
Optimizing the Minimum Vertex Guard Set on Simple Polygons via a
Genetic Algorithm

ANTONIO L. BAJUELOS 1, SANTIAGO CANALES 2, GREGORIO HERNÁNDEZ 3,

ANA MAFALDA MARTINS 1

1 Department of Mathematics & CEOC

University of Aveiro
Campus de Santiago, 3810-193, Aveiro

PORTUGAL
{leslie,mafalda.martins}@ua.pt

2 Escuela Técnica Superior de Ingenieria

Universidad Pontifícia Comillas de Madrid
C/ Alberto Aguilera 21, Madrid

SPAIN
scanales@upcomillas.es

3 Facultad de Informática

Universidad Politécnica de Madrid
Campus de Montegancedo s/n, Boadilla del Monte, 28660 Madrid

SPAIN
gregorio@fi.upm.es

Abstract: - The problem of minimizing the number of vertex-guards necessary to cover a given simple polygon
(MINIMUM VERTEX GUARD (MVG) problem) is NP-hard. This computational complexity opens two lines of
investigation: the development of algorithms that establish approximate solutions and the determination of
optimal solutions for special classes of simple polygons. In this paper we follow the first line of investigation
and propose an approximation algorithm based on general metaheuristic genetic algorithms to solve the MVG
problem. Based on our algorithm, we conclude that on average the minimum number of vertex-guards needed
to cover an arbitrary and an orthogonal polygon with n vertices is 38.6/n and 40.6/n , respectively. We also
conclude that this result is very satisfactory in the sense that it is always close to optimal (with an
approximation ratio of 2, for arbitrary polygons; and with an approximation ratio of 1.9, for orthogonal
polygons).

Key-Words: Computational Geometry, Art Gallery Problems, Visibility, Approximation Algorithms,
Metaheuristics, Genetic Algorithms

1 Introduction
The Art Gallery Problems are well-studied visibility
problems in Computational Geometry [20]. The
original problem was introduced by Victor Klee, in
1973, when he proposed the following problem:
How many stationary guards are needed to cover an
art gallery room with n walls? Informally the floor
plan of the art gallery room is modeled by a simple
polygon Q (simple closed polygon with its interior).
A guard is considered to be a fixed point in Q with
visibility range π2 . We say that a point x sees point
y (or y is visible to x) if the line segment connecting

both does not intersect the exterior of Q. A set of
guards covers Q, if each point of Q is visible by at
least one guard. Thus, the art gallery problem deals
with setting a minimal number of guards in a gallery
room whose floor plan has a polygonal shape, so
that they can see every point in the room. Two years
later Chvátal established the well known Art Gallery
Theorem: ⎣ ⎦3/n guards are occasionally necessary
and always sufficient to cover a simple polygon of n
vertices [9]. Over the years, numerous variations of
the original problem have been considered and
studied, such as: location of the guards (anywhere or

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Antonio L. Bajuelos, Santiago Canales,
Gregorio Hernandez, Ana Mafalda Martins

ISSN: 1790-0832 1584 Issue 11, Volume 5, November 2008

in specific positions, e.g., on vertices), different
types of guards (e.g., stationary guards versus
mobile guards) and different assumptions on the
input polygon (e.g., orthogonal simple polygons,
i.e., simple polygons whose edges meet at right
angles), see [20]. An interesting variant is the
Orthogonal Art Gallery Theorem. This theorem was
first formulated and proved by Kahn et al. [13], in
1983. It states that ⎣ ⎦4/n guards are occasionally
necessary and always sufficient to cover an
orthogonal simple polygon of n vertices. Orthogonal
simple polygons are an important subclass of
polygons. As a matter of fact, they are useful as
approximations to polygons and they arise naturally
in domains such as raster graphics, VLSI design or
architecture. Efficient algorithms, based on the
proofs of the above theorems, were developed to
guard both arbitrary and orthogonal simple polygons
with ⎣ ⎦3/n and ⎣ ⎦4/n guards, respectively.
Although these numbers are necessary in some
cases, they often exceed the number of guards
needed to cover a particular simple polygon. A
variant of art gallery problem is the MINIMUM
VERTEX GUARD (MVG) problem, which is the
problem of finding the minimum number of guards
placed on vertices (vertex-guards) needed to cover a
given simple polygon. This is a NP-hard problem
both for arbitrary and orthogonal simple polygons
[14, 18].

Our contribution. The computational complexity
of the MVG problem for simple polygons opens two
lines of investigation: the development of
algorithms that establish approximate solutions and
the determination of optimal solutions for special
classes of simple polygons (e.g., [5]). In this paper
we follow the first line of investigation. We propose
an approximation algorithm based on general
metaheuristic genetic algorithms to solve the MVG
problem on simple polygons (arbitrary and
orthogonal). Since the optimal solution to the MVG
problem is unknown, we use a method that allows
us to determine a lower bound for our algorithm, as
in [4]. This way, we are able to find the
approximation ratio of our technique. Our
implementation was developed using the CGAL
library [8] and our experiments were performed on a
large set of randomly generated simple polygons.

This paper is structured as follows: in the next
section we introduce some preliminary definitions
and useful results. In section 3 we present a strategy,
based on general metaheuristic genetic algorithms,
to solve the MVG problem on simple polygons. In
section 4 we establish greedy constructive
algorithms that allow us to determine a lower bound

for our algorithm. Section 5 is devoted to present
our experiments and results on arbitrary and
orthogonal polygons, subsections 5.1 and 5.2,
respectively. Finally, in section 6 we draw
conclusions and future work.

2 Preliminaries
As stated before, the MVG problem is NP-hard for
simple polygons and a way to deal with this
computational complexity is to develop
approximation algorithms to tackle the problem. In
general, these algorithms can be designed
specifically to solve the problem (e.g., greedy
constructive strategies) or they can be based on
general metaheuristics. A metaheuristic is a general
algorithmic framework which can be adapted to
different optimization problems with minor
adjustments (see [7, 11] for a comprehensive survey
on the subject). There are several works where
approximation algorithms (heuristics) were
developed to solve the MINIMUM SET GUARD
(MSG) problem (e.g., [4, 10, 15, 19]). In recent
works, metaheuristic techniques have proven to be
very well behaved in solving the MSG problem [3],
as well as the MAXIMUM HIDDEN VERTEX SET
problem [6], which is also a NP-hard visibility
problem. On the other hand, genetic algorithms
(GA) are very common metaheuristic techniques in
computer science. They are extensively used to find
approximate solutions of combinatorial optimization
problems (e.g., [16, 21]).

For the above reasons, in this paper we propose
an algorithm based on the metaheuristic GA to
compute a small vertex-guard set for a given simple
polygon Q.

Let Q be a simple polygon with n vertices
110 ,...,, −nvvv (we only study simple polygons in this

paper, so we use the term polygon to refer a simple
polygon). A vertex of Q is reflex if the interior angle
between its two incident edges is greater than π,
otherwise it is convex. We use r to represent the
number of reflex vertices of Q. Without loss of
generality, we assume that the vertices of Q are
ordered in counterclockwise direction around the
interior of Q. For a point Qp∈ , we call visibility
polygon of p,)(pVis , to the set of all points Qq∈
that are visible to p , i.e.,

}sees:{)(qpQqpVis ∈= . We say that G, a given
subset of vertices of Q, is a vertex-guard set of Q if
G cover Q, i.e., if QvVis

Gv
=

∈
)(U . The cardinality of

a vertex-guard set is denoted by || G .

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Antonio L. Bajuelos, Santiago Canales,
Gregorio Hernandez, Ana Mafalda Martins

ISSN: 1790-0832 1585 Issue 11, Volume 5, November 2008

As the optimal solution for the MVG problem is
unknown, we may ask: How can we expect to prove
that our approximate solutions are close to the real
ones? In order to answer this question, we
developed a greedy constructive algorithm to
calculate a large visibility-independent set on a
given polygon. This gives us a method to compute a
lower bound on the optimal number of vertex-
guards for each instance of our experiments.
Applying the approximation algorithm together with
the algorithm to determine the lower bound, for
each instance of our experiments, we get the
performance ratio of our approximation algorithm.

In [4] a visibility-independent set of Q is defined
as a finite set S , QS ⊂ , such that

φ=∩∈∀)()(,, qVispVisSqp . The cardinality
of a visibility-independent set is denoted by || S .
The example given in Fig. 1 illustrates a visibility-
independent set of cardinality 3.

Fig.1: Visibility-independent set of an arbitrary

polygon. Gray dots represent visibility-independent
points.

t is easy to verify that no single vertex-guard is able
to see more than one point of S, consequently

||||,, SGSG ≥∀ . So the number of vertex-
guards of a minimum-cardinality vertex-guard set of
Q is at least the number of points in a maximum-
cardinality visibility-independent set. Thus, the
number of points on a maximum-cardinality
visibility-independent set is a lower bound for the
optimal number of vertex-guards on Q.
Nevertheless, the problem of determining this lower
bound is also NP-hard [4], so we developed
approximation algorithms to tackle it, as already
stated.

In our experiments, given a simple polygon, the
main objective is to find a small vertex-guard set, G,
and large visibility-independent set, S. The obtained
set G approximates the optimal number of vertex-
guards with an approximation ratio of ||/|| SG .

3 Approximation Algorithm Based on
Genetic Algorithms (GA)
Genetic algorithms are a particular class of
evolutionary algorithms that use techniques inspired
by evolutionary biology such as inheritance,
mutation, selection, and crossover/recombination
(e.g., [1]). They are implemented as a computer
simulation in which a population of abstract
representations of candidate solutions (called
individuals or chromosomes) to an optimization
problem evolves toward better solutions. The
evolution usually starts from an initial population of
randomly generated individuals. These individuals
are evaluated with a function (fitness) that indicates
the adaptation degree of the individual to the
environment. From this initial situation a series of
iterations are realized in each of which there is
simulated the creation of a new generation of
individuals from the previous generation. This
process consists of applying the genetic operators
selection, crossover and mutation on the individuals.
Commonly, the algorithm terminates when either a
maximum number of generations has been
produced, or a satisfactory fitness level has been
reached for the population. The final population, if
the algorithm converges properly, will be composed
of good individuals, the best of these being the
solution given by the algorithm (see Fig.2).

Fig.2: General scheme of a Genetic Algorithm.

The pseudo-code of a genetic algorithm follows:

Algorithm Genetic Algorithm
1. 0←t
2. Initialize the population,)(tP
3. while termination condition not met do
4. Evaluate)(tP
5. Selection on)(tP
6. Recombine and/or Mutate)(tP
7. 1+← tt
8. Generate)(tP from)1(−tP
9. end while

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Antonio L. Bajuelos, Santiago Canales,
Gregorio Hernandez, Ana Mafalda Martins

ISSN: 1790-0832 1586 Issue 11, Volume 5, November 2008

Taking into account the established above, to solve
an optimization problem with the GA metaheuristic
it is necessary to specify the following:

• a genetic representation of the possible
solutions, called individuals or chromosomes,
to the problem (Encoding);
• a way of creating an initial population of
possible solutions (Initial population);
• a function to evaluate the individuals and
simulate the process of natural selection,
sorting solutions according to their “strength”
(Objective or Fitness function);
• genetic operators to alter the composition of
the solutions (Selection, Crossover and
Mutation) and
• the values of various parameters used by the
genetic algorithm (e.g., size of the population,
probability of the genetic operators, evaluation
of the population, generation of the population,
termination condition).

In the next subsection we describe these items so
they suit our problem.

3.1 GA's Parameters Definition

3.1.1 Encoding.
In our algorithm an individual (or chromosome) I is
represented by a chain of 0's and 1's of length n, i.e.,

110 ... −= ngggI , where each element ig is called a
gene. Each gene represents a vertex of the polygon,
i.e., the thi gene represents the vertex Qvi ∈ . The
value of each gene is 0 or 1. If the 1=ig then
vertex iv is a vertex-guard; otherwise (0=ig)
vertex iv is not a vertex-guard (see Fig.3).

Fig.3: An individual I (for an arbitrary polygon with

20=n) and its representation. Black dots represent
vertex-guards.

3.1.2 Initial Population
The population of a given generation/iteration
consists of a set of individuals. The total number of
individuals in each population has to be large
enough to ensure diversity, but not too much as it
worsens the algorithm’s efficiency. In our case, we
chose the population size to be the number of reflex
vertices of the polygon connecting this way the
input data of the problem and the elements of the
metaheuristic. Thus, the population of the
generation t in our algorithm is represented by:

},...,,{)(110
t
r

tt IIItP −= , where each t
iI represents an

individual belonging to the population P(t) and r is
the number of reflex vertices of the polygon Q.
Remember that an individual represents a possible
solution for our problem, i.e., each individual must
be a vertex-guard set. It has been proven that being
Q a polygon with r reflex vertices, r guards placed
on the reflex vertices of Q are always sufficient and
occasionally necessary to guard Q [20]. Thus, in our
algorithm, let },...,,{ 110 −= ruuuR be the set of
reflex vertices of Q. To create the initial population,

)0(P , we generate each of the r individuals in the
following way: }1,...,1,0{ −∈∀ ri , if }{\ iuR is a
vertex-guard set we mark all the vertices on

}{\ iuR as vertex-guards; otherwise we mark all the
vertices on R as vertex-guards. For example, in
Table 1 we present the initial population,)0(P , of
the polygon shown in Fig.4.

100111010001000000000
0 =I

100111010011000000000
1 =I

000111010011000000000
2 =I

100011010011000000000
3 =I

100101010011000000000
4 =I

100110010011000000000
5 =I

100111000011000000000
6 =I

Table 1: Individuals of)0(P .

Fig.4: Polygon with 20=n , 7=r .

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Antonio L. Bajuelos, Santiago Canales,
Gregorio Hernandez, Ana Mafalda Martins

ISSN: 1790-0832 1587 Issue 11, Volume 5, November 2008

3.1.3 Objective or Fitness Function
The fitness function should help us to make the best
selection of individuals to be reproduced. For that
purpose, it assigns lower values to the solutions that
are closer to the optimal. In our case, given an
individual I, the fitness function returns the number
of 1's that exist in the chain that represents it,
i.e., ∑ −

=
=

1

0
)(

n

j jgIf .

3.1.4 Selection
The selection method should choose the best
individuals to be reproduced. Since there are many
different types of selection, we performed a
comparative study taking two common methods into
account: the roulette wheel selection and the
tournament selection (see, e.g. [17]). In the first
method, the individuals are given a probability of
being selected that is inversely proportional to their
fitness. Two individuals are then randomly chosen,
based on these probabilities, to be parents in
crossover. In our case, we use this method to choose
the two best individuals to be parents in crossover.
In the tournament selection, k individuals are
randomly selected and the best one is chosen for
parenthood. We use a binary approach (k = 2), i.e.,
we select two pairs of individuals and choose as
parents the lowest fitness value in each pair.

3.1.5 Crossover
Crossover operates on selected genes from parent
individuals and creates new individuals (children).
As there are many different kinds of crossover, we
have done a comparative study with four different
types of crossover: single point crossover, two-point
crossover, uniform crossover and a variant of the
single point crossover where the generated children
cannot be clones of the parents (see, e.g. [17]). In
any crossover method we only generate one child
from two parents.

In single point crossover, a randomly selected
point (gene) of the two parents is chosen and the
parents are split at that crossover point. Finally, a
child is created by exchanging its parents’ tails (see
Fig.5 (a)). In two-point crossover, two points of the
parents are randomly selected and the fragment
between the two points is exchanged with the
corresponding fragment of the second individual
(see Fig.5 (b)). Uniform crossover is an operator
that decides (with some probability) which parent
will contribute to each of the gene values of the
child chromosomes. This allows the parent
chromosomes to be mixed at the gene level rather
than the segment level (as in the case of single and
two-point crossover). If the probability is 0.5,

approximately half of the genes of the child are
inherited from one parent and the other half from
the other. Fig.5 (c) illustrates a possible child after a
uniform crossover. Finally, the last crossover
operation is a variation of the single point crossover,
where only positions that do not generate copies of
the parents are allowed to be crossover points.

Fig.5: (a) Single point crossover; (b) Two-point

crossover and (c) Uniform crossover.

Crossover only occurs with a given probability, cp .
The value of cp is decided on the basis of trial and
error, but it is generally between 0.7 and 0.95. We
use 8.0=cp . Note that the child resulting from any
of the described crossover methods may not be valid
(i.e., it may not correspond to a guard-vertex set),
see Fig.6, in this case the child is not accepted.

Fig.6: Two-Point crossover and an invalid child.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Antonio L. Bajuelos, Santiago Canales,
Gregorio Hernandez, Ana Mafalda Martins

ISSN: 1790-0832 1588 Issue 11, Volume 5, November 2008

In this example, the obtained child is not valid
because the polygon is not covered by the vertices

1v and 3v .

3.1.6 Mutation
Since we use a binary encoding, the action of our
mutation operation is relatively simple. For each
binary digit (gene) it merely flips it from zero to one
or vice versa, with a mutation probability, mp (see
Fig. 7).

Fig.7: Mutation.

That probability is decided on the basis of trial and
error, however it should be relatively low. In our
case we apply the mutation to the child obtained in
the crossover operation, with 05.0=mp . As in the
crossover, if the resultant individual is not valid we
do not accept it.

3.1.7 Population's Generation
As there are many different ways to generate a new
population we used a common one: we select the
worst individual of the population to be deleted
replacing it by the child obtained at the crossover.
(see, e.g. [17]).

3.1.8 Population's Evaluation
We consider the evaluation of a population, i.e., the
fitness of a population,))((tPF , as the minimum
value of the objective function when applied to all
individuals of the population that is

)}(,...),(),(min{))((110
t
r

tt IfIfIftPF −= .

3.1.9 Termination Condition
If in a sufficiently large number of generations the
fitness does not change, then we can assume that we
are close to the optimum. Thus, we terminate if the
fitness of the population))((tPF remains
unchanged for a given number of generations h. In
our case, we consider 500=h (this value has been
empirically chosen).

3.2 Removing Redundant Vertex-Guards
After defining the GA's components, we obtain an
approximation algorithm that allows us to obtain a
vertex-guard set, G. However, it may be possible
that exists a set GU ⊂ such that QvVis

UGv
=

∈
)(

\
U .

So, we apply a post-processing step where we
iteratively remove those guards. This post-
processing is done in the following way: for each

Gvi ∈ , if Q is still covered by G without iv , then

iv is removed from G; otherwise it remains as part
of the set G.

4 Greedy Constructive Algorithms for
Visibility-Independent Sets
As we described in section 2, visibility-independent
sets provide us a method to compute a lower bound
on the optimal number of vertex-guards. A natural
approach to find a visibility-independent set S is to
do so in a constructive greedy way: start with a set
of candidates C (not visibility-independent), add
visibility-independent points one by one to a set S
(initially empty) selecting at each step a point from
the candidate set C, according to some rule.

In our greedy algorithms we use the candidate set
proposed by [4], which is 21 CCC ∪= , where 1C
denotes the convex vertices of Q and 2C denotes
the midpoints of the edges incident to two reflex
vertices. Concerning the rule to select the points, we
apply three different alternatives which results in
three different greedy algorithms: 1A , 2A and 3A .

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Antonio L. Bajuelos, Santiago Canales,
Gregorio Hernandez, Ana Mafalda Martins

ISSN: 1790-0832 1589 Issue 11, Volume 5, November 2008

1A :For each candidate ic we calculate the area of
)(icVis . At each step we select the candidate whose

visibility polygon has the smallest area.

2A : For each candidate ic we calculate)(icVis and
determinate the number of intersections with the
visibility polygons of the other candidates. At each
step we select the candidate that has the smallest
number of intersections.

3A : For each candidate ic we calculate the number
of candidates it sees. At each step we select the one
that sees the smallest number of points in C. This
method is one of the methods developed in [4].

In all these algorithms, after adding a point to S, we
remove from C all the candidates jc such that

)(jcVis intersects the union of the visibility
polygons of the elements on S. We stop when C is
empty.

Algorithm 1A is illustrated below.

Algorithm Determining S (greedy algorithm 1A)
Input: A polygon Q with n vertices
Output: A visibility-independent set S

1. φ←S
2. 21 CCC ∪←
3. for each Cci ∈ do
4. determine the area of)(icVis
5. end for
6. while φ≠C do
7. choose the Cci ∈ whose)(icVis has the

smallest area
8. }{ icSS ∪←
9. remove ic from C and all jc such that

φ≠∩
∈

)()(sViscVis
Ss

j U

10. end while
11. return S

Algorithms 2A and 3A are very similar to this one,
the main differences are in steps 4 and 7. It turns out
that 2A obtains the best results and 3A the worst,
both for orthogonal and arbitrary polygons.

5 Experiments and Results
According to section 3.1, we have several choices
for two of the GA's parameters: selection and

crossover. The different combinations produce eight
methods:

• Method 1 (1M): Roulette Wheel Selection
and Single Point Crossover

• Method 2 (2M): Roulette Wheel Selection
and Two-Point Crossover

• Method 3 (3M): Roulette Wheel Selection
and Uniform Crossover

• Method 4 (4M): Roulette Wheel Selection
and a Variant of the Single Point Crossover

• Method 5 (5M): Tournament Selection and
Single Point Crossover

• Method 6 (6M): Tournament Selection and
Two-Point Crossover

• Method 7 (7M): Tournament Selection and
Uniform Crossover

• Method 8 (8M): Tournament Selection and
a Variant of the Single Point Crossover

The example given in Fig.8 illustrates an arbitrary
polygon for which the visibility-independent set was
obtained with 2A and the solution obtained with the
method 8M .

Fig.8: S and G sets (represented by gray and black

dots, respectively) obtained with 2A and 8M on an
arbitrary polygon with 70=n .

Fig.9 shows an orthogonal polygon for which the
visibility-independent set was obtained with 2A and
the solution obtained with the method 8M .

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Antonio L. Bajuelos, Santiago Canales,
Gregorio Hernandez, Ana Mafalda Martins

ISSN: 1790-0832 1590 Issue 11, Volume 5, November 2008

Fig.9: S and G sets (represented by gray and black
dots, respectively) obtained with 2A and 8M on an
orthogonal polygon with 70=n .

Fig.10 shows a comb polygon that we tested with

8M , and Figure Fig.11 shows the orthogonal
version of a comb polygon that we tested with 8M .
As is well known these polygons establish the
necessity of ⎣ ⎦3/n and ⎣ ⎦4/n guards on arbitrary
and orthogonal polygons, respectively [20]. Figures
10 and 11 also illustrate the visibility-independent
set obtained by 2A , 5|| =S , and the solution
obtained by 8M , 5|| =G in both cases. It’s
important to observe that in these examples,

1||/|| =SG , which means that our solution G is an
optimal vertex-guard set in both cases.

Fig.10: S and G sets (represented by gray and black
dots, respectively) obtained with 2A and 8M in a

comb polygon with 15=n .

Fig.11: S and G sets (represented by gray and black
dots, respectively) obtained with 2A and 8M in an
orthogonal comb polygon with 20=n .

The implementation was done in C/C++ (for MS
Visual Studio 2005) on top of the CGAL3.2.1. The
above described methods were tested on a PC
featuring a Intel(R) Core (TM)2 CPU 6400 at 2.66
GHz and 1 GB of RAM.

Our experiments were performed on a large set
of randomly generated polygons (arbitrary and
orthogonal). The arbitrary polygons were generated
using the CGAL's function random_polygon_2 [12],
whose implementation is based on the method of
eliminating self-intersections in a polygon by using
the so-called “2-opt” moves method; and to generate
orthogonal polygons we used the polygon generator
developed by Joseph O'Rourke (personal
communication 2002). In the next two sections we
will discuss the results of our experiments on
arbitrary and orthogonal polygons, respectively.

5.1 Arbitrary Polygons
As stated above, we performed our experiments for
arbitrary polygons on a large set of randomly
generated polygons. We analyze the methods 1M ,

2M , 3M , 4M , 5M , 6M , 7M and 8M by
comparing the number of vertex-guards, the runtime
and the number of iterations. The following
experiments were done with four sets of arbitrary
polygons, each with 40 polygons of 30, 50, 70 and
100 vertex polygons, respectively. In Tables 2, 3, 4
and 5 are exposed the results obtained by the first
four methods. Note that, the tables show the average
number of vertex-guards, the average runtime (in
seconds) and the average number of iterations of the
algorithm.

Number of
vertices

|| G Time
(seconds) Iterations

30 5.275 19.225 740.025
50 8.400 72.300 1134.300
70 11.725 190.050 1763.200
100 17.000 504.525 2690.300

Table 2: Results obtained with 1M .

Number of
vertices

|| G Time
(seconds) Iterations

30 5.350 18.875 709.750
50 8.400 72.175 1130.400
70 11.675 177.050 1632.400
100 16.925 468.550 2532.400

Table 3: Results obtained with 2M .

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Antonio L. Bajuelos, Santiago Canales,
Gregorio Hernandez, Ana Mafalda Martins

ISSN: 1790-0832 1591 Issue 11, Volume 5, November 2008

Number of
vertices

|| G Time
(seconds) Iterations

30 5.275 17.625 685.225
50 8.275 68.825 1098.900
70 11.575 171.300 1641.600
100 16.900 460.450 2604.400

Table 4: Results obtained with 3M .

Number of
vertices

|| G Time
(seconds) Iterations

30 5.225 10.700 721.200
50 8.250 60.350 1145.000
70 11.750 158.500 1632.200
100 16.775 443.950 2529.500

Table 5: Results obtained with 4M .

As we can see, in these first four methods there are
almost no differences on the average number of
vertex-guards obtained. Though 4M seems to be
the one that obtains slightly better solutions, except
for 70=n . Concerning the average runtime, 4M
seems to be the best one.

In the following four cases, we analyze how the
different types of crossover behave, considering the
tournament selection. The obtained results are
shown in Tables 6, 7, 8 e 9.

Number of

vertices
|| G Time

(seconds) Iterations

30 5.350 17.325 686.200
50 8.500 60.900 1009.700
70 12.000 142.975 1399.600
100 16.850 384.775 2173.100

Table 6: Results obtained with 5M .

Number of
vertices

|| G Time
(seconds) Iterations

30 5.350 16.800 682.875
50 8.450 59.300 973.175
70 11.850 138.525 1355.800
100 17.000 365.600 1033.400

Table 7: Results obtained with 6M .

Number of
vertices

|| G Time
(seconds) Iterations

30 5.300 16.725 680.425
50 8.475 57.400 958.100
70 11.775 130.125 1296.800
100 16.825 321.325 1822.500

Table 8: Results obtained with 7M .

Number of
vertices

|| G Time
(seconds) Iterations

30 5.200 9.050 709.425
50 8.375 44.925 985.800
70 11.625 110.975 1324.700
100 16.900 310.500 1987.700

Table 9: Results obtained with 8M .

Again, in these four methods there are almost no
differences on the average number of vertex-guards
obtained. However, 8M seems to be the method
that obtains slightly better solutions, with the
exception of 100=n . Concerning the average
runtime, 8M also seems to be the best one.

Comparing the eight methods, we notice that the
obtained results, concerning the average of || G , are
approximately the same for all methods. However,

4M and 8M are the methods that seem to achieve
slightly better solutions. Concerning the average
runtime, 8M seems to be the best method.

Nevertheless, the comparison between the
obtained data by our eight methods only makes
sense if a statistical study is made to ensure the
statistically significance of the results [2]. So, first
of all, we studied the results related to the number of
vertex-guards. To check the data normality we
applied the Kolmogorov-Smirnof test (using the
Statistics Toolbox (Version 7.3) of the MATLAB
software), and we obtained the following p-values
for the method 1M : 1.3471e-036, for 30=n and
1.0754e-036, for 100and70,50=n . These values
mean that there is always a case that the data is non-
normally distributed. So, we used the Kruskal-
Wallis test to compare our data. In this test we
declare that a result is significantly different if the p-
value is less than 0.05. The p-values returned by the
Kruskal-Wallis test are 0.9676, 0.9565, 0.9191 and
0.9933 for the data obtained with the polygons with

100and70,50,30=n , respectively. So we can say
that there are no significantly differences between
the eight methods, regarding || G .

According to the previous conclusion, we
continued our statistical study regarding the
runtime. To check the data normality we applied the
Kolmogorov-Smirnof test, and we obtained the
following p-values for the method 1M : 1.0754e-036,
for 100and70,50,30=n . Consequently, we used
again the Kruskal-Wallis test to compare our data.
The p-values returned by the Kruskal-Wallis test are
0, for the data obtained with the polygons with

100and70,50,30=n . So we can conclude that at

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Antonio L. Bajuelos, Santiago Canales,
Gregorio Hernandez, Ana Mafalda Martins

ISSN: 1790-0832 1592 Issue 11, Volume 5, November 2008

least one method is significantly different,
concerning the runtime. Then we performed a
multiple comparison test to determine which pairs
of methods are significantly different, and which are
not (using the MATLAB's multicompare function).
The results provided by the tests allow us to
conclude that 8M is always the best method. As we
want to find a compromise between the goodness of
the solution and the algorithm's runtime we continue
our study considering that 8M is the algorithm that
obtains the best results.

It is important to note the infinity of the
alternatives left to explore with respect to
parameters of the GA metaheuristic. In this work,
we attempt to calculate references to these
parameters, noting that a more exhaustive study in
future investigations might improve the obtained
results.

Now, to infer about the average of the minimum
number of vertex-guards needed to cover an
arbitrary polygon with n vertices, we applied 8M to
eight sets of orthogonal polygons, each one with 40
polygons of 30, 50, 70, 100, 110, 130, 150 and 200
vertex polygons, respectively. The average of the
obtained results, concerning || G , are exposed in
Table 10.

Number of vertices || G

30 5.200
50 8.375
70 11.625

100 16.900
110 18.250
130 21.800
150 25.225
200 31.075

Table 10

Using the least squares method, we obtained the
following linear adjustment (see Fig.12):

38.6
8684.0

38.6
8684.01566.0)(xxxxf ≈+≈+=

Fig.12: Average number of guards for arbitrary

polygons

Hence, we can conclude that, on average, the
minimum number of vertex-guards needed to cover

an arbitrary polygon with n vertices is
38.6
n . This is

a much better result than the known theoretical
upper bound ⎣ ⎦3/n . In order to get a quantitative
measure on the quality of the calculated || G , we
computed the visibility-independent sets for our
instances (the eight sets of polygons described
above). The ratio between the smaller G (obtained
with 8M) and the larger visibility-independent set,
S obtained with 2A (see section 4) never exceeded
2. That implies that our algorithm has an
approximation ratio of 2. It should be noted,
however, that the approximation ratio in most cases
is less than 2, with an average of 1.3 for the 320
polygons.

5.2 Orthogonal Polygons
A similar study was made with randomly generated
orthogonal polygons.

We performed our experiments with four sets of
orthogonal polygons, each with 40 polygons of 30,
50, 70 and 100 vertex polygons, respectively. The
results obtained by the eight methods are shown in
Tables 11, 12, 13, 14, 15, 16, 17 and 18.

Number of
vertices

|| G Time
(seconds) Iterations

30 4.725 14.950 746.025
50 7.925 59.750 1150.900
70 10.675 162.000 1789.500
100 15.475 421.800 2738.500

Table 11: Results obtained with 1M .

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Antonio L. Bajuelos, Santiago Canales,
Gregorio Hernandez, Ana Mafalda Martins

ISSN: 1790-0832 1593 Issue 11, Volume 5, November 2008

Number of
vertices

|| G Time
(seconds) Iterations

30 4.625 15.250 749.225
50 7.875 59.100 1151.200
70 10.850 157.575 1712.500
100 15.500 401.875 2601.800

Table 12: Results obtained with 2M .

Number of
vertices

|| G Time
(seconds) Iterations

30 4.625 14.125 724.425
50 7.775 54.800 1102.700
70 10.325 149.875 1729.800
100 14.925 398.625 2745.400

Table 13: Results obtained with 3M .

Number of
vertices

|| G Time
(seconds) Iterations

30 4.575 9.525 735.200
50 7.775 50.250 1148.100
70 10.600 145.675 1733.800
100 15.350 387.425 2673.100

Table 14: Results obtained with 4M .

Number of
vertices

|| G Time
(seconds) Iterations

30 4.700 14.050 712.850
50 7.900 50.050 1035.000
70 10.725 124.450 1399.800
100 15.700 312.400 2058.200

Table 15: Results obtained with 5M .

Number of
vertices

|| G Time
(seconds) Iterations

30 4.750 14.400 740.175
50 7.900 48.725 985.700
70 10.725 122.075 1394.200
100 15.550 296.850 1964.000

Table 16: Results obtained with 6M .

Number of
vertices

|| G Time
(seconds)

Iterations

30 4.700 12.800 681.425
50 7.900 44.975 932.650
70 10.850 110.700 1269.500
100 15.025 285.800 1994.400

Table 17: Results obtained with 7M .

Number of
vertices

|| G Time
(seconds) Iterations

30 4.750 7.100 684.475
50 7.825 37.525 995.625
70 10.675 99.475 1339.800

100 15.375 265.625 1973.400

Table 18: Results obtained with 8M .

Comparing the eight methods, we notice that the
obtained results, concerning the average of || G , are
approximately the same for all methods; and 3M is
the method that seems to achieve a slightly better
solution. Concerning the average runtime, 8M
seems to be the best one. For the same reason as
before, concerning arbitrary polygons, we analyzed
our results using a statistical study. We concluded
that 8M is, again, the algorithm that achieves the
best results. Then we applied this algorithm to eight
sets of orthogonal polygons, each one with 40
polygons of 30, 50, 70, 100, 110, 130, 150 and 200
vertex polygons, respectively (see Table 19, for the
average of the obtained results, concerning || G).

Number of vertices || G

30 4.750
50 7.825
70 10.675
100 15.375
110 17.200
130 20.250
150 23.375
200 31.200

Table 19

Then, using the least squares method, we get the
next linear adjustment (see Fig. 13):

40.6
0556.0

40.6
0556.01561.0)(xxxxf ≈−≈−=

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Antonio L. Bajuelos, Santiago Canales,
Gregorio Hernandez, Ana Mafalda Martins

ISSN: 1790-0832 1594 Issue 11, Volume 5, November 2008

Fig.13: Average number of guards for orthogonal

polygons.

So, we conclude that, on average, the minimum
number of vertex-guards needed to cover an

orthogonal polygon with n vertices is
40.6
n , which

improves the theoretical upper bound ⎣ ⎦4/n . And
the approximation ratio of 8M is 1.9 (being, in most
cases less than 1.9, with an average of 1.4 for the
320 polygons).

6 Conclusions and Future Work
We designed and implemented eight approximation
algorithms to solve the MINIMUM VERTEX GUARD
problem on polygons based on general metaheuristic
genetic algorithms. We conducted an experimental
study of their performance on polygons, arbitrary
and orthogonal, and we made a statistical study to
elect the best method. Then, using the elected
algorithm we concluded that, on average, the
minimum number of vertex-guards on a polygon

with n vertices is
38.6
n , both for arbitrary polygons

and
40.6
n for orthogonal polygons. The

approximation ratio of the best algorithm is equal to
2, for arbitrary polygons and is equal to 1.9, for
orthogonal polygons.

Since the proposed methods, based on
metaheuristic approach - Genetic Algorithm, have
proven to behave well to solving the MINIMUM
VERTEX GUARD problem on polygons, there are
several directions for further research. We intend to
adapt and implement other metaheuristics (e.g.,
Simulated Annealing) and to develop hybrid
metaheuristics to try and improve the solution of
this problem, as well as to solve other NP-hard
visibility problems.

References:
[1] E. Alba. Parallel Metaheuristics: a New Class

of Algorithms, Wiley-Interscience Publishers,
2005.

[2] E. Alba and G. Luque, Measuring the
Performance of Parallel Metaheuristics, In: E.
Alba, Parallel Metaheuristics: A New Class of
Algorithms, Wiley-Interscience Publishers,
2005.

[3] M. Abellanas, E. Alba, S. Canales and G.
Hernández. Resolución de un problema de
iluminación con Simulated Annealing (in
spanish), Actas de MAEB'07, Tenerife, España,
2007.

[4] Y. Amit and J. S. B. Mitchell and E. Packer.
Locating Guards for Visibility Coverage of
Polygons, Proceedings of the Workshop on
Algorithm Engineering and Experiments, 1-15,
2007.

[5] A.L. Bajuelos, S. Canales, G. Hernández and
A.M. Martins. Solving some combinatorial
problems in grid n-ogons, in Proceedings of the
7th International Conference on Applied
Computer Science (ACS’07), Volume 7, 151-
156, Venice, Italy, 2007.

[6] A.L. Bajuelos, S. Canales, G. Hernández, A.M.
Martins. Estimating the Maximum Hidden
Vertex Set in Polygons, Proceedings of
ICCSA'08, 421-432, IEEE-CS Press, Perugia,
Italy, 2008.

[7] C. Blum and R. Andreia. Metaheuristics in
combinatorial optimization: Overview and
conceptual comparison. ACM Computers.
Survey, 35(3), 268-308, September, 2007.

[8] CGAL, Computational Geometry Algorithms
Library. http://www.cgal.org

[9] V. Chvátal. A combinatorial theorem in plane
geometry, J. of Combinatorial Theory (Series
B) 18 (1975) 39-41.

[10] S.K. Ghosh. Approximation Algorithms for Art
Gallery Problems, Proceedings of the Canadian
Information Processing Society Congress, 429-
434, 1987.

[11] F. Glover and G.A. Kochenberger. Handbook
of Metaheuristics, Kluwer Academic
Publishers, Boston, 2003.

[12] S. Hert, M. Hoffmann, L. Kettner, and S.
Schonherr. Geometric object generators. In C.
E. Board, editor, CGAL User and Reference
Manual. 3.2.1 edition, 2006.

[13] J. Kahn, M. Klawe, D. Kleitman. Traditional
galleries require fewer watchmen. SIAM J.
Algebraic and Discrete Methods 4 (1983) 194-
206.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Antonio L. Bajuelos, Santiago Canales,
Gregorio Hernandez, Ana Mafalda Martins

ISSN: 1790-0832 1595 Issue 11, Volume 5, November 2008

[14] D. Lee and A. Lin. Computational Complexity
of Art Gallery Problems, IEEE Transactions on
Information Theory IT-32, 276-282, 1996.

[15] C. Marcelo, C. C. de Souza, P.J. Rezende. An
Exact and Efficient Algorithm for the
Orthogonal Art Gallery Problem, Proceedings
of XX Brazilian Symposium on Computer
Graphics and Image Processing, v. 1, 87-94,
2007.

[16] M. Maric, M. Tuba, J. Kratica. One Genetic
Algorithm for Hierarchical Covering Location
Problem, in Proceedings of the 9th WSEAS
International Conference on Evolutionary
Computing (EC'08), 122-126, Sofia, Bulgaria,
2008.

[17] C.R. Reeves. Genetic Algorithms, In:
Handbook of Metaheuristics, F. Glover e G.A.
Kochenberger (eds). Kluwer, Boston, 55-82,
2003.

[18] D. Schuchardt and H. Hecker. Two NP-Hard
Art-Gallery Problems for Ortho-Polygons.
Math. Logic Quarterly, 41(2),261-267, 1995.

[19] A.P. Tomás, A. L. Bajuelos, F. Marques.
Approximation Algorithms to Minimum Vertex
Cover Problems on Polygons and Terrains,
LNCS 2657, Springer-Verlag, 869-878, 2003.

[20] J. Urrutia. Art Gallery and Illumination
Problems. In J.-R. Sack and J. Urrutia (eds)
Handbook of Computational Geometry,
Elsevier, 2000.

[21] K.S. Yildirim, T.E. Kalayci, A. Ugur.
Optimizing Coverage in a K-Covered and
Connected Sensor Network Using Genetic
Algorithms, in Proceedings of the 9th WSEAS
International Conference on Evolutionary
Computing (EC'08), 21-26, Sofia, Bulgaria,
2008.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS

Antonio L. Bajuelos, Santiago Canales,
Gregorio Hernandez, Ana Mafalda Martins

ISSN: 1790-0832 1596 Issue 11, Volume 5, November 2008

