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Abstract: - A method to generate a quintic B-spline curve which passes through given points is described.  In this 
case, there are four more equations than there are control point positions.  Two methods have been developed to 
compensate for the difference between the number of unknowns and that of the equations.  These are assuming that 
the curvatures at both ends of the curve are zero, and assigning four gradients to the given points.  In addition to 
this method, another method to generate a quintic B-spline curve which passes close to given points, and which has 
the first derivative at these given points is described.  In this case, a linear system will be underdetermined, 
determined or overdetermined depending on the number of given points with gradients.  A method to modify a 
quintic B-spline curve shape according to the specified radius of curvature distribution to realize an aesthetically 
pleasing freeform curve is described.  The difference between the B-spline curve radius of curvature and the 
specified radius of curvature is minimized by introducing the least-squares method.  Examples of curve generation 
are given. 
 
Key-Words: - B-spline curve generation, curvature vector, curve shape modification, given points, given points 
with gradients, underdetermined system, overdetermined system 
 
1   Introduction 
A NURBS curve, which is commonly used in the field 
of CAD･CAM and Computer Graphics, is used as an 
expression of a freeform curve.  In particular, cubic 
NURBS curves are widely used.  In the smoothing of 
curves, it may be desirable to interpolate second 
derivative information at the knots.  This is not 
possible with cubic splines, and so splines of higher 
degree have to be used.  For symmetric boundary 
conditions, it is more convenient to work with quintic 
splines [1].   
     In this study, radius of curvature ranging over multi 
segments of a NURBS curve is modified based on the 
specified radius of curvature.  In addition, the weights 
of the NURBS curve are set to one.  For these reasons, 
the curve used in this study is a quintic B-spline curve. 
     The objective of this study is to develop a quintic 
B-spline curve generation method using given points 
in sequence for practical use. 
     Positions and gradients are given to the B-spline 
curve equations and first derivative equations of the 
B-spline curve respectively.  Then, a B-spline curve is 
generated.  Afterwards, if necessary, the shape of this 
B-spline curve is modified according to the target 

radius of curvature that has been smoothed.  Using the 
least-squares method, the shape of the designed curve 
is modified based on the target radius of curvature 
specified. 
     There are many related works for generation of a 
curve.  There are data fitting by interpolation [2, 3], 
and data fitting with B-spline [4], and data fitting by 
principal component analysis following the statistical 
method [5-10]. 
     There are many related works for generation of a 
fair curve dealing with knots.  These are knot insertion 
[11, 12], knot removal algorithm for B-spline curves 
[13], knot removal algorithm for NURBS curves [14], 
and fair curve generation by knot value and weight 
modification [15]. 
     There are many related works for generation of fair 
curvature distribution.  Fair curvature distribution 
algorithms by modifying knot spacing [16, 17], and by 
removing and reinserting knots [18-22] have been 
published. 
     Curve generation algorithms related to curvature 
by modifying the control points have been published.  
These use a clothoidal curve for specifying the 
curvature [23], and modify the shape of the curve 
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based on the target radius of curvature specified 
[24-28].  Curve generation algorithms related to 
curvature by specifying curvature distribution have 
also been published [29]. 
     Section 2 of this paper describes a quintic B-spline 
curve, the derivatives of a quintic B-spline curve, 
curvature vector, curvature, and radius of curvature.  
Section 3 describes the generation of a quintic 
B-spline curve which passes through some given 
points in sequence and the generation of a quintic 
B-spline curve using the given points with gradients.  
In section 4, B-spline curve shape modification based 
on the specified radius of curvature is described.  
Section 5 gives the engineering examples of curve 
generation. 
 
 
2   Freeform Curve Expression 
The objective of freeform curve design is to design the 
framework of surface patches.  Surface patches are 
defined as tensor products, which are bi-variate and 
normally defined by u  and v .  In other words, one 
knot sequence in u  direction, and another knot 
sequence in v  direction are defined despite the 
complexity of the surface patches.  Therefore, knot 
spacing is fixed in this study. 
 
 
2.1 B-spline curve Expression 
An 5n −  segments ( )6n ≥  quintic B-spline curve is 
composed of n  control points such as 0 1 1, , , n−q q q  as 
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where ( ) ( ),6 0,1, , 1iN t i n= −  are B-spline basis 
functions. 
     These functions are defined by the de Boor-Cox 
[30] recursion formulas, and are recursively defined 
by knot sequence 0 1 2 3 5, , , , , nt t t t t +  as 
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where 0,1, , 4i n= +  and 2,3, ,6M = , i  corresponds 
to the knot number. 
     If the knot vector contains repeated knot values 
called multiple knots, then a division of the form 

( ) ( ), 1 1/ 0 / 0i M i M iN t t t− + − − =  (for some i ) may be 
encountered during the execution of the recursion.  
Whenever this occurs, it is assumed that 0 / 0 0=  [31]. 

     A one segment quintic B-spline curve with the knot 
vector { }5, 4, 3, 2, 1,0,1,2,3,4,5,6− − − − −  is 
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     The first derivative of a quintic B-spline curve 
shown in Eq.(3) is expressed as 
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     The second derivative of a quintic B-spline curve 
shown in Eq.(3) is expressed as 
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     The third derivative of a quintic B-spline curve 
shown in Eq.(3) is expressed as 
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     The fourth derivative of a quintic B-spline curve 
shown in Eq.(3) is expressed as 
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     Curvature vector is expressed as 
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where ( )tR  is the first derivative of a B-spline curve, 
and ( )tR  is the second derivative of a B-spline curve. 
     Curvature is the magnitude of the curvature vector, 
therefore, curvature is expressed as 
( ) ( ) .t tκ = κ      (9) 

     By definition, the curvature of a plane curve is 
nonnegative.  However, in many cases it is useful to 
ascribe a sign to the curvature [32].  The choosing of 
the sign is commonly connected with the tangent 
rotation by moving along the curve in the direction of 
the increasing parameter.  The curvature of the curve 
is positive when its tangent rotates counter-clockwise, 
the curvature of the curve is negative when its tangent 
rotates clockwise. 
     The radius of curvature is the reciprocal number of 
curvature, therefore, the radius of curvature is 
expressed as 

( ) ( )
1 .t
t

ρ
κ

=      (10) 

 
 
2.2 B-spline Curve Display 
The curvature of a curve is the most significant 
descriptor of its shape [33].  To check the shape of a 
curve by displaying its curvature or radius of curvature 
plots is widely known.  This is simply the graph of 
( )tκ  or ( )tρ . 

     Curvature information is plotted using straight 
lines drawn outward from and perpendicular to the 
curve, with the line length proportional to the amount 
of curvature at that spot.  Radius of curvature 
information is plotted using straight lines drawn 
inward from and perpendicular to the curve, with the 
line length proportional to the amount of radius of 
curvature at that spot. 
     It is hard to distinguish the shape of the two curves 
by just looking at their graphs.  If the radius of 
curvature plots are drawn for both, the difference 
between the two curves is recognized immediately.  
Curve shape is judged by looking at the lines coming 
out from the curve and seeing how their lengths 
change along the path, not along the parameter.  
Therefore, curvature or radius of curvature 
distribution must be drawn to the perimeter of the 
curve. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     A B-spline curve with curvature and radius of 
curvature plots, and curvature and radius of curvature 
distribution are shown in Fig.1(a), (b) respectively. 
     A shape modified B-spline curve with curvature 
and radius of curvature plots, and curvature and radius 
of curvature distribution are shown in Fig.2(a), (b) 
respectively. 
     While both curves shown in Fig.1(a) and Fig.2(a) 
can hardly be distinguished by just looking at their 
curves, the curve with curvature and radius of 
curvature plots tell the two curves apart immediately. 
     The curvature distribution of a quintic B-spline 
curve is not monotone as is shown in Fig.1(b).  But 
curvature and radius of curvature distribution of a 
shape modified B-spline curve is monotone as is 
shown in Fig.2(b).  This display technique provides 
designers with the ability to evaluate the quality of a 
designed curve. 
     Seeing a B-spline curve with curvature and radius 
of curvature plots gives designers a deeper 
understanding of their design. 
     The relation of curvature to radius of curvature is 
inverted.  Therefore, it can be seen in Fig.1(b) and 
Fig.2(b) that in a portion of a curve where the 
curvature is small, at this portion the radius of the 
curvature will be large.  As shown in Fig.2(b), if the 

Fig.1 B-spline curve, curvature and radius of 
curvature distribution 
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and radius of curvature plots 

curvature 

radius of curvature 
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• Point marks indicate knot position.
Fig.2 Modified B-spline curve, curvature and radius of 

curvature distribution 

(a) modified B-spline curve 
with curvature and radius of 

curvature plots 

curvature 

radius of curvature 

B-spline curve
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radius of curvature to the perimeter is linear, the 
curvature distribution will be parabolic.  On the 
contrary, if the curvature to the perimeter is linear, 
radius of curvature distribution will be parabolic.  
     In case the curve shape is close to a straight line, the 
radius of curvature becomes infinity.  Therefore, a 
limit value should be assigned to the radius of 
curvature. 
     Both curvature distribution and radius of curvature 
distribution displays are effective to examine the 
shape of a curve. 
 
 
3   Quintic B-spline Curve Generation 
In this section, methods to generate a quintic B-spline 
curve which passes through given points in sequence 
and to generate a quintic B-spline curve using given 
points with gradients in sequence are described. 
     One widely used form of data fitting is 
interpolation.  Sometimes the problem is to interpolate 
to positional data alone, and sometimes it is necessary 
to interpolate to derivatives as well as positions, at 
least at some of the points [34]. 
 
 
3.1 Generation of a Quintic B-spline Curve 
which Passes through Given Points in 
Sequence 
The parameter of Eq.(3) is set to zero by defining the 
geometrical knot position corresponding to the knot of 
the knot vector.  Then, Eq.(3) is expressed as 

1 ( 26 66 26 )
120

= + + + +i i i+1 i+ 2 i+ 3 i+ 4R q q q q q ,  (11) 

( )0, 1, 2, 3, , 1i m= −  
where i  is the number of the given points in sequence, 
m  is the total number of the given points. 
     The positional vectors of the given points in 
sequence are assigned to ( )0,1,2,3, , 1i m= ⋅ ⋅ ⋅ −iR  in 
Eq.(11), and ( )1 2 3 4, , , , 0,1,2,3, , 1i i i i i i m+ + + + = −q q q q q  are 
the control points of a quintic B-spline curve. 
     When the control points of a quintic B-spline curve 
are calculated using Eq.(11), the number of unknowns, 
which are the positions of the control points, are four 
more than the number of equations which are 
expressed by Eq.(11).  Assuming the curvatures at 
both ends of the quintic B-spline curve are zero, the 
second derivatives at both ends of the quintic B-spline 
curve are set to zero, while setting the parameter of 
Eq.(3) to be zero by defining the geometrical knot 

position corresponding to the knot of the knot vector.  
Then, the following equations are obtained. 

0 1 2 3 4

1 2 3 4

2 6 2 0
2 6 2 0n n n n n+ + + +

+ − + + = ⎫
⎬+ − + + = ⎭

q q q q q
q q q q q

,   (12) 

where n is the number of segments. 
     Accordingly, the fourth derivatives at both ends of 
the quintic B-spline curve are set to zero.  Then, in the 
same manner, the following equations are obtained. 

0 1 2 3 4

1 2 3 4

4 6 4 0
4 6 4 0n n n n n+ + + +

− + − + = ⎫
⎬− + − + = ⎭

q q q q q
q q q q q
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where n is the number of segments. 
Using Eq.(12) and Eq.(13), Eq.(14) is obtained. 
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     In Eq.(14), 0 1 3, , ,n+q q q  and 4n+q ( n  is the number of 
segments) are expressed by the combination of known 
control points.  Thus, 0 1 3, , ,n+q q q  and 4n+q  are made 
known.  That is, the number of unknowns is decreased.  
Therefore, the number of equations will be equal to the 
number of unknowns.  That is, this linear system is 
determined.  Using different boundary derivatives has 
a strong influence on the shape and approximation 
quality of the curve [35, 36]. 
     A quintic B-spline curve which passes through the 
given points in sequence, and 0 1 3, , ,n+q q q  and 4n+q  in 
Eq.(14) are illustrated in Fig.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     As another method, in addition to the given points 
in sequence, gradients are assigned to the given points 
to increase the number of equations.  For this, the 
location of the four gradients is assigned situationally. 
     Eq.(15) is applied to the gradients by setting the 
parameter of Eq.(4) to zero by defining the 

0q

1q

3n+q

4n+q

0R
1R 1n−R

nR 2n+q
2q

3q

1n+q

nq

4q quintic B-spline curve 

Fig.3 Illustration for a quintic B-spline curve which passes 
through the given points in sequence.  0 1 1, , , ,n n−R R R R are 

given points.  0 1 3 4, , , ,n n+ +q q q q  are control points of a 
quintic B-spline curve ( n  is the number of segments) 
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geometrical knot position corresponding to the knot of 
the knot vector. 

1 ( 10 10 )
24

d
dt

= − − + +i
i i+1 i+ 3 i+4

R q q q q ,   (15) 

( )0, 1, 2, 3, , 1i n= −  
where n  is the total number of given gradients. 
     The i  shown in Eq.(15) corresponds to the i  in 
Eq.(11) and is assigned situationally. 
     The defined gradients are located at the beginning 
given point and its adjacent point, and at the end given 
point and its adjacent point in general. 
     As a magnitude of the first derivative, one third of 
the value of the distance between the two adjacent 
given points is assigned as a default value.  As for 
further adjustment, the magnitude of the first 
derivative is determined interactively. 
     Using the given points in sequence and four 
location specified gradients, the linear system 
becomes determined.  That is, the number of 
unknowns is equal to the number of equations. 
     The concept of a quintic B-spline curve generation 
using the given points in sequence and four location 
specified gradients are illustrated in Fig.4.  The 
defined gradients are located at the beginning given 
point and it’s adjacent point, and at the end given point 
and it’s adjacent point.  That is, the i  of Eq.(15) are 
determined as 0, 1, 2, 1n n− −  respectively.  0 1 2 3, , , ,P P P P  

4 3 2 1, , , ,m m m− − −P P P P  are the positional vectors of the 
given points in sequence, and 0 1 2, , ,n−d d d  and 1n−d  are 
the four location specified gradients. 
 
 
 
 
 
 
 
 
 
     As examples of a quintic B-spline curve which 
passes through the given points in sequence, three 
quintic B-spline curves which simulate filleting curves 
are shown with their curvature plots in Fig.5.  In 
Fig.5(a), and (b), the i  of Eq.(15) are determined as 0, 
2, 4, and 6.  In Fig.5(c), the i  of Eq.(15) are 
determined as 0, 1, 3, and 4.  In the case of a curve 
including a filleting segment, note that two gradients 
are placed at the start and end points of the filleting 
segment as well as the quintic B-spline curve 
beginning and end points. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2 Generation of a Quintic B-spline Curve 
using Given Points with Gradients 
In this sub-section, a quintic B-spline curve generation 
using given points with gradients in sequence is 
described. 
     The concept of generating a quintic B-spline curve 
using given points with gradients in sequence is 
illustrated in Fig.6. 
 
 
 
 
 
 
 
 
 
 
 
     0 1 2 3 4 3 2 1, , , , , , , ,m m m− − −P P P P P P P P  are the given points 
in sequence, while 0 1 2 3 4 3 2 1, , , , , , , ,m m m− − −d d d d d d d d  are 
gradients assigned to the given points in sequence.  A 
quintic B-spline curve which passes close to the given 
points with gradients in sequence is generated. 
     A quintic B-spline curve is generated by solving 
Eq.(11) and Eq.(15) simultaneously by making m  in 
Eq.(11) equal to n  in Eq.(15).  In this case, the i  in 
Eq.(11) corresponds to the i  in Eq.(15).  If the number 
of given points with gradients is 4, the number of 
B-spline curve equations (Eq.(11)) is 4 and the number 
of first derivative equations (Eq.(15)) is 4.  As a linear 
system, the total number of equations is 8, whereas the 
total number of control points of a quintic B-spline 
curve is 8.  Therefore, this linear system is determined.  
That is, the rank of a coefficient matrix of a linear 
system is equal to the number of unknowns.  The 
solution to this linear system is exact. 

Fig.4 Concept of a quintic B-spline curve generation using 
given points in sequence and four location specified gradients

m -1Pn -1d
0P

0d 1P

1d
2P

3P

4P

m - 3P

n - 2d

m - 2P

Fig.6 Concept of a quintic B-spline curve generation using
given points with gradients in sequence

0d

0P

1d

1P

2d

2P
3d

3P

n-4d

m -4P

n - 3d

m -3P

n - 2d

m -2P

n - 1d

m -1P

Fig.5 Examples of a quintic B-spline curve which passes 
through given points in sequence and four location 

specified gradients 

• Point marks indicate given points. 
Arrow marks indicate given four gradients. 

(b) 

B-spline curve 

curvature 

filleting 
segment 

(c)

B-spline curve

curvature 

filleting segment

(a)

B-spline curve

curvature 

filleting segment
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     However, in case the number of given points with 
gradients is 3, the number of equations (Eq.(11)) 
which pass through the given points is 3, and the 
number of equations of the first derivative (Eq.(15)) is 
3.  In this case, as a linear system, the total number of 
equations is 6, whereas the number of control points of 
the quintic B-spline curve is 7.  That is, the number of 
equations is less than the number of unknowns.  
Therefore, this linear system is underdetermined [37]. 
     For an underdetermined system, while setting 
auxiliary function, the linear system is solved under 
the constraint condition by selecting one solution from 
an infinite number of exact solutions using Lagrange's 
method of indeterminate multipliers. 
     In this case, this generated quintic B-spline curve 
passes through the given points with gradients in 
sequence. 
     In case the number of given points with gradients is 
5, the number of equations (Eq.(8)) is 5, and the 
number of equations of the first derivative (Eq.(9)) is 5.  
In this case, as a linear system, the total number of 
equations is 10, whereas the number of control points 
of the quintic B-spline curve is 9.  That is, the number 
of equations exceeds the number of unknowns.  
Therefore, this linear system is overdetermined [38]. 
     For an overdetermined system, the differences 
between the right and left sides of all the equations of 
the system are minimized.  The control points 
calculated are therefore an approximation. 
     Therefore, this generated quintic B-spline curve 
passes close to the given points with gradients in 
sequence. 
     For a system where the number of given points 
with gradients is 5 or more, the linear system is 
overdetermined.  For these systems, in accordance 
with the increments of the differences between the 
number of equations and the number of unknowns, the 
status of the approximation worsens. 
     The above mentioned are summarized in Table 1.  
A determined linear system is shown by the cross 
hatching. 
     As an example, in case the number of given points 
with gradients is 3, that is, m  in Eq.(11) and n  in 
Eq.(15) are 3, the quintic B-spline curve generated as 
an underdetermined system is shown in Fig.7 with its 
first derivative vectors, which are drawn outward 
perpendicular to the curve by the straight lines.  The 
solution to this linear system is exact.  The length of  
 
 
 

Table 1. Linear system condition 
(I)  (II) (III) (IV) (V) 
2 6 underdetermined exact thru
3 7 underdetermined exact thru
4 8 determined exact thru
5 9 overdetermined approximation close
6 10 overdetermined approximation close
7 11 overdetermined approximation close
8 12 overdetermined approximation close

(I) number of given points with gradients  
(II) number of control points of a quintic B-spline curve 
(III) system condition (underdetermined, determined, 
overdetermined) 
(IV) solution status 
(V) pass through or close to given points with gradients 
 
 
the line is proportional to the first derivative at that 
spot.  This is an unusual way of displaying the first 
derivative vectors.  Nevertheless, this helps visual 
recognition of the quintic B-spline curve shape and the 
magnitude variation of its first derivative. 
     Therefore, it is visually recognized that in Fig.7 the 
first derivative vectors shown are perpendicular to the 
assigned gradients id  at ( )0,1,2i i =P . 
 
 
 
 
 
 
 
 
 
 
 
 
     In case the number of given points with gradients is 
4, that is, m  in Eq.(11) and n  in Eq.(15) is 4, the 
quintic B-spline curve is generated as a determined 
system.  The solution to this linear system is exact. 
     Furthermore, in case the number of given points 
with gradients is 5, that is, m  in Eq.(11) and n  in 
Eq.(15) are 5, the quintic B-spline curve is generated 
as an overdetermined system and is shown with its 
first derivative vectors in Fig.8.  The solution to this 
linear system is an approximation.  Therefore, in Fig.8, 
it is visually recognized that the first derivative vector 
shown is not perpendicular to the assigned gradient 2d  
at 2P . 
     In this manner, a quintic B-spline curve is 
generated based on the given points with gradients in 
sequence. 

Fig.7 Quintic B-spline curve 
and its first derivative vectors,

in case of underdetermined
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4   Curve Shape Modification based on 
Specified Radius of Curvature 
Distribution 
In this section, a method to modify a quintic B-spline 
curve shape according to the specified radius of 
curvature distribution to realize an aesthetically 
pleasing freeform curve is described.   
     Radius of curvature is suitable, because it conforms 
to our visual recognition of the shape of the curve.  In a 
case where curve shape is very close to a straight line, 
the radius of curvature becomes infinity.  Also, at the 
point of inflexion, curvature value becomes zero.  
Therefore, radius of curvature value becomes infinite.  
For these reasons, radius of curvature value is 
converted to curvature value for computation. 
     The concept of radius of curvature specification 
and quintic B-spline curve shape modification based 
on the specified radius of curvature distribution is 
shown in Fig.9.  A quintic B-spline curve and its 
radius of curvature plots are shown in Fig.9(a). 
     A method to modify the shape of the quintic 
B-spline curve shown in Fig.9(a) to the curve shown in 
Fig.9(b) is examined. 
     Radius of curvature plots shown in Fig.9(a) are 
drawn inward from and perpendicular to the curve 
using straight lines.  The length of the line is 
proportional to the radius of curvature at that spot on  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the curve.  However, the straight lines are not parallel 
to each other and the beginning points of the 
individual straight lines are different.  Therefore, a 
curve with a radius of curvature display is suitable to 
examine the variation of radius of curvature as a whole.  
But, it is not suitable to examine the length of the 
straight lines and variation of radius of curvature in 
detail. 
     Therefore, considering the parameter of the quintic 
B-spline curve is different from the perimeter of the 
curve, the perimeter of a quintic B-spline curve as a 
straight line is set to the horizontal axis, and the radius 
of curvature is set to the vertical axis as shown in 
Fig.9(c).  Then, the radius of curvature distribution to 
the perimeter is drawn.  After this, the target radius of 
curvature specified is superimposed on the current 
radius of curvature distribution.  Linear, quadratic, and 
cubic algebraic function is applied as the target radius 
of curvature to the current radius of curvature 
distribution to modify the shape of the quintic B-spline 
curve. 
     In detail, the coefficients of the algebraic function 
are calculated by the least-squares method using the 
current radius of curvature distribution.  Then, the 
radius of curvature is specified by the determined 
algebraic functions.  To determine the target radius of 
curvature distribution by using algebraic functions has 
been published [26-28]. 
     In addition to this, the target radius of curvature is 
specified by smoothing the radius of curvature 
distribution using neighborhood values as in image 
processing.  Assuming ( )f i  is the radius of curvature 
value of perimeter position i  of the current curve, the 
value ( )g i  of the smoothed radius of curvature 
corresponding to ( )f i  of the current curve is 
calculated by using one of the smoothing operators 
shown in Eq.(16). 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1

2

3

4

1 1 1
3
1 2 1 1 2
5
1 3 2 1 1
7

2 3

1 4 3 2 1
9

1 2 3 4

g i f i f i f i

g i f i f i f i f i f i

g i f i f i f i f i f i

f i f i

g i f i f i f i f i f i

f i f i f i f i

⎫= ⎡ − + + + ⎤⎣ ⎦ ⎪
⎪
⎪= ⎡ − + − + + + + + ⎤⎣ ⎦⎪
⎪
⎪⎪= ⎡ − + − + − + + +⎣ ⎬
⎪

+ + + + ⎤ ⎪⎦
⎪
⎪= ⎡ − + − + − + − +⎣ ⎪
⎪+ + + + + + + + ⎤ ⎪⎦ ⎭

(16) 

     The selection of an operator shown in Eq.(16) and 
the iteration number of operations are determined Fig.9 Concept of radius of curvature specification and 

quintic B-spline curve shape modification based on the 
target radius of curvature distribution specified 
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interactively by looking at the profile of the radius of 
curvature distribution. 
     While increasing the number of iteration, the 
profile of the radius of curvature distribution becomes 
a straight line.  For an infinite number of iteration, it 
will be a straight line with no gradient.  This means 
that the shape of the curve will be an arc. 
     After the profile of the radius of curvature 
distribution is determined, the specified radius of 
curvature is superimposed on the current radius of 
curvature distribution. 
     An example is shown in Fig.9(c).  The i th of radius 
of curvature distribution of a perimetrically 
represented quintic B-spline curve is denoted as iρ , 
the specified radius of curvature at the same spot is 
denoted as ˆiρ , the difference iδ  is shown by Eq.(17) 
and is illustrated in Fig.9(c). 

1 2 1 2 ˆ( , , , , , )x x y y
i i n n iq q q qδ ρ ρ− −= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −   (17) 

Where 0,1,2, , 1i m= − , m  is the number of specified 
radius of curvature, and n  is the number of B-spline 
curve segments plus 5, which is the degree of the 
curve. 

1 2 1 2( , , , , , )x x y y
n nS q q q q− −⋅ ⋅ ⋅ ⋅ ⋅ ⋅  which is the sum of the 

squared differences for all specified radius of 
curvatures in Eq.(18) is minimized by introducing the 
least-squares method.  The radius of curvature 
expression is non-linear.  Therefore, by Taylor's 
theorem, Eq.(18) is linearized as in Eq.(19). 

1 2 1 2

1 2

1 2 1 2
0

( , , , , , )

ˆ( , , , , , )

x x y y
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x x y y

i n n i
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S q q q q

q q q qρ ρ

− −

−

− −
=

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎡ ⎤= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −⎣ ⎦∑
  (18) 
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n n ix y y
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S q q q q q q q q

q q q q q
q

q q q
q q q

ρρ

ρ ρ ρ ρ

− − − −

−

− −
=

− −
− −

+ ∆ ⋅ ⋅ ⋅ + ∆ + ∆ ⋅ ⋅ ⋅ + ∆

⎡ ∂
= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + ∆ +⎢ ∂⎣

⎤∂ ∂ ∂
⋅ ⋅ ⋅ + ∆ + ∆ + ⋅ ⋅ ⋅ + ∆ − ⎥∂ ∂ ∂ ⎦

∑  (19) 

Eq.(19) is minimized by equating to zero all the partial 
derivatives of 1 1 2 2 1 1 2( , , , , ,x x x x y y y

n n nS q q q q q q q− − −+ ∆ ⋅ ⋅ ⋅ + ∆ + ∆ ⋅ ⋅ ⋅  
2 )y

nq −+∆  with respect to x
rq∆  and ( )1,2, , 2y

rq r n∆ = −  as 

0 ( 1,2, , 2)
.

0 ( 1,2, , 2)

x
r

y
r

S r n
q
S r n
q

∂ ⎫= = ⋅ ⋅ ⋅ − ⎪∂∆ ⎪
⎬∂ ⎪= = ⋅ ⋅ ⋅ −
⎪∂∆ ⎭

   (20) 

Using these simultaneous linear equations, x
rq∆  and 

( )1,2, , 2y
rq r n∆ = −  are calculated.  Then, x

rq  and y
rq  

are determined. 
     This kind of study on the radius of curvature, or the 
curvature to realize a fair curve is called a constrained 

non-linear minimization problem [39].  For 
computation, iρ  and ˆiρ  are calculated based on the 
perimeter.  Then, the perimeter used is converted to 
the parameter to calculate the position of the control 
points of the quintic B-spline curve.  Thus, a quintic 
B-spline curve is generated.  The total length of the 
curve, which is the perimeter, is calculated and 
rescaled as 1.  Repeating these operations, positions of 
the control points of the quintic B-spline curve are 
determined while ( )0,1, , 1i i mδ = −  are minimized for 
the entire perimeter. 
     Smoothed radius of curvature distribution, which is 
specified as target radius of curvature distribution is 
shown in Fig.9(c).  Using the above mentioned 
method, the shape of the curve is modified based on 
the radius of curvature distribution specified.  The 
dotted line shown in Fig.9(d) is the smoothed radius of 
curvature distribution shown in Fig.9(c).  It is visually 
recognized that the radius of curvature distribution of 
the shape modified curve shown in Fig.9(d) matches to 
the specified radius of curvature. 
 
 
5   Examples of Curve Generation 
In this section, examples of curve generation using the 
methods described in the previous section are given. 
     An example of a quintic B-spline curve generation 
which passes through some given points in sequence, 
while setting the curvatures at both ends to zero is 
shown in Fig.10(a) with its curvature and radius of 
curvature plots. 
     Also, an example of a quintic B-spline curve 
generation using some given points in sequence and 
four location specified gradients is shown in Fig.10(b) 
with its curvature and radius of curvature plots. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.11 Curvature and radius of curvature distribution 

perimeter cu
rv

at
ur

e 

0

ra
di

us
 o

f 
cu

rv
at

ur
e 

(b) given points and four
gradients 

perimetercu
rv

at
ur

e 

0 

ra
di

us
 o

f 
cu

rv
at

ur
e 

(c) given points with 
gradients 

(a) curvatures at both 
ends are zero 

perimeter

cu
rv

at
ur

e 

0

ra
di

us
 o

f 
cu

rv
at

ur
e 

curvatures 
are zero

Fig.10 Quintic B-spline curves 

(b) given points and four
gradients 

(c) given points with 
gradients 

(a) curvatures at both 
ends are zero 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Tetsuzo Kuragano, Kazuhiro Kasono

ISSN: 1790-0832 1614 Issue 11, Volume 5, November 2008



     In adding to these examples, a quintic B-spline 
curve generation using some given points with 
gradients is shown in Fig.10(c) with its curvature and 
radius of curvature plots. 
     Furthermore, to make the variation of curvature 
and radius of curvature clear, curvature distribution 
and radius of curvature distribution of these sample 
curves are shown corresponding to the generation 
methods, in Fig.11(a), (b), (c).  These correspond to 
Fig.10(a), (b), (c). 
     Notice that the curvature at both ends of the curve 
are zero in Fig.11(a). 
     The quintic B-spline curves shown in Fig.10(a) and 
(b) are generated by solving the determined linear 
system.  Therefore, these two curves pass through 
their given points in sequence. 
     In Fig.10(c), the number of given points with 
gradients is six.  The number of control points of a 
quintic B-spline is ten.  In this case, the total number 
of equations is twelve, whereas the number of control 
points of the quintic B-spline curve is ten.  That is, the 
number of equations exceeds the number of unknowns.  
Therefore, this linear system is overdetermined. 
     The solution, which is the position of the control 
points for this system, is an approximation. 
     The position of the given points is compared with 
the geometrical knot positions of the generated quintic 
B-spline curve.  The maximum positional difference is 

-12.7094321 10× .  And, the mean positional difference is 
-11.080901 10× .  The maximum directional difference is 
-22.813751 10×  degree.  And, the mean directional 

difference is -21.291814 10×  degree.  The perimeter of 
the curve, which is the arc length, is 244.398140 . 
     Example of curve shape modification is shown.  
The coefficients of the quadratic algebraic function are 
calculated by the least-squares method using the 
radius of curvature distribution shown in Fig.11(b).  
The coefficients calculated are applied to the radius of 
curvature distributions shown in Fig.11 to modify the 
shapes of the curves.  Then, the shapes of these three 
curves shown in Fig.10 are modified by using the 
shape modification algorithm described in the section 
four.  These three shape modified curves are shown in 
Fig.12 with their curvature and radius of curvature 
plots.  Fig.12(a) corresponds to Fig.10(a), Fig.12(b) 
corresponds to Fig.10(b), and Fig.12(c) corresponds to 
Fig.10(c). 
     Curvature and radius of curvature distributions of 
these three shape modified curves are shown in Fig.13. 
     Radius of curvature distributions of these three 
shape modified curves are shown with radius of 

curvature distributions of their original curves in 
Fig.14. 
     It is visually clear that the shapes of the curves are 
modified significantly. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6   Conclusion 
A method to generate a quintic B-spline curve which 
passes through the given points in sequence is 
described.  In this case, the number of unknowns 
which are the positions of the control points is more 
than the number of equations which express quintic 
B-spline curves.  In other words, there are four more 
equations than there are control point positions. 
     Two methods have been developed to compensate 
for the difference between the number of unknowns 
and that of equations.  These are assuming that the 
curvatures at both ends of the curve are zero to 
decrease the number of unknowns, and assigning four 
gradients to the given points to increase the number of 
equations. 

Fig.13 Curvature and radius of curvature distribution 
corresponding to Fig.12 
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Fig.14 Radius of curvature distributions of original curves 
and those of shape modified curves 
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     In addition to these methods, another method to 
generate a quintic B-spline curve which passes 
through or close to the given points and which has the 
first derivatives at these given points has been 
developed. 
     In this case, a linear system will be 
underdetermined, determined or overdetermined 
depending on the number of given points with 
gradients. 
     For an underdetermined system, the linear system 
is solved under the constraint condition while setting 
auxiliary function by selecting one solution from an 
infinite number of exact solutions using Lagrange’s 
method of indeterminate multipliers. 
     For an overdetermined system, the differences 
between the right and left sides of all the equations of 
this linear system are minimized. 
     A method to modify a quintic B-spline curve shape 
according to the specified radius of curvature 
distribution to realize an aesthetically pleasing 
freeform curve is described.  The difference between 
the quintic B-spline curve radius of curvature and the 
specified radius of curvature is minimized by 
introducing the least-squares method.  A reverse 
computational technique is applied to solve this 
problem.  This kind of study on the radius of curvature, 
or the curvature to realize a fair curve is called a 
constrained non-linear minimization problem. 
     Examples of curve generation are given. 
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