi-
cation. Figure 12 (a) illustrates a part of syntax tree
created by the Java compiler. This syntax tree does
not contain a node that represents the conditional part
of an if statement. Therefore, we cannot specify “if
cond Binary” as a verification condition to verify only
the binary operators included in the conditional part
of if statement. Figure 12 (c) illustrates a syntax tree
to which some non-terminal symbols have been added
for verification.

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE & APPLICATIONS

Nhor Sok Lang, Takao Shimomura, Quan Liang Chen, Kenji Ikeda

ISSN: 1790-0832 50 Issue 2, Volume 5, February 2008



Figure 11: Example of recursive verification

In the system, a process of traversing child nodes
for each node is written in a class named AST. Be-
cause the visitor pattern [5] is used for traversing an
abstract syntax tree, if child.accept(this) is invoked
for a child node of a node, all nodes in the sub-tree
with the child node as a root can be automatically tra-
versed (See Section 2.2.2). Figure 12 (b) shows a way
of adding a new non-terminal symbol cond, which
represents the conditional part of if statement. Some
code needs to be inserted in the visitIf() method that
processes if node. Immediately before traversing the
conditional part of if statement, a new cond node is
created, and startNode() method is invoked to push
the created cond node to the syntaxStack. Then, after
traversing the conditional part of if statement, stopN-
ode() method is invoked to pop up the cond node from
the stack.

5.2 Extension of terminal symbols

The SyntaxVerifier system deals with not only non-
terminal symbols but also terminal symbols as a target
symbol for verification. In the syntax tree created by
the Java compiler, however, some terminal symbols
might be attached to non-terminal symbol nodes as
auxiliary information. Therefore, some terminal sym-
bols do not appear as a node of the syntax tree. The
SyntaxVerifier system has enabled any type of termi-
nal symbols to be easily detected even if they are not
included in the syntax tree if those terminal symbols
are needed for verification.

Figure 13 illustrates a way of detecting a new ter-
minal symbol Binary, for example, which can be used
to specify such a verification condition as “if cond Bi-

assignOp

if

Literal

block

execIdentifier

LiteralIdentifier

assignOp

block

exec

LiteralIdentifier

binary

binary

assignOprhs

if

lhs

Literal

block

exec

Identifier rhslhs

LiteralIdentifier

assignOp

block

exec

rhslhs

LiteralIdentifier

cond

public void visitTopLevel(Tree.TopLevel that) {

  ........

  node.accept(this);

  ........

}
public void visitIf(Tree.If node) {

  boolean isPushedIf = startNode(If, node);

  Node.cond condNode = new Node.Cond(node.cond);

  boolean isPushed = startNode(Cond, node, true);

  node.cond.accept(this);

  stopNode(isPushed);

  node.thenpart.accept(this);

  node.elsepart.accept(this);

  stopNode(isPushedIf);

}

(a) Original syntax tree

(b) Addition of cond nodes

(c) Extended syntax tree for verification

Figure 12: Extension of non-terminal symbols

nary(GE)”. To detect a new terminal symbol, we have
only to define a new terminal symbol class that corre-
sponds to it. For example, for binary operators “Bi-
nary” such as �, ��, �, ��, &&, ��, +, - , *, / ,
%, we have only to define a “BinaryTS” class (See
Fig. 13 (a)). While an abstract syntax tree is being
traversed, if a sequence of nodes (such as “if cond”)
that matches the verification condition is found in syn-
taxStack, visitNode(node) method of BinaryTS class,
which corresponds to the target symbol (Binary(GE))
specified in the verification condition, will be invoked
for each node since then (See Fig. 13 (b)). When
an if node is visited, visitIf(ifNode) method of Bina-
ryTS class will be invoked. However, visitIf(ifNode)
method is not defined in BinaryTS class. As a result,
visitIf(ifNode) method of the abstract class Terminal-
Symbol, which is a parent of BinaryTS class, will be
invoked, and nothing will be done. When a binary
node is visited, visitBinary(binaryNode) method of
BinaryTS class will be invoked. If the value of the
Binary terminal symbol equals GE, this method will
further invoke the verify() method of the verifier (See
Fig. 13 (c)).

6 Observation

Table 2 shows some verification conditions and their
verifiers’ program sizes. Program sizes indicate the

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE & APPLICATIONS

Nhor Sok Lang, Takao Shimomura, Quan Liang Chen, Kenji Ikeda

ISSN: 1790-0832 51 Issue 2, Volume 5, February 2008



(a) Binary terminal symbol class

(c) Invacation of visitBinary() method 

if

binary

rhslhs

LiteralIdentifier

cond

public class BinaryTS extends TerminalSymbol {

  public void visitBinary(Tree.Binary node) {

    if (terminalValue.equals("") || 

    terminalValue.equals(AST.TagNames[node.tag])) {

      AST.callVerify(terminalIndex, sourceCode(node.tag), 

      modifiers, node.pos);

    }

  }

}

(b) Binary terminal symbol detection

cond Binary(GE)

node.accept(binaryTS) binaryTS.visitNode(node)

binaryNode.accept(binaryTS)

callVerify()

binaryTS.visitBinary(binaryNode)

ifNode.accept(binaryTS)

binaryTS.visitIf(ifNode)

none

Figure 13: Extension of terminal symbols

number of lines of instructions which are written in
the body of a verify() method. The fourth verification
item has two verifier classes to perform a recursive
verification. We were able to easily define these verifi-
cation classes in a small number of lines of code. The
reason we do not need to write much code for a ver-
ifier class might be because we can specify a syntac-
tic context and some modifiers as a verification con-
dition. In addition, even for more complicated veri-
fication items, we can divide those verification items
into simpler ones, and easily write verifier classes by
making use of a recursive verification.

Code Conventions [9] proposes the standard code
conventions for Java Programming. The first and third
verification items in Table 2 are examples of Code
Conventions. Some systems that verify the quality of
programs include IntelliJ IDEA [16], CheckStyle [15]
and Eclipse [10]. IntelliJ IDEA is an intelligent Java
IDE intensely focused on developer productivity that
provides a robust combination of enhanced develop-
ment tools. By using regular expressions, it searches
some pieces of target code for a source program, and
corrects the matched text by replacing it with a re-
placement string. It performs about the same verifica-
tion as the pattern-oriented verifier [14]. Checkstyle
is a development tool to help programmers write Java
code that adheres to a coding standard. It does not
have a verification-item definition file, and specifies
a target node inside a verifier class. A lot of meth-
ods are provided for verification, and verifier classes
can be easily defined. However, it cannot specify a
syntatic context on which a target node is detected in
a syntax tree. It does not have the concept of recursive
verification. Because verification results are output as
logs in Checkstyle, they are not marked on the source
text.

7 Conclusion

This paper has proposed the syntax-oriented verifier
SyntaxVerifier that makes it easy to verify the qual-
ity of programs. With the SyntaxVerifier system, we
can define a target object to be verified in an abstract
syntax tree that appears in a specific syntactic con-
text, and easily add a new verifier class that verifies
the detected target objects in detail. In addition, this
paper has proposed a recursive verification by which a
verifier class can dynamically repeat its more detailed
verification. This system starts a Java compiler each
time it performs a new verification. When the source
text is modified in one verifier window, this modifi-
cation can be also reflected in the other verifier win-
dows. However, this decreases the performance of the
system. In the future, instead of repeatedly starting
the Java compiler, we are going to enhance the system
so that it will output an abstract syntax tree to a file
and share this syntax tree with multiple verifiers. We
will also incorporate this syntax-oriented verifier into
another pattern-oriented verifier.

References:

[1] The Apache Software Foundation : Struts.
http://jakarta.apache.org/struts/, 2004.

[2] A. S. Christensen, A. Moller, and M. I.
Schwartzbach. Extending java for high-level
web service construction. ACM TOPLAS,
Vol. 25, No. 6, pp. 814–875, 2003.

[3] Takao Shimomura. Visual design and program-
ming for web applications. Journal of Visual
Languages and Computing, Vol. 16, No. 3, pp.
213–230, 6 2005.

[4] A. Leff and J.T. Rayfield. Web-application de-
velopment using the model/view/controller de-
sign pattern. In Fifth International Enterprise
Distributed Object Computing Conference, pp.
118–127, 9 2001.

[5] Steven John Metsker and William C. Wake. De-
sign Patterns in Java. Addison-Wesley, 4 2006.

[6] Takao Shimomura, Kenji Ikeda, Quan Liang
Chen, Nhor Sok Lang, and Muneo Takahashi.
Rich component generation for web applications
using custom tags. In Proc. of WSEAS Inter-
national Conference on Computer Engineering
and Applications, pp. 390–395, 1 2007.

[7] Takao Shimomura, Kenji Ikeda, Quan Liang
Chen, Nhor Sok Lang, and Takahashi Muneo.

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE & APPLICATIONS

Nhor Sok Lang, Takao Shimomura, Quan Liang Chen, Kenji Ikeda

ISSN: 1790-0832 52 Issue 2, Volume 5, February 2008



No Verification item Definition LOC Description
1 Lowercase variable varDef Identifier 7 Variable names should start with

a lowercase letter.
2 Public static variable varDef Identifier 4 Public static variables should be final.

Modifiers(public static)
3 Greater operators binary 1 Greater than and equal operators should be

Binary(GT) Binary(GE) replaced with less than and equal operators.
4 Private static variable varDef Identifier 5 Recursively verify the syntax tree with

update Modifiers(private static) detected private static variables.
methodDef 20 Update of detected variables should be
Identifier(detectedVariable) synchronized in instance methods.

Table 2: Lines of code of several verifier classes

Visual programming for web applications that
use html frame facilities. In Proc. of WSEAS In-
ternational Conference on Computer Engineer-
ing and Applications, pp. 384–389, 1 2007.

[8] Takao Shimomura, Quan Liang Chen, Nhor Sok
Lang, and Kenji Ikeda. Integrated laboratory
network management system. In Proc. of the 7th
WSEAS International Conference on Applied In-
formatics and Communications, pp. 188–193, 8
2007.

[9] Sun Microsystems, Inc. : Code Conventions.
http://java.sun.com/docs/codeconv/, 2006.

[10] The Eclipse Foundation : Eclipse.
http://www.eclipse.org/, 2006.

[11] D. Castelluccia, M. Mongiello, M. Ruta, and
R. Totaro. Waver: A model checking-based
tool to verify web application design. Elec-
tronic Notes in Theoretical Computer Science,
Vol. 157, No. 1, pp. 61–76, 5 2006.

[12] E. Di Sciascio, F.M. Donini, M. Mongiello, and
G. Piscitelli. Anweb: a system for automatic
support to web application verification. In Proc.
of SEKE, pp. 609–616, 7 2002.

[13] Marco Pistore, Marco Roveri, and Paolo
Busetta. Requirements-driven verification of
web services. Electronic Notes in Theoretical
Computer Science, Vol. 105, No. 10, pp. 95–108,
12 2004.

[14] Takao Shimomura, Kenji Ikeda, Chen Liang
Quan, Lang Sok Nhor, and Takahashi Muneo.
Customizable verifiers for web applications and
their implementation. In Proc. of WSEAS Inter-
national Conference on Computer Engineering
and Applications, pp. 396–401, 1 2007.

[15] Oliver Burn : Checkstyle.
http://checkstyle.sourceforge.net/, 2007.

[16] JetBrains : IntelliJ IDEA.
http://www.jetbrains.com/idea/, 2007.

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE & APPLICATIONS

Nhor Sok Lang, Takao Shimomura, Quan Liang Chen, Kenji Ikeda

ISSN: 1790-0832 53 Issue 2, Volume 5, February 2008


