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Abstract: In this paper we introduce a fast algorithm that can detect the most unusual part of a digital image.
The most unusual part of a given shape is defined as a part of the image that has the maximal distance to all non
intersecting shapes with the same form. The method is tested on two and three-dimensional images and have
shown very good results without any predefined model. The results can be used to scan large image databases, as
for example medical databases.
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1 Introduction
In this paper we are trying to find the most un-
usual/rare part with predefined shape of a given
image. If we consider an one-dimensional quasi-
periodical image, as for example electrocardiogram
(ECG), the most unusual parts with length about one
second will be the parts that correspond to rhythm ab-
normalities [1]. Therefore they are of some interest.
Considering two and three dimensional images, we
can suppose that the most unusual part of the image
can correspond to something interesting of the image.

Recently we have presented an algorithm that can
detect the most rare part of a digital image, referring
to two-dimensional images [2]. We have shown that
this part of the image is defined as a part of the image
that has the maximal distance to all non-intersecting
shapes with the same form. In fact the algorithm can
be used in more that two dimensions. The present pa-
per is an extension of this method in the case of three-
dimensional images.

Some related publications concerning the prob-
abilistics models as well as the problem of object
recognition can be find in Refs. [3, 4, 5, 6].

To state the problem, we need first of all a defi-
nition of the term ”most unusual part”. Let us chose
some shape

�
within the image � , that could contain

that part and let us denote the cut of the figure � with
shape

�
and origin �� by �������	�
 ��� , e.g.

�������	�
 ������ � ���	�� �����	�� �����

where �	 is the in-shape coordinate vector, �� is the ori-
gin of the cut ��� and we used the characteristic func-
tion

� ��� � of the shape
�

. We can suppose that the
rarest part is the one that has the largest distance with
the rest of the cuts with the same shape.

Namely, we can suppose that the most unusual
part is located at the point �� , defined by:

������ �"!$#%��&'( #%)+*'(-,/.10 '(�,+2 '(30 4653798-:$; �=<
>?> �����3���A@ ����� �� B?� >?> �

(1)
Here we assume that the shifts do not cross the bor-
der of the image. The norm

>?> � >?> is assumed to be CED
norm1

Because the parts of an image that intersect sig-
nificantly are similar, we do not allow the shapes lo-
cated at � B and � to intersect, avoiding this by the re-
striction on � B�F > �� B�@ �� >HGJI )+�K# � � � .

The definition above can be interesting as a math-
ematical construction, but if we are looking for prac-
tical applications, it is too strict and does not corre-
spond exactly to the intuitive notion of the interesting
part as there can be several interesting parts. There-
fore the correct definition will be to find the outliers
of the distribution of the distances between the blocks>?> � >?> .

1Similar results are achieved with L�M norm. The algorithm
was not tested with L�N�O-P norm due to its extreme noise sensi-
tivity. We use L�Q because of its relation with PSNR criteria that
closely resembles the human subjective perception.
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In R -dimensional space the figure with linear sizeS
has

SUT
points and if V?VXWYV?V[Z V?V \]V?V , in order to

find deterministically the most unusual part, we needS T
operations. This is unacceptable even for large

two dimensional images, not concerning 3D image
databases. Therefore we are looking for an algorithm
that provides an approximate solution of the problem
and solves it within some probability limit in accept-
able execution time.

As is defined above in Eq.(1), the problem is very
similar to the problem of location of the nearest neigh-
bor between the blocks. This problem has been stud-
ied in the literature, concerning Code Book and Frac-
tal Compression [7]. However, the problem of find-
ing ^_ in the above equation, without specifying ^_�` , as
we show in the present paper, can be solved by using
probabilistic methods avoiding slow calculations.

2 The Method
2.1 Projections

The problem of estimating the minima of Eq. (1) is
complicated because the block is multidimensional.
Therefore we can try to simplify the problem by pro-
jecting the block acbd\�egf3^_�h in one dimension using
some projection operator i . For this aim, we consider
the following quantity:

jYk V iml9a�npoqiml9arV k V isl/fta[n�oua h VwvxV iyV k{z l (2)

The dot product in the above equation is the sum
over all | -s:

isl9a}b�~6�� iyf�^| h arf�^|��^_h l (3)

If i is random, and uniformly distributed on the
sphere of corresponding dimension, then the mean
value of

j
is proportional to V a]no�a�V ; � j3��k�� V a[n=o�a�V

and the coefficient
�

depends only on the dimensional-
ity of the block. However, when the dimension of the
block increases, the two random vectors ( a]n�oqa andi ) are close to orthogonal and the typical projection
is small. But if some block is far away from all the
other blocks, then with some probability, the projec-
tion will be large. The method resembles that of Ref.
[8] for finding nearest neighbor.

As mentioned above we must look for outliers in
the distribution. This would be difficult in the case of
many dimensions, but easier in the case of one dimen-
sional projection.

We will regard only projections orthogonal to
the vector with components proportional to i���f�| h k

Figure 1: The original test image. X-ray image of a
person with ingested coin.
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Figure 2: The distribution of the projection value
for square shape with a size 48x48 pixels.

z v���| . The projection on the direction of i�� is propor-
tional to the mean brightness of the area and thus can
be considered as not so important characteristics of
the image. An alternative interpretation of the above
statement is by considering all blocks that differ only
by their brightness to be equivalent.

Mathematically the projections orthogonal to i �
have the property:

~��� iyf�^| h k�� l (4)

The distribution of the values of the projections
satisfying the property (4) is well known and univer-
sal [9] for the natural images. The same distribution
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Figure 3: An intersection of the 3d-test image.
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Figure 4: The distribution of the projection value
for the corresponding 3d image.

seems to be valid for a vast majority of the images.
The distribution of the projections derived for the X-
ray image, shown in Fig. 1, is shown in Fig. 2.

In the case of a three-dimensional image, Fig. 3,
the corresponding histogram, obtained by using the
above method is shown in Fig. 4. One observes a
higher asymmetry of the distribution of the projec-
tions in this case, compared to the same distribution
of two-dimensional images, but qualitatively it is of
the same type.

Roughly speaking, if the blocks are small enough,
the distribution satisfies a power law distribution with
exponential drop at the extremes. When the blocks are
big enough, the exponential part is predominant.

If ��� and ���� have similar projections, then they

will belong to one and the same or to neighbors bins.
Therefore we can look for blocks that have a min-

imal number of similar and large projections. But
these, due to the universality of the distribution, are
exactly the blocks with large projection values.

As a first approximation, we can just consider the
projections and score the points according to the bin
they belongs to. The distribution can be described by
only one parameter that, for convenience, can be cho-
sen to be the standard deviation ��� of the distribution
of �m�9� .

The notion of ”large value of the projection” will
be different for different projections but will be always
proportional to the standard deviation2 . Therefore we
can define a parameter � and score the blocks with� �s�9� ��� �=� � .

2.2 Algorithm

Resuming, in order to find the most unusual blocks
of shape � in an image � we purpose the following
Algorithm:

0. Construct a figure � with the same shape as �
and with all pixels equal to zero.

1. Generate a random projection operator � , with
carrier with shape � , zero mean and norm one.

2. Project all blocks (convolute the figure). We
denote the resulting figure as � .

3. Calculate the standard derivation � � of the re-
sult of the convolution.

4. For all points of � with absolute values greater
than �H� � , increment the corresponding pixel in B.

Repeat steps 1-4 for � number of times.
5. Select the maximal values of � as the most

singular part of the image.
As illustration we give separately in the Appendix

the corresponding Matlab code.
The acceptable values of � are discussed in the

next section. The number of iterations � can be fixed
empirically or until the changes in � , normalized by
that number, become insignificant. Following the al-
gorithm, one can see that the time to perform it is pro-
portional to �¡ q¢�£+¤K¥$  . The speed per image of size¦¨§�©�ª�«%© § ª¬

on one and the same computer, with � , a
square of size K® « K® points, is about 3 seconds com-
pared to about an hour, using the direct search imple-
menting the Eq. (1). 3

2In general, the standard deviation will be larger for projec-
tions with larger low-frequency components. That is why we
choose the criterion proportional to ¯K° and not as an absolute
value for all projections ± .

3If the block is small enough, the convolution can be per-
formed even faster in the space domain and it is possible to im-
prove the execution time.
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Figure 5: Score values for different size of the shape
(24x24, 32x32, 40x40, 56x56). The value of the pa-
rameter ² in all the cases is 12.

3 Empirical Assessment
Applying the algorithm above, we are looking for the
most unusual part of the image in different settings.
We also generalize the method in order to improve it
and in to amplify the range of applications.

3.1 Two dimensional images

Some results are presented in Figs.5,6, where we used
square shapes with different size, 30 projection oper-
ators and different values of ² .
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Figure 6: Score values for different parameter ² ( ² =
8,10,12,16). The size of the shape is 24x24.

Because the distribution of the projections (Fig.
2) is universal, it is not surprising that the algorithm
is operational for different images. We have tested it
with some 100 medical Xray images and the results of
the visual inspections were good.

It can be noted that the number of projection op-
erators is not critical and can be kept relatively low
and independent of the size of the block. Note that
with significantly large blocks, the results can not be
regarded as en edge detector. This empirical obser-
vation is not a trivial result at all, indicating that the
degrees of freedom are relatively few, even with large
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enough blocks, something that depends on the statis-
tics of the images and can not be stated in general.
With more than 20 projections we achieve satisfac-
tory results, even for areas with more than 3000 pix-
els (some »¨¼�½ in 3D). The increment of the number
of the projections improves the quality, but with more
than 30 projection practically no improvement can be
observed.

A phenomenological argument can be given, ob-
serving that in the case of 30 projections, the pixels
with maximal values are larger then 5. In order to dis-
tinguish a binary criteria (unusual/usual) this value is
satisfactory large.

It is possible to look at that algorithm in a differ-
ent way. Namely, if we are trying to reconstruct the
figure by using some projection operators ¾r¿ (for ex-
ample DCT as in JPEG), then the length of the code,
one uses to code a component with distribution like
Fig. 2, will be proportional to the logarithm of the
probability of some value of the projection ¾r¿ÁÀ9Â .
Therefore, what we are scoring is the block that has
some component of the code larger than some length
in bits (here we ignore the psychometric aspects of the
coding). Effectively we score the blocks with longer
coding, e.g. the ones that have lower probability of
occurrence.

Using a smoothed version of the above algorithm
in step 4, without adding only one or zero, but for
example, penalizing the point with the square of the
projection difference in respect to the current block
divided by Ã , and having in mind the universal distri-
bution of the projection, one can compute the penalty
function as a function of the value of the projectionÄ , that results to be just »ÆÅ ÇÉÈ ÄËÊ Å Ç Ã Ê . Summing
over all projections, we can find that the probability
of finding the best block is approximated given by»ÆÅ ÇÍÌÎ»�È�Ï¨ÐÒÑtÓ�ÔÖÕ×Ô-»ÆÅ ÇØÈ Ä Ê Å Ç Ã ÊÆÙÚÙÜÛ as a consequence
of the Central Limit Theorem. The above estimation
gives an idea why one need few projections to find the
rarest block, in sense of the global distribution of the
blocks, almost independently of the size of the block.
The only dependence of the size of the blocks is given
by Ã Ê factor, that is proportional to its size. Further,
the probability of error will drop better than exponen-
tially with the increment of Õ .

The non-smoothed version performs somewhat
better that the above estimation in the computer ex-
periments.

3.2 Three dimensional images

Further we investigate how the algorithm works in 3D.
As noticed in the previous section, the distribution of
the projection is similar, but more irregular and asym-
metric.
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Figure 7: The upper panel shows the 3D structure,
treated with 3D shapes. The lower panel shows the
same structure treated with 2D shapes (at the same
value of Z axes). The size of the block is Ç�Ý%ÞsÇ�Ý andÇ�ÝÉÞUÇ�ÝÉÞUÇ�Ý correspondingly. The figures show that
if the structures are clearly 3D the detection with 3D
shape is better.

We have noticed that in 3D the method works
better by using spherical shape, instead of cubic one.
Most probably this is due to the fact that in the cube
the most distant boundary voxel is ß à times further
that the closest boundary voxel. This is significantly
more that ß Ç as it is in the case of 2D pixels, although
some ”squaring” effect can be noted also in 2D (See
Fig.9, á�â�¼�À1ã ).

Comparing the quality of the method on two and
three-dimensional images, (Fig. 7), one can say that
when the structure is clearly three dimensional as the
colon, the algorithm working in 3D separates this
structure much better than working in 2D section.
The irrelevance of the dimension for the algorithm is
probably the main advantage in respect to other algo-
rithms, as for example The Hough transform [10]. The
maximum execution time scales with ä as the num-
ber of pixels ÕåäUægç?èKé Ê äUæ . Once again in 3D, as in
the 2D case, Õ can be chosen very modest, about 30.
The memory cost is four times the memory needed to
save a single image, using naive FFT implementation
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Figure 8: The upper panel shows the histogram of
the normalized projection êqëìJí ê ì�î�ï�ì . The lower
one shows the quintile norm-plot. The distribution fits
very well with the normal distribution.

of the convolution.

3.3 Contrast

However, there is an evident objection against the al-
gorithm purposed. Namely, if some area of the im-
age with high contrast is selected, then the projection
is proportional to the contrast of that area. This will
actually select the most contrast areas as the most un-
usual ones. Mathematically this is in fact so, but for
practical reasons the dependence of the contrast could
be eliminated or at least attenuated with similar argu-
mentation as the one we have used for the brightness.

Namely, two images that differ only by their con-
trast could be considered as equivalent. To eliminate
the influence of the contrast, the best is to normalize
the projections using the contrast of the block. Let
us regard as a contrast the standard deviation ï ì of
the block ð in question. Then the change in the algo-
rithm is just evident: substitute each of the projections
(3) with its normalized value êqëìdñ ê ì$î�ï�ì . How-
ever, the distribution ê ëì is no longer similar to that

shown in Fig. 4. The distribution is just normal [11].
To illustrate this, we represent the distribution and its
quartile normal-plot in Fig.8 4.

Using this normalization procedure makes the al-
gorithm sensible to the noise, converting the flat noisy
areas to the most unusual ones because of the random-
ness of the noise. Also the contrast, as an important
characteristics, is better to be preserved in the nor-
malized projection. Therefore it is much better not
to eliminate the dependence of the contrast, but just to
attenuate it. We found that using

ê ìYòôóËõ ñ ê ì î�ï�öì
with different exponents ó -s serves well in order to
give an appropriate weight of the contrast. Whenó í ÷ we have the case of uncorrected projec-
tions, while when ó íùø , the effect of the contrast
is totally eliminated. Also ó can be assumed to be
the tradeoff between the texture and the shape of the
area. In Fig.9 we represent the results for differentó -s ( ó íú÷�ûÒ÷�ü1ýHû¹ø û¹ø ü1ýHû"þ ). We can see that different
structures are highlighted dependent on the values of
gamma. As expected, low values of ó (with relatively
small shapes) accentuate the shape and high values ofó - the texture.

3.4 Conditioning

A case of special practical interest is to find the rarest
(and the most similar) part of the image with respect
to some database of images or with respect to a single
image. Therefore, we are looking for the conditional
probability of the occurrence of the blocks with re-
spect to that database/image.

If we condition to one and the same test imageÿ��
we can do it in a way, taking from the image

ÿ��
the patterns with a shape

�
in a random manner. That

means to change step 1 of the algorithm to the follow-
ing:

1c. Select at random a point of
ÿ��

as an origin
of the shape

�
. Use this area as a projection operator

(normalizing and subtracting the mean brightness).
In this way we can answer both questions in the

same time - What is the part of the image
ÿ

with shape�
that is most similar to the image

ÿ��
and what is the

part of the image
ÿ

most dissimilar to the parts of
the image

ÿ �
. The first answer is related to pattern

recognition problem. As an example, we are looking
for a colon on the CT image shown in Fig.3, the test
image can look like Fig.10.

4The distribution ought to be tested with caution because the
low-pass filtering will flat the top of the distribution. Also the
precision of the pixels ought to be at least 2 bytes in order to avoid
rounding errors.
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Figure 9: Different normalizations corresponding to the values of �������������������� . The influence of the borders
diminished and the influence of the texture increases.
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Figure 10: The figure of patterns we use to find similar
and dissimilar parts of the image.

If the shape � is small, then the statistics would
be more or less universal and we cannot expect that
the result would be very specific to the image ��� . If
se increase the size of the shape � the result will be
more and more specific. If the size of the � is sim-
ilar to the size of ��� we can expect highly specific
response. In order to achieve satisfactory result we
ought to use � �!� , e.g. to eliminate the dependence
on the contrast.

The results of the conditioning are shown in
Fig.11.

We condition one image of the colon Fig. 3 to
the other Fig.12. We find that the recognition is very
good. It does not depend on the dimensionality of the
image. The first two panels of Fig.11 with smallest� , ��"$#%��" and & �$# & � , have strong mixture between
negative and positive large projections (not shown in
the figure). It accentuates more or less the borders,
but with mixed sign of the projections. The last image
has only positive correlations with the test image in
the upper left corner. The position of the colon (See
Fig.3) is detected correctly.
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Figure 11: Finding the most similar part using the algorithm. The test image has size of 2 /3) '4/ 2 . The size of the
rectangle block 5 is shown for each image.

4 Conclusions

In this paper we present a method to find the most
unusual (rare) part in two and higher dimensional im-
ages, when its shape is fixed, but in general arbitrary.
The method is almost independent on the size of the
shape in terms of the execution speed and time. It
gives good results on experimental images without
predefined model of the interesting event, working
equally well for 2D and 3D images.

The algorithm uses finite and low dimensional
space instead of the huge dimensional space of the
image segments, where each point forms another di-
mension. Therefore, it can be used to scan image
databases independently of its size, as for example
medical databases.

We would also like to comment that the method
requires to save only the large projections of images
and this relies significantly the search in a large image
dabase. Actually the storage requirements are very

modest and this permits the searching in very large
databases. This is suitable for medical purposes, be-
cause the quantity of even one digital X-ray device can
provide hundreds of images per day.

Among the future applications of the present
method, one could mention the achievement of ex-
periments on different type of images and large im-
age databases and experiments on acceleration of the
network due to the special equivalence class construc-
tion.

We are currently working on the extension of the
method reformulating it in terms of neural networks
of Hebbian type. The preliminary results show a good
quality and fast execution time for the localization of
the most unusual parts of 2d and 3d images [12].
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5 Appendix
The program we used is the
following:

function [ba,bb,bu]=findrare(fname,
sx1,sx2,s1,iter)
if nargin < 5, iter = 30; end
if nargin < 4, s1 = 22; end
if nargin < 3, sx2 = 32; end
if nargin < 2, sx1 = 32; end
bu=imread(fname);
b=double(bu); b=b(:,:,1);
[i1 i2]=size(b);
bp(1:i1*i2)=b;
% it is more convinient to have

2D and 1D vector.
% normalize
b=b-mean(bp);
b=b/std(bp);
bp=bp-mean(bp);
bp=bp/std(bp);
for ii=1:iter
ii;
r1=rand(sx1:sx2);
% generate random projection

matrix
[i1 i2]= size(r1);
% normalize
r1p(1:i1*i2)=r1;
r1=r1-mean(r1p);
r1=r1/std(r1p);
% convolute
b1=conv2(b,r1);
% edge effects and size change.
[i1 i2]=size(b1);
b1p(1:i1*i2)=b1;
% collect only large

projections.
if ii==1
bips=(b1p>s1*2);
else
bips=bips+(b1p>s1*2);
end
bips=bips+(b1p<-s1*2);
end
% hist(b1p,60);
% postprocess and form some

auxiliar results.
[ia1 ia2]=size(b1);
b1res=reshape(bips,size(b1));
bvar=conv2(b,ones(sx1,sx2)) 6

/sx1/sx2;
bsqr=b .* b;
bvar=sqrt(conv2(bsqr,ones(sx1,sx2)) 6

/sx1/sx2-(bvar ./ bvar));

b3=0.5 * b1res ./
real(abs(bvar));

ba=b1res(sx1/2:ia1-sx1/2,sx2/2: 6
ia2-sx2/2);

bb=b3(sx1/2:ia1-sx1/2,sx2/2: 6
ia2-sx2/2);

end
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