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Abstract: - The problem of minimizing the number of vertex-guards necessary to cover a given simple polygon 
(MINIMUM VERTEX GUARD (MVG) problem) is NP-hard. This computational complexity opens two lines of 
investigation: the development of algorithms that establish approximate solutions and the determination of 
optimal solutions for special classes of simple polygons. In this paper we follow the first line of investigation 
and propose an approximation algorithm based on general metaheuristic genetic algorithms to solve the MVG 
problem. Based on our algorithm, we conclude that on average the minimum number of vertex-guards needed 
to cover an arbitrary and an orthogonal polygon with n vertices is 38.6/n  and 40.6/n , respectively. We also 
conclude that this result is very satisfactory in the sense that it is always close to optimal (with an 
approximation ratio of 2, for arbitrary polygons; and with an approximation ratio of 1.9, for orthogonal 
polygons). 
 
 
Key-Words: Computational Geometry, Art Gallery Problems, Visibility, Approximation Algorithms, 
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1 Introduction 
The Art Gallery Problems are well-studied visibility 
problems in Computational Geometry [20]. The 
original problem was introduced by Victor Klee, in 
1973, when he proposed the following problem: 
How many stationary guards are needed to cover an 
art gallery room with n walls? Informally the floor 
plan of the art gallery room is modeled by a simple 
polygon Q (simple closed polygon with its interior). 
A guard is considered to be a fixed point in Q with 
visibility range π2 . We say that a point x sees point 
y (or y is visible to x) if the line segment connecting 

both does not intersect the exterior of Q. A set of 
guards covers Q, if each point of Q is visible by at 
least one guard. Thus, the art gallery problem deals 
with setting a minimal number of guards in a gallery 
room whose floor plan has a polygonal shape, so 
that they can see every point in the room. Two years 
later Chvátal established the well known Art Gallery 
Theorem: ⎣ ⎦3/n  guards are occasionally necessary 
and always sufficient to cover a simple polygon of n 
vertices [9]. Over the years, numerous variations of 
the original problem have been considered and 
studied, such as: location of the guards (anywhere or 
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in specific positions, e.g., on vertices), different 
types of guards (e.g., stationary guards versus 
mobile guards) and different assumptions on the 
input polygon (e.g., orthogonal simple polygons, 
i.e., simple polygons whose edges meet at right 
angles), see [20]. An interesting variant is the 
Orthogonal Art Gallery Theorem. This theorem was 
first formulated and proved by Kahn et al. [13], in 
1983. It states that ⎣ ⎦4/n  guards are occasionally 
necessary and always sufficient to cover an 
orthogonal simple polygon of n vertices. Orthogonal 
simple polygons are an important subclass of 
polygons. As a matter of fact, they are useful as 
approximations to polygons and they arise naturally 
in domains such as raster graphics, VLSI design or 
architecture. Efficient algorithms, based on the 
proofs of the above theorems, were developed to 
guard both arbitrary and orthogonal simple polygons 
with ⎣ ⎦3/n  and ⎣ ⎦4/n  guards, respectively. 
Although these numbers are necessary in some 
cases, they often exceed the number of guards 
needed to cover a particular simple polygon. A 
variant of art gallery problem is the MINIMUM 
VERTEX GUARD (MVG) problem, which is the 
problem of finding the minimum number of guards 
placed on vertices (vertex-guards) needed to cover a 
given simple polygon. This is a NP-hard problem 
both for arbitrary and orthogonal simple polygons 
[14, 18]. 

Our contribution. The computational complexity 
of the MVG problem for simple polygons opens two 
lines of investigation: the development of 
algorithms that establish approximate solutions and 
the determination of optimal solutions for special 
classes of simple polygons (e.g., [5]). In this paper 
we follow the first line of investigation. We propose 
an approximation algorithm based on general 
metaheuristic genetic algorithms to solve the MVG 
problem on simple polygons (arbitrary and 
orthogonal). Since the optimal solution to the MVG 
problem is unknown, we use a method that allows 
us to determine a lower bound for our algorithm, as 
in [4]. This way, we are able to find the 
approximation ratio of our technique. Our 
implementation was developed using the CGAL 
library [8] and our experiments were performed on a 
large set of randomly generated simple polygons. 

This paper is structured as follows: in the next 
section we introduce some preliminary definitions 
and useful results. In section 3 we present a strategy, 
based on general metaheuristic genetic algorithms, 
to solve the MVG problem on simple polygons. In 
section 4 we establish greedy constructive 
algorithms that allow us to determine a lower bound 

for our algorithm. Section 5 is devoted to present 
our experiments and results on arbitrary and 
orthogonal polygons, subsections 5.1 and 5.2, 
respectively. Finally, in section 6 we draw 
conclusions and future work. 
 
 
2 Preliminaries 
As stated before, the MVG problem is NP-hard for 
simple polygons and a way to deal with this 
computational complexity is to develop 
approximation algorithms to tackle the problem. In 
general, these algorithms can be designed 
specifically to solve the problem (e.g., greedy 
constructive strategies) or they can be based on 
general metaheuristics. A metaheuristic is a general 
algorithmic framework which can be adapted to 
different optimization problems with minor 
adjustments (see [7, 11] for a comprehensive survey 
on the subject). There are several works where 
approximation algorithms (heuristics) were 
developed to solve the MINIMUM SET GUARD 
(MSG) problem (e.g., [4, 10, 15, 19]). In recent 
works, metaheuristic techniques have proven to be 
very well behaved in solving the MSG problem [3], 
as well as the MAXIMUM HIDDEN VERTEX SET 
problem [6], which is also a NP-hard visibility 
problem. On the other hand, genetic algorithms 
(GA) are very common metaheuristic techniques in 
computer science. They are extensively used to find 
approximate solutions of combinatorial optimization 
problems (e.g., [16, 21]). 

For the above reasons, in this paper we propose 
an algorithm based on the metaheuristic GA to 
compute a small vertex-guard set for a given simple 
polygon Q. 

Let Q be a simple polygon with n vertices 
110 ,...,, −nvvv  (we only study simple polygons in this 

paper, so we use the term polygon to refer a simple 
polygon). A vertex of Q is reflex if the interior angle 
between its two incident edges is greater than π, 
otherwise it is convex. We use r to represent the 
number of reflex vertices of Q. Without loss of 
generality, we assume that the vertices of Q are 
ordered in counterclockwise direction around the 
interior of Q. For a point Qp∈ , we call visibility 
polygon of p, )( pVis , to the set of all points Qq∈  
that are visible to p , i.e., 

}sees:{)( qpQqpVis ∈= . We say that G, a given 
subset of vertices of Q, is a vertex-guard set of Q if 
G cover Q, i.e., if QvVis

Gv
=

∈
)(U . The cardinality of 

a vertex-guard set is denoted by || G . 
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As the optimal solution for the MVG problem is 
unknown, we may ask: How can we expect to prove 
that our approximate solutions are close to the real 
ones? In order to answer this question, we 
developed a greedy constructive algorithm to 
calculate a large visibility-independent set on a 
given polygon. This gives us a method to compute a 
lower bound on the optimal number of vertex-
guards for each instance of our experiments. 
Applying the approximation algorithm together with 
the algorithm to determine the lower bound, for 
each instance of our experiments, we get the 
performance ratio of our approximation algorithm. 

In [4] a visibility-independent set of Q is defined 
as a finite set S , QS ⊂ , such that 

φ=∩∈∀ )()(,, qVispVisSqp . The cardinality 
of a visibility-independent set is denoted by || S . 
The example given in Fig. 1 illustrates a visibility-
independent set of cardinality 3.  

 
Fig.1: Visibility-independent set of an arbitrary 

polygon. Gray dots represent visibility-independent 
points. 

 
t is easy to verify that no single vertex-guard is able 
to see more than one point of S, consequently 

||||,, SGSG ≥∀ . So the number of vertex-
guards of a minimum-cardinality vertex-guard set of 
Q is at least the number of points in a maximum-
cardinality visibility-independent set. Thus, the 
number of points on a maximum-cardinality 
visibility-independent set is a lower bound for the 
optimal number of vertex-guards on Q. 
Nevertheless, the problem of determining this lower 
bound is also NP-hard [4], so we developed 
approximation algorithms to tackle it, as already 
stated.  

In our experiments, given a simple polygon, the 
main objective is to find a small vertex-guard set, G, 
and large visibility-independent set, S. The obtained 
set G approximates the optimal number of vertex-
guards with an approximation ratio of ||/|| SG . 
 
 

3 Approximation Algorithm Based on 
Genetic Algorithms (GA) 
Genetic algorithms are a particular class of 
evolutionary algorithms that use techniques inspired 
by evolutionary biology such as inheritance, 
mutation, selection, and crossover/recombination 
(e.g., [1]). They are implemented as a computer 
simulation in which a population of abstract 
representations of candidate solutions (called 
individuals or chromosomes) to an optimization 
problem evolves toward better solutions. The 
evolution usually starts from an initial population of 
randomly generated individuals. These individuals 
are evaluated with a function (fitness) that indicates 
the adaptation degree of the individual to the 
environment. From this initial situation a series of 
iterations are realized in each of which there is 
simulated the creation of a new generation of 
individuals from the previous generation. This 
process consists of applying the genetic operators 
selection, crossover and mutation on the individuals. 
Commonly, the algorithm terminates when either a 
maximum number of generations has been 
produced, or a satisfactory fitness level has been 
reached for the population. The final population, if 
the algorithm converges properly, will be composed 
of good individuals, the best of these being the 
solution given by the algorithm (see Fig.2). 
 

 
Fig.2: General scheme of a Genetic Algorithm. 

The pseudo-code of a genetic algorithm follows: 

Algorithm Genetic Algorithm 
1. 0←t  
2. Initialize the population, )(tP  
3. while termination condition not met do 
4.  Evaluate )(tP  
5.  Selection on )(tP  
6.  Recombine and/or Mutate )(tP  
7. 1+← tt  
8.  Generate )(tP  from )1( −tP  
9. end while 
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Taking into account the established above, to solve 
an optimization problem with the GA metaheuristic 
it is necessary to specify the following:  

• a genetic representation of the possible 
solutions, called individuals or chromosomes, 
to the problem (Encoding);  
• a way of creating an initial population of 
possible solutions (Initial population);  
• a function to evaluate the individuals and 
simulate the process of natural selection, 
sorting solutions according to their “strength” 
(Objective or Fitness function);  
• genetic operators to alter the composition of 
the solutions (Selection, Crossover and 
Mutation) and  
• the values of various parameters used by the 
genetic algorithm (e.g., size of the population, 
probability of the genetic operators, evaluation 
of the population, generation of the population, 
termination condition). 

 
In the next subsection we describe these items so 
they suit our problem. 
 
 
3.1 GA's Parameters Definition 
 
3.1.1 Encoding.  
In our algorithm an individual (or chromosome) I is 
represented by a chain of 0's and 1's of length n, i.e., 

110 ... −= ngggI , where each element ig  is called a 
gene. Each gene represents a vertex of the polygon, 
i.e., the thi  gene represents the vertex Qvi ∈ . The 
value of each gene is 0 or 1. If the 1=ig  then 
vertex iv  is a vertex-guard; otherwise ( 0=ig ) 
vertex iv  is not a vertex-guard (see Fig.3). 
 

 
Fig.3: An individual I (for an arbitrary polygon with 

20=n ) and its representation. Black dots represent 
vertex-guards. 

 

3.1.2 Initial Population 
The population of a given generation/iteration 
consists of a set of individuals. The total number of 
individuals in each population has to be large 
enough to ensure diversity, but not too much as it 
worsens the algorithm’s efficiency. In our case, we 
chose the population size to be the number of reflex 
vertices of the polygon connecting this way the 
input data of the problem and the elements of the 
metaheuristic. Thus, the population of the 
generation t  in our algorithm is represented by: 

},...,,{)( 110
t
r

tt IIItP −= , where each t
iI  represents an 

individual belonging to the population P(t) and r is 
the number of reflex vertices of the polygon Q. 
Remember that an individual represents a possible 
solution for our problem, i.e., each individual must 
be a vertex-guard set. It has been proven that being 
Q a polygon with r reflex vertices, r guards placed 
on the reflex vertices of Q are always sufficient and 
occasionally necessary to guard Q [20]. Thus, in our 
algorithm, let },...,,{ 110 −= ruuuR  be the set of 
reflex vertices of Q. To create the initial population, 

)0(P , we generate each of the r individuals in the 
following way: }1,...,1,0{ −∈∀ ri , if }{\ iuR  is a 
vertex-guard set we mark all the vertices on 

}{\ iuR  as vertex-guards; otherwise we mark all the 
vertices on R as vertex-guards. For example, in 
Table 1 we present the initial population, )0(P , of 
the polygon shown in Fig.4. 
 

100111010001000000000
0 =I  

100111010011000000000
1 =I  

000111010011000000000
2 =I  

100011010011000000000
3 =I  

100101010011000000000
4 =I  

100110010011000000000
5 =I  

100111000011000000000
6 =I  

Table 1: Individuals of )0(P . 

 
Fig.4: Polygon with 20=n , 7=r . 
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3.1.3 Objective or Fitness Function 
The fitness function should help us to make the best 
selection of individuals to be reproduced. For that 
purpose, it assigns lower values to the solutions that 
are closer to the optimal. In our case, given an 
individual I, the fitness function returns the number 
of 1's that exist in the chain that represents it, 
i.e., ∑ −

=
=

1

0
)(

n

j jgIf . 

 
3.1.4 Selection 
The selection method should choose the best 
individuals to be reproduced. Since there are many 
different types of selection, we performed a 
comparative study taking two common methods into 
account: the roulette wheel selection and the 
tournament selection (see, e.g. [17]). In the first 
method, the individuals are given a probability of 
being selected that is inversely proportional to their 
fitness. Two individuals are then randomly chosen, 
based on these probabilities, to be parents in 
crossover. In our case, we use this method to choose 
the two best individuals to be parents in crossover. 
In the tournament selection, k individuals are 
randomly selected and the best one is chosen for 
parenthood. We use a binary approach (k = 2), i.e., 
we select two pairs of individuals and choose as 
parents the lowest fitness value in each pair. 
 
3.1.5 Crossover 
Crossover operates on selected genes from parent 
individuals and creates new individuals (children). 
As there are many different kinds of crossover, we 
have done a comparative study with four different 
types of crossover: single point crossover, two-point 
crossover, uniform crossover and a variant of the 
single point crossover where the generated children 
cannot be clones of the parents (see, e.g. [17]). In 
any crossover method we only generate one child 
from two parents. 

In single point crossover, a randomly selected 
point (gene) of the two parents is chosen and the 
parents are split at that crossover point. Finally, a 
child is created by exchanging its parents’ tails (see 
Fig.5 (a)). In two-point crossover, two points of the 
parents are randomly selected and the fragment 
between the two points is exchanged with the 
corresponding fragment of the second individual 
(see Fig.5 (b)). Uniform crossover is an operator 
that decides (with some probability) which parent 
will contribute to each of the gene values of the 
child chromosomes. This allows the parent 
chromosomes to be mixed at the gene level rather 
than the segment level (as in the case of single and 
two-point crossover). If the probability is 0.5, 

approximately half of the genes of the child are 
inherited from one parent and the other half from 
the other. Fig.5 (c) illustrates a possible child after a 
uniform crossover. Finally, the last crossover 
operation is a variation of the single point crossover, 
where only positions that do not generate copies of 
the parents are allowed to be crossover points. 
 

 
Fig.5: (a) Single point crossover; (b) Two-point 

crossover and (c) Uniform crossover. 
 
Crossover only occurs with a given probability, cp . 
The value of cp  is decided on the basis of trial and 
error, but it is generally between 0.7 and 0.95. We 
use 8.0=cp . Note that the child resulting from any 
of the described crossover methods may not be valid 
(i.e., it may not correspond to a guard-vertex set), 
see Fig.6, in this case the child is not accepted. 
 

 
Fig.6: Two-Point crossover and an invalid child. 
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In this example, the obtained child is not valid 
because the polygon is not covered by the vertices 

1v  and 3v . 
 
3.1.6 Mutation 
Since we use a binary encoding, the action of our 
mutation operation is relatively simple. For each 
binary digit (gene) it merely flips it from zero to one 
or vice versa, with a mutation probability, mp  (see 
Fig. 7). 
 

 
Fig.7: Mutation. 

 
That probability is decided on the basis of trial and 
error, however it should be relatively low. In our 
case we apply the mutation to the child obtained in 
the crossover operation, with 05.0=mp . As in the 
crossover, if the resultant individual is not valid we 
do not accept it. 
 
3.1.7 Population's Generation 
As there are many different ways to generate a new 
population we used a common one: we select the 
worst individual of the population to be deleted 
replacing it by the child obtained at the crossover. 
(see, e.g. [17]).  
 
 

3.1.8 Population's Evaluation 
We consider the evaluation of a population, i.e., the 
fitness of a population, ))(( tPF , as the minimum 
value of the objective function when applied to all 
individuals of the population that is 

)}(,...),(),(min{))(( 110
t
r

tt IfIfIftPF −= . 
 
3.1.9 Termination Condition 
If in a sufficiently large number of generations the 
fitness does not change, then we can assume that we 
are close to the optimum. Thus, we terminate if the 
fitness of the population ))(( tPF  remains 
unchanged for a given number of generations h. In 
our case, we consider 500=h  (this value has been 
empirically chosen). 
 
 
3.2 Removing Redundant Vertex-Guards 
After defining the GA's components, we obtain an 
approximation algorithm that allows us to obtain a 
vertex-guard set, G. However, it may be possible 
that exists a set GU ⊂  such that QvVis

UGv
=

∈
)(

\
U . 

So, we apply a post-processing step where we 
iteratively remove those guards. This post-
processing is done in the following way: for each 

Gvi ∈ , if Q is still covered by G without iv , then 

iv is removed from G; otherwise it remains as part 
of the set G. 
 
 
4 Greedy Constructive Algorithms for 
Visibility-Independent Sets 
As we described in section 2, visibility-independent 
sets provide us a method to compute a lower bound 
on the optimal number of vertex-guards. A natural 
approach to find a visibility-independent set S is to 
do so in a constructive greedy way: start with a set 
of candidates C (not visibility-independent), add 
visibility-independent points one by one to a set S 
(initially empty) selecting at each step a point from 
the candidate set C, according to some rule. 

In our greedy algorithms we use the candidate set 
proposed by [4], which is 21 CCC ∪= , where 1C  
denotes the convex vertices of Q and 2C  denotes 
the midpoints of the edges incident to two reflex 
vertices. Concerning the rule to select the points, we 
apply three different alternatives which results in 
three different greedy algorithms: 1A , 2A  and 3A .  
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1A :For each candidate ic  we calculate the area of 
)( icVis . At each step we select the candidate whose 

visibility polygon has the smallest area. 
 

2A : For each candidate ic  we calculate )( icVis  and 
determinate the number of intersections with the 
visibility polygons of the other candidates. At each 
step we select the candidate that has the smallest 
number of intersections. 
 

3A : For each candidate ic  we calculate the number 
of candidates it sees. At each step we select the one 
that sees the smallest number of points in C. This 
method is one of the methods developed in [4]. 
 
In all these algorithms, after adding a point to S, we 
remove from C all the candidates jc  such that 

)( jcVis  intersects the union of the visibility 
polygons of the elements on S. We stop when C is 
empty.  

Algorithm 1A  is illustrated below.  
 
Algorithm Determining S  (greedy algorithm 1A ) 
Input: A polygon Q with n vertices 
Output: A visibility-independent set S 

1. φ←S  
2. 21 CCC ∪←  
3. for each Cci ∈  do 
4.  determine the area of )( icVis  
5. end for 
6. while φ≠C  do  
7.  choose the Cci ∈  whose )( icVis  has the 

smallest area 
8.  }{ icSS ∪←  
9. remove ic  from C and all jc  such that 

φ≠∩
∈

)()( sViscVis
Ss

j U  

10.  end while 
11. return S 

 
Algorithms 2A  and 3A  are very similar to this one, 
the main differences are in steps 4 and 7. It turns out 
that 2A  obtains the best results and 3A  the worst, 
both for orthogonal and arbitrary polygons. 
 
 
5 Experiments and Results 
According to section 3.1, we have several choices 
for two of the GA's parameters: selection and 

crossover. The different combinations produce eight 
methods:  
 

• Method 1 ( 1M ): Roulette Wheel Selection 
and Single Point Crossover 

• Method 2 ( 2M ): Roulette Wheel Selection 
and Two-Point Crossover 

• Method 3 ( 3M ): Roulette Wheel Selection 
and  Uniform Crossover 

• Method 4 ( 4M ): Roulette Wheel Selection 
and a Variant of the Single Point Crossover 

• Method 5 ( 5M ): Tournament Selection and 
Single Point Crossover 

• Method 6 ( 6M ): Tournament Selection and 
Two-Point Crossover 

• Method 7 ( 7M ): Tournament Selection and  
Uniform Crossover 

• Method 8 ( 8M ): Tournament Selection and 
a Variant of the Single Point Crossover 

 
The example given in Fig.8 illustrates an arbitrary 
polygon for which the visibility-independent set was 
obtained with 2A  and the solution obtained with the 
method 8M . 
 

 
Fig.8: S and G sets (represented by gray and black 

dots, respectively) obtained with 2A  and 8M  on an 
arbitrary polygon with 70=n .  

 
Fig.9 shows an orthogonal polygon for which the 
visibility-independent set was obtained with 2A  and 
the solution obtained with the method 8M . 
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Fig.9: S and G sets (represented by gray and black 
dots, respectively) obtained with 2A  and 8M  on an 
orthogonal polygon with 70=n . 
 
Fig.10 shows a comb polygon that we tested with 

8M , and Figure Fig.11 shows the orthogonal 
version of a comb polygon that we tested with 8M . 
As is well known these polygons establish the 
necessity of ⎣ ⎦3/n  and ⎣ ⎦4/n  guards on arbitrary 
and orthogonal polygons, respectively [20]. Figures 
10 and 11 also illustrate the visibility-independent 
set obtained by 2A , 5|| =S , and the solution 
obtained by 8M , 5|| =G  in both cases. It’s 
important to observe that in these examples, 

1||/|| =SG , which means that our solution G is an 
optimal vertex-guard set in both cases. 
 

 
Fig.10: S and G sets (represented by gray and black 
dots, respectively) obtained with 2A  and 8M  in a 

comb polygon with 15=n . 
 
 

 
Fig.11: S and G sets (represented by gray and black 
dots, respectively) obtained with 2A  and 8M  in an 
orthogonal comb polygon with 20=n . 
 
The implementation was done in C/C++ (for MS 
Visual Studio 2005) on top of the CGAL3.2.1. The 
above described methods were tested on a PC 
featuring a Intel(R) Core (TM)2 CPU 6400 at 2.66 
GHz and 1 GB of RAM. 

Our experiments were performed on a large set 
of randomly generated polygons (arbitrary and 
orthogonal). The arbitrary polygons were generated 
using the CGAL's function random_polygon_2 [12], 
whose implementation is based on the method of 
eliminating self-intersections in a polygon by using 
the so-called “2-opt” moves method; and to generate 
orthogonal polygons we used the polygon generator 
developed by Joseph O'Rourke (personal 
communication 2002). In the next two sections we 
will discuss the results of our experiments on 
arbitrary and orthogonal polygons, respectively. 
 
 
5.1 Arbitrary Polygons 
As stated above, we performed our experiments for 
arbitrary polygons on a large set of randomly 
generated polygons. We analyze the methods 1M , 

2M , 3M , 4M , 5M , 6M , 7M  and 8M  by 
comparing the number of vertex-guards, the runtime 
and the number of iterations. The following 
experiments were done with four sets of arbitrary 
polygons, each with 40 polygons of 30, 50, 70 and 
100 vertex polygons, respectively. In Tables 2, 3, 4 
and 5 are exposed the results obtained by the first 
four methods. Note that, the tables show the average 
number of vertex-guards, the average runtime (in 
seconds) and the average number of iterations of the 
algorithm.  
 

Number of  
vertices 

|| G  Time 
(seconds) Iterations 

30 5.275 19.225 740.025
50 8.400 72.300 1134.300 
70 11.725 190.050 1763.200 
100 17.000 504.525 2690.300 

Table 2: Results obtained with 1M . 
 

Number of  
vertices 

|| G  Time 
(seconds) Iterations 

30 5.350 18.875 709.750 
50 8.400 72.175 1130.400 
70 11.675 177.050 1632.400
100 16.925 468.550 2532.400 

Table 3: Results obtained with 2M . 
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Number of  
vertices 

|| G  Time 
(seconds) Iterations 

30 5.275 17.625 685.225 
50 8.275 68.825 1098.900 
70 11.575 171.300 1641.600 
100 16.900 460.450 2604.400 

Table 4: Results obtained with 3M . 
 

Number of  
vertices 

|| G  Time 
(seconds) Iterations 

30 5.225 10.700 721.200 
50 8.250 60.350 1145.000
70 11.750 158.500 1632.200 
100 16.775 443.950 2529.500 

Table 5: Results obtained with 4M . 

As we can see, in these first four methods there are 
almost no differences on the average number of 
vertex-guards obtained. Though 4M  seems to be 
the one that obtains slightly better solutions, except 
for 70=n . Concerning the average runtime, 4M  
seems to be the best one. 

In the following four cases, we analyze how the 
different types of crossover behave, considering the 
tournament selection. The obtained results are 
shown in Tables 6, 7, 8 e 9. 

 
Number of  

vertices 
|| G  Time 

(seconds) Iterations 

30 5.350 17.325 686.200 
50 8.500 60.900 1009.700 
70 12.000 142.975 1399.600 
100 16.850 384.775 2173.100 

Table 6: Results obtained with 5M . 
 

Number of  
vertices 

|| G  Time 
(seconds) Iterations 

30 5.350 16.800 682.875 
50 8.450 59.300 973.175 
70 11.850 138.525 1355.800 
100 17.000 365.600 1033.400 

Table 7: Results obtained with 6M . 
 

Number of  
vertices 

|| G  Time 
(seconds) Iterations 

30 5.300 16.725 680.425 
50 8.475 57.400 958.100 
70 11.775 130.125 1296.800
100 16.825 321.325 1822.500 

Table 8: Results obtained with 7M . 

Number of  
vertices 

|| G  Time 
(seconds) Iterations 

30 5.200 9.050 709.425 
50 8.375 44.925 985.800 
70 11.625 110.975 1324.700 
100 16.900 310.500 1987.700 

Table 9: Results obtained with 8M . 
 
Again, in these four methods there are almost no 
differences on the average number of vertex-guards 
obtained. However, 8M  seems to be the method 
that obtains slightly better solutions, with the 
exception of 100=n . Concerning the average 
runtime, 8M  also seems to be the best one. 

Comparing the eight methods, we notice that the 
obtained results, concerning the average of || G , are 
approximately the same for all methods. However, 

4M  and 8M  are the methods that seem to achieve 
slightly better solutions. Concerning the average 
runtime, 8M  seems to be the best method. 

Nevertheless, the comparison between the 
obtained data by our eight methods only makes 
sense if a statistical study is made to ensure the 
statistically significance of the results [2]. So, first 
of all, we studied the results related to the number of 
vertex-guards. To check the data normality we 
applied the Kolmogorov-Smirnof test (using the 
Statistics Toolbox (Version 7.3) of the MATLAB 
software), and we obtained the following p-values 
for the method 1M : 1.3471e-036, for 30=n  and 
1.0754e-036, for 100and70,50=n . These values 
mean that there is always a case that the data is non-
normally distributed. So, we used the Kruskal-
Wallis test to compare our data. In this test we 
declare that a result is significantly different if the p-
value is less than 0.05. The p-values returned by the 
Kruskal-Wallis test are 0.9676, 0.9565, 0.9191 and 
0.9933 for the data obtained with the polygons with 

100and70,50,30=n , respectively. So we can say 
that there are no significantly differences between 
the eight methods, regarding || G . 

According to the previous conclusion, we 
continued our statistical study regarding the 
runtime. To check the data normality we applied the 
Kolmogorov-Smirnof test, and we obtained the 
following p-values for the method 1M : 1.0754e-036, 
for 100and70,50,30=n . Consequently, we used 
again the Kruskal-Wallis test to compare our data. 
The p-values returned by the Kruskal-Wallis test are 
0, for the data obtained with the polygons with 

100and70,50,30=n . So we can conclude that at 
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least one method is significantly different, 
concerning the runtime. Then we performed a 
multiple comparison test to determine which pairs 
of methods are significantly different, and which are 
not (using the MATLAB's multicompare function). 
The results provided by the tests allow us to 
conclude that 8M  is always the best method. As we 
want to find a compromise between the goodness of 
the solution and the algorithm's runtime we continue 
our study considering that 8M  is the algorithm that 
obtains the best results. 

It is important to note the infinity of the 
alternatives left to explore with respect to 
parameters of the GA metaheuristic. In this work, 
we attempt to calculate references to these 
parameters, noting that a more exhaustive study in 
future investigations might improve the obtained 
results. 

Now, to infer about the average of the minimum 
number of vertex-guards needed to cover an 
arbitrary polygon with n vertices, we applied 8M  to 
eight sets of orthogonal polygons, each one with 40 
polygons of 30, 50, 70, 100, 110, 130, 150 and 200 
vertex polygons, respectively. The average of the 
obtained results, concerning || G , are exposed in 
Table 10. 
 

Number of vertices || G  

30 5.200 
50 8.375 
70 11.625 

100 16.900 
110 18.250 
130 21.800 
150 25.225 
200 31.075 

Table 10 
 
Using the least squares method, we obtained the 
following linear adjustment (see Fig.12): 
 

38.6
8684.0

38.6
8684.01566.0)( xxxxf ≈+≈+=  

 

 
Fig.12: Average number of guards for arbitrary 

polygons 
 
Hence, we can conclude that, on average, the 
minimum number of vertex-guards needed to cover 

an arbitrary polygon with n vertices is 
38.6
n . This is 

a much better result than the known theoretical 
upper bound ⎣ ⎦3/n . In order to get a quantitative 
measure on the quality of the calculated || G , we 
computed the visibility-independent sets for our 
instances (the eight sets of polygons described 
above). The ratio between the smaller G (obtained 
with 8M ) and the larger visibility-independent set, 
S obtained with 2A  (see section 4) never exceeded 
2. That implies that our algorithm has an 
approximation ratio of 2. It should be noted, 
however, that the approximation ratio in most cases 
is less than 2, with an average of 1.3 for the 320 
polygons. 
 
 
5.2 Orthogonal Polygons 
A similar study was made with randomly generated 
orthogonal polygons. 

We performed our experiments with four sets of 
orthogonal polygons, each with 40 polygons of 30, 
50, 70 and 100 vertex polygons, respectively. The 
results obtained by the eight methods are shown in 
Tables 11, 12, 13, 14, 15, 16, 17 and 18. 
 

Number of 
vertices 

|| G  Time 
(seconds) Iterations 

30 4.725 14.950 746.025
50 7.925 59.750 1150.900 
70 10.675 162.000 1789.500 
100 15.475 421.800 2738.500 

Table 11: Results obtained with 1M . 
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Number of 
vertices 

|| G  Time 
(seconds) Iterations 

30 4.625 15.250 749.225
50 7.875 59.100 1151.200 
70 10.850 157.575 1712.500 
100 15.500 401.875 2601.800 

Table 12: Results obtained with 2M . 
 

Number of 
vertices 

|| G  Time 
(seconds) Iterations 

30 4.625 14.125 724.425 
50 7.775 54.800 1102.700
70 10.325 149.875 1729.800 
100 14.925 398.625 2745.400 

Table 13: Results obtained with 3M . 
 

Number of  
vertices 

|| G  Time 
(seconds) Iterations 

30 4.575 9.525 735.200 
50 7.775 50.250 1148.100 
70 10.600 145.675 1733.800 
100 15.350 387.425 2673.100 

Table 14: Results obtained with 4M . 
 

Number of 
vertices 

|| G  Time 
(seconds) Iterations 

30 4.700 14.050 712.850 
50 7.900 50.050 1035.000 
70 10.725 124.450 1399.800
100 15.700 312.400 2058.200 

Table 15: Results obtained with 5M . 
 

Number of 
vertices 

|| G  Time 
(seconds) Iterations 

30 4.750 14.400 740.175 
50 7.900 48.725 985.700 
70 10.725 122.075 1394.200 
100 15.550 296.850 1964.000 

Table 16: Results obtained with 6M . 
 

Number of 
vertices 

|| G  Time 
(seconds) 

Iterations 

30 4.700 12.800 681.425 
50 7.900 44.975 932.650 
70 10.850 110.700 1269.500
100 15.025 285.800 1994.400 

Table 17: Results obtained with 7M . 
 

Number of 
vertices 

|| G  Time 
(seconds) Iterations 

30 4.750 7.100 684.475 
50 7.825 37.525 995.625 
70 10.675 99.475 1339.800 

100 15.375 265.625 1973.400 

Table 18: Results obtained with 8M . 
 
Comparing the eight methods, we notice that the 
obtained results, concerning the average of || G , are 
approximately the same for all methods; and 3M  is 
the method that seems to achieve a slightly better 
solution. Concerning the average runtime, 8M  
seems to be the best one. For the same reason as 
before, concerning arbitrary polygons, we analyzed 
our results using a statistical study. We concluded 
that 8M  is, again, the algorithm that achieves the 
best results. Then we applied this algorithm to eight 
sets of orthogonal polygons, each one with 40 
polygons of 30, 50, 70, 100, 110, 130, 150 and 200 
vertex polygons, respectively (see Table 19, for the 
average of the obtained results, concerning || G ). 
 

Number of vertices || G  

30 4.750 
50 7.825 
70 10.675 
100 15.375 
110 17.200 
130 20.250 
150 23.375 
200 31.200 

Table 19 
 
Then, using the least squares method, we get the 
next linear adjustment (see Fig. 13): 
 

40.6
0556.0

40.6
0556.01561.0)( xxxxf ≈−≈−=  
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Fig.13: Average number of guards for orthogonal 

polygons. 
 
So, we conclude that, on average, the minimum 
number of vertex-guards needed to cover an 

orthogonal polygon with n vertices is 
40.6
n , which 

improves the theoretical upper bound ⎣ ⎦4/n . And 
the approximation ratio of 8M  is 1.9 (being, in most 
cases less than 1.9, with an average of 1.4 for the 
320 polygons). 
 
 
6 Conclusions and Future Work 
We designed and implemented eight approximation 
algorithms to solve the MINIMUM VERTEX GUARD 
problem on polygons based on general metaheuristic 
genetic algorithms. We conducted an experimental 
study of their performance on polygons, arbitrary 
and orthogonal, and we made a statistical study to 
elect the best method. Then, using the elected 
algorithm we concluded that, on average, the 
minimum number of vertex-guards on a polygon 

with n vertices is 
38.6
n , both for arbitrary polygons 

and 
40.6
n  for orthogonal polygons. The 

approximation ratio of the best algorithm is equal to 
2, for arbitrary polygons and is equal to 1.9, for 
orthogonal polygons. 

Since the proposed methods, based on 
metaheuristic approach - Genetic Algorithm, have 
proven to behave well to solving the MINIMUM 
VERTEX GUARD problem on polygons, there are 
several directions for further research. We intend to 
adapt and implement other metaheuristics (e.g., 
Simulated Annealing) and to develop hybrid 
metaheuristics to try and improve the solution of 
this problem, as well as to solve other NP-hard 
visibility problems. 
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