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Abstract: - Many studies reported that the hematocrit (HCT) is the most highly influencing factor affecting the 
accuracy of the glucose measurements by portable/handheld devices. It is also known as an important factor for 
clinical decision-making situations. Therefore, estimation of HCT plays a crucial role for enhancing accuracy 
of glucose measurements and performance of therapy. In this paper, we present novel methods for hematocrit 
estimation from the transduced current curve which is produced by glucose-oxidase reaction in strip-type 
electrochemical biosensors. The proposed methods are nonlinear, including neural networks and support vector 
machine. Input features are composed of two parts: the sampled points of the time-varying current curve and 
extended extra features computed from those sampled points. 
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1 Introduction 
Hematocrit is expressed as the proportion of blood 
volume that is occupied by red blood cells (RBCs). 
It is one of the primary characteristics in the 
whole blood and a useful clinical indicator in 
surgical and hemodialysis. A low hematocrit is 
referred to anemic which reduces the capacity of 
blood to carry oxygen and high hematocrit can be 
polycythaemia which may be a warning signal for 
serious circulatory failure. In addition, many studies 
reported that hematocrit is a factor that significantly 
affects the accuracy of glucose measurements by 
handheld devices [1,2,3]. The glucose results are 
underestimated at higher hematocrit levels, while 
overestimated at lower hematocrit levels. Therefore, 
estimating this factor is one of the most important 
steps for improving performance of glucose 
measurements by handheld devices. 

Estimation of hematocrit can be done manually 
by centrifugation method, in which a capillary tube 
called micro-hematocrit tube is filled with blood. 
After being centrifuged at 10,000RPM for five 
minutes, the blood in the tube is separated into 
layers. The top layer is liquid plasma, the white 

blood cells (WBCs) and platelets form a thin layer 
between the plasma and the RBCs that is the buffy 
coat, and the bottom of the tube is the red blood 
cells (RBCs) with the greatest weight. The 
hematocrit is measured as the percent of the RBC 
column to the total blood column. 

Another approach for hematocrit measurement 
applied in modern lab equipment is using automated 
analyzer which can make several other 
measurements at the same time, and the hematocrit 
is indirectly calculated by multiplying the red cell 
count by the mean cell volume. Some reports also 
indicated that hematocrit can be determined from 
impedance, in which Hanai’s model to blood is used 
with assumption of red blood cells to be non-
conducting. This method requires an initial 
hematocrit measurement by a classical method. It 
can be used only for continuous hematocrit 
monitoring. In addition, the dielectric spectroscopy 
which is called as impedance spectroscopy is also 
applied to estimate the hematocrit [4,5]. Hematocrit 
is estimated based on the interaction of an external 
field with the electric dipole moment of sample 
which is often expressed as permittivity. A 
nonlinear model for hematocrit estimation from the 
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permittivity β-dispersion change was proposed by 
Foster and Schwan [5]. However, the best result on 
correlation was obtained from a linear model 
proposed by Treo [4]. All of the above methods for 
hematocrit estimation are quite complicated or 
require individual devices which can not be used to 
reduce the effects of hematocrit in glucose 
measurement by handheld devices. 

In our studies, we investigated approaches for 
estimating hematocrit density using electrochemical 
glucose biosensors which is originally designed for 
glucose measurement with handheld devices. These 
biosensors use an enzyme to break the blood 
glucose down and produce ions. These ions are 
transferred to an electrode to produce a current 
which is called the transduced current. Since the 
ionization activity is varying along time, the current 
curve is presented as time-varying curve. We tried 
to estimate the HCT density from this calibration 
curve, based on the assumption that the changing 
pattern of the current curve includes all information 
about the characteristics of the blood samples, 
including the hematocrit density. In this paper, 
applying nonlinear methods for hematocrit 
estimation not only from current points sampled 
from the transduced current curve but also from 
extra features of current curve which can offer better 
performance. 

The rest of this paper is organized as follows. 
Section 2 describes glucose measurements by 
electrochemical biosensors and the transduced 
current curve. A method for extract extra features is 
shown in section 3. Nonlinear methods for 
hematocrit estimation are shown in section 4. In 
section 5, we present experimental results on root 
mean squares error (RMSE). Finally, we make 
conclusion in section 6. 
 
 
2 Transduced Anodic Current Curve 
Glucose oxidase has been used widely in several 
different industries ranging from a glucose 
biosensor for diabetes monitoring to food 
preservative. In industry of electrochemical glucose 
biosensor, the glucose oxidase (GOD) enzyme is 
used to catalyze the oxidation of glucose by oxygen 
to produce gluconic acid and hydrogen peroxide: 

Glucose+O2+GO/FA 
       →Gluconicacid+H2O2+GO/FADH2 

GO/FADH2+Ferricinium+ 

       → GO/FAD+Ferricinium 
Ferrocence → Ferrocence++e- 

 

Incubation time Reaction time

Figure 1. An example of the transduced current 
curve 

The reduced form of the enzyme (GO/FADH2) is 
oxidized to its original state by an electron mediator 
(ferrocence). The resulting reduced mediator is then 
oxidized by the active electrode to produce the 
transduced anodic current (e-). An instance of the 
transduced anodic current curve obtained through 
time for 14 seconds using a biochemical glucose 
biosensor is shown in Fig. 1. In this curve, the first 8 
seconds can be called as incubation time which is 
time for waiting chemical reaction producing 
electric signal with high-enough level. We only 
concern the second part of the current curve during 
the last six seconds. During this time, the anodic 
current curve was sampled at the frequency of 10Hz 
to produce current points. There are 59 current 
points sampled from the second part of current 
curve considered as the input pattern vector for 
hematocrit estimation. 
 

 
Figure 2. Transduced anodic current points used in 

estimation of hematocrit 
 
 
3 Extra features from transduced 
current curve 
It appears that the current points sampled from the 
transduced current curve may be an exponential 
function of time, as depicted in Fig. 3. Hence, a 
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reasonable model of these current points can be 
formulated by 

b
n nx ap= , n=1, 2,…., d.        (1) 

where a, b are the parameters of approximated 
model, d is the number of sampled points, and xn is 
values of current response at time point pn. 
 

 
Figure 3. Current sampled points used in estimation 

of hematocrit 
 
It is obvious that for this model we have to estimate 
the parameters a and b. We can change it to a linear 
model which can be easily handled. Taking 
logarithm on both sides of Eq. (1), we have 

log(xn)=log(a)+blog(pn), n=1, …, d.  (2) 

In the matrix form, we have 

Λ=LG,    (3) 

where 

Λ=[log(x1), log(x2), …, log(xd)]T, 

G=[log(a)  b]T  

and 

  

1
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1 log( )

1 log( )

1 log( )d
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p
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The least mean square solution for G=[θ1 θ2]T from 
the linear model (3) is 

Ĝ=(LTL)-1LTΛ.   (4) 

Let U=(LTL)-1LT, then the Eq. (4) can be rewritten 
by 

Ĝ=UΛ.    (5) 

Finally, the estimator for a and b is a=exp(θ1), b= θ2. 
Thus, from the sampled points of the current curve, 

it becomes simple to estimate parameters of the 
approximated model. These extra parameters 
together with the sampled points are used as the 
input features for the nonlinear methods to estimate 
the hematocrit as described in the following section. 

Hematocrit 

a, b 

Signal model 

Nonlinear 
methods 

Sampled current points 

Figure 4. Hematocrit estimation using 
transduced current curve and its extra 

features 

 
4 Nonlinear methods for Hematocrit 
Estimation 
 
4.1 Support Vector Machine (SVM) 
Support vector machine (SVM) is a supervised 
learning method used for classification and 
regression. It is based on the framework of 
statistical learning theory which has been developed 
by Vapnik et. al [6]. It has been gaining popularity 
due to many attractive features and promising 
empirical performance. It can be also used widely in 
medical diagnosis [7]. In SVM, the loss functions 
must be introduced to measure distance. Four 
possible loss functions can be used that are 
quadratic, Laplace, Huber and ε-insensitive. The 
quadratic loss function corresponding to the 
conventional least-square error criterion allows easy 
estimation of parameters. However, it is very 
sensitive to outliers. Two loss functions that are less 
sensitive to outliers are quadratic and Laplacian 
ones. However, these loss functions do not produce 
sparseness in the support vectors. Vapnik took into 
account this issue by introducing ε-insensitive 
loss function which is an approximation to 
Huber’s loss function but allows obtaining a 
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sparse set of support vectors. The ε-insensitive 
loss function is defined by 

      ε

0 ( , )
( )

( , )
for g t ε

L t
g t ε otherwise

⎧ − <⎪= ⎨ − −⎪⎩

x w
x w  (6) 

 
In function approximation, a SVM using ε-
insensitive loss function can be called as ε–
support vector regression or ε–SVR. 

Given (xj, tj), j=1, 2,…, N be training patterns, ε–
SVR tries to find parameters so that the 
approximated function g(x,w) has most ε deviation 
from the actually obtained targets tj for all training 
data, and as flat as possible. It does not care about 
errors as long as they are less than ε, but will not 
accept any deviation larger than this. In the cases 
where g(x,w) is a linear function, the approximation 
function is given by 

g(x)=<w,x>+b,   (7) 

and the problem for finding w in ε–SV regression 
can be written formally as: 

minimize  21
2

w     (8) 

subject to  
,

,
j j

j j

t b ε
b t ε

− < > − ≤⎧
⎨< > + − ≤⎩

w x
w x

Sometimes, the actual function g can not 
approximate all pairs (xj, tj), or we should allow for 
some errors. A method based on “soft margin” was 
proposed [6]. One can introduce slack variables 

*,i iξξ  to cope with otherwise infeasible constraints 
of the optimization which is described in the 
equation (8). Therefore, we now arrive at a problem 
stated as: 

minimization: 2 *

1

1 (
2

N

subject to 
,

,
, 0

j j j
*

j j j
*

j j

t b ε+
b t ε+

ξ
ξ

ξ ξ

⎧ − < > − ≤
⎪< > + − ≤⎨
⎪ ≥⎩

w x
w x  

Figure 6. Soft margin loss setting corresponds 
for a linear SV machine. 
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Figure 5. ε-insensitive loss function 

 
where C>0 is a constant. This problem can be 
converted to the dual optimization problem that 
maximizes 

* *
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1 1
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∑

where * *, , , 0j j j jα α η η ≥  are dual variables. The 
solution for w is given by 

*

1

( )
N

j j j
j=

= α − α∑w x

0, )

0, )

 (10) 

and b can be computed by: 

*

, (

, (
j j j

j j j

b t for C

b t for C

= − < > − ∈

= − < > + ∈

w x

w x

ε α

ε α
. (11) 

In the cases which are not possible to have a linear 
function on the training data, a nonlinear mapping 
can be applied in order to map the data into other 
feature space where the linear model can be used. In 
addition, we can use an approach via kernels 
defined by: 

)j j
j

C ξ
=

+ + ξ∑w   (9) 
K(x1,x2):=<Ф(x1), Ф(x2)>. (12) 
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The solution for w in this case is given by 

*

1
( ) (

N

)j j
j=

= α −α Φ∑w jx  (13) 

Another approach for SVM in regression proposed 
by Schölkopf et al. [8] is called v-SVR which 
incorporates a change with v. The optimization 
problem is given by minimization of 

2

1

1 1
2

N

j
j

v
N

ε ξ
=

− + ∑w  (14) 

,
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, , 0

j j j
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j j j
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j j

t b ε+
b t ε+

⎧ − < > − ≤
⎪< > + − ≤⎨
⎪ ≥⎩

w x
w x

ξ
ξ

ξ ξ ε
 

Thus, SVM finds a globally optimal solution. It uses 
structural risk minimization and can generalize well 
to unseen data. The computational complexity of 
SVMs does not depend on the dimensionality of the 
input space. 
 
4.2 ELM algorithm 
Neural network is one of the nonlinear methods 
widely used in learning machine and function 
approximation [9,10,11]. It can efficiently resolve 
problems which are difficult to handle by parametric 
methods. A feedforward neural network may consist 
of one input layer, one output layer and one or 
multiple hidden layers. However, in function 
approximation, it was shown that a single hidden 
layer feedforward neural network (SLFN) can 
approximate any function with arbitrary small error 
if activation function is chosen properly. 

 
A typical architecture of SLFN with Ñ hidden units 
and C output units is given in Fig. 7. If the hidden 
units adopt the activation function f(·) then the 
SLFN is mathematically modeled by: 

1
( ),

N
d

i i i
i

f b
=

= ⋅ +∑o w x xα   ∈  (15) 

where wi=[wi1, wi2, …, wid]T is the weight vector 
connecting from the input units to the i-th hidden 
unit, bi is the bias of the i-th hidden unit, and αi=[αi1, 
αi2, …, αiC]T is the weight vector connecting from 
the i-th hidden unit to the output units. Note that 
wi·x =< wi, x> is the inner product of wi and x. 

For a training set consisting of pairs of vectors (xj, 
tj), j=1, 2,  …, N, where xj and tj are the j-th input 
pattern and its target, respectively. The main goal of 
training process is to adjust the network weights wi, 
αi , and bi so that they minimize the error function 
defined by: 

E =  ( )2

1

N

j j
j=

−∑ o t

   =  (16) 
2

1 1

( )
N N

i i j i j
j i

f b
= =

⎛ ⎞
⋅ + −⎜ ⎟

⎝ ⎠
∑ ∑ w x tα

Traditionally, this minimization process can be done 
by gradient-descent based algorithms, in which 
parameter vector W consisting of weights (wi, αi) 
and biases bi is iteratively adjusted as follows 

Eη ∂
= −

∂
W W

W
 (17) 

where η is a learning rate determining the speed at 
which the network obtains a minimum in the 
criterion function E(w). In the feedforward neural 
networks, a popular learning algorithm based on 
gradient descent is back-propagation (BP) learning 
algorithm that gradients can be calculated and the 
vectors W can be determined by error propagation 
from the output layer to the input layer. 

Figure 7. The architecture of the SLFN 

αN 

αi 

α1 

wÑ 

wi 

xj1 

xjd 

b1

bÑ

oj1

ojc

ojibi

However, this algorithm often meets problems 
such as: 

- It can converge very slowly if the learning 
rate is too small. However, for a large 
learning rate, it can be unstable or divergent. 

- It can stop at local minima instead of global 
minima. 

- It may be over-trained and obtain worse 
generalization performance. 

These problems have been overcome by many 
improvements proposed by many researchers 
[12,13,14]. However, up to now, most of the 
training algorithms based on gradient descent are 
still slow due to many learning steps which may be 
required in the learning process. 
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Recently, Huang et al. [15] proposed an effective 
training algorithm for SLFNs that is extreme 
learning machine (ELM). This algorithm can 
overcome problems in gradient-descent based 
algorithms. 

Given f(·) be the activation function of hidden 
units. ELM tries to find the network parameters that 
minimize error of equation defined by 

HA=T, (18) 

where A is output weight matrix, T=[t1 t2 … tN]T is 
the desired target vector and H is hidden layer 
output matrix defined by 

       
1 1 1 1

1 1

( ) (

( ) (

N N

N NN N

f b f b )

)f b f b

⎡
⎢
⎢
⎢ ⎥
⎢⎣

⋅ + … ⋅ +

=
⋅ + … ⋅ +

w x w x

H
w x w x

% %

% %

O MM

⎤
⎥
⎥

⎥⎦

. (19) 

A salient feature of ELM algorithm is that the biases 
and input weights are randomly assigned, output 
weights are determined by pseudo-inverse operation 
of hidden layer output matrix as follows: 

Â=H†T, (20) 

where H† is Moore-Penrose (MP) generalized 
inverse of H. This is the minimum norm least-
squares solution of (18). In summary, the ELM 
algorithm can be described as following: 

Algorithm ELM: Given a training set S={(xj,tj) | 
j=1,…,N}, activation function f(x), and number of 
hidden node Ñ. 

- Randomly assign the input weights wm 
and biases bm, m=1, 2, …, Ñ. 

- Determine the output matrix H of the 
hidden layer by using Eq. (19). 

- Determine the output weight matrix A 
by using Eq. (20). 

Thus, this algorithm can determine the network 
parameters by non-iterative steps. It can offer good 
performance at high learning speed in many 
applications. 

When the whole training set is not available, a 
development of ELM called online sequential 
extreme learning machine (OS-ELM) was proposed 
by N.Y. Liang et al. [16]. It is an online sequential 
learning algorithm for SLFNs based on the ELM 
and can learn one-by-one or block-by-block of data. 
In OS-ELM, the input weights and hidden layer 
biases are also randomly chosen and the output 
weights can be updated by arriving data.  

However, because of randomly selecting, the 
biases and input weights of ELM and OS-ELM are 
non-optimal which results in a large number of 

hidden units are required. Hence, a large memory is 
needed to save network parameters in devices, and 
the trained network responds slowly to new input 
patterns. 
 
4.3 RLS-ELM algorithm 
An improvement of ELM to obtain compact trained 
networks was shown in our previous study called as 
regularized least squares ELM (RLS-ELM) [17]. 
This algorithm determines network weights based 
on linear models. From (18), matrix H can be 
approximated by 

H=TA†, (21) 

where A† is MP generalized inverse of A. We can 
express equation (21) in the form of 

f[XW]=TA†, (22) 

where f[XW]ij= f([XW]ij)=f(wj ·xi+bj), matrices X 
and W are defined by: 

X= 1 2

1 1 1

T
N⎡ ⎤

⎢ ⎥
⎣ ⎦

x x xK

K
, 

W= 1 2

1 2

N

Nb b b
⎡ ⎤
⎢ ⎥
⎣ ⎦

w w w %

%

K

K
. 

In most cases, the activation function f is invertible. 
So, Equation (22) can be rewritten as follows: 

XW= f-1[TA†], (23) 

where f -1[TA†]ij= f -1([TA†]ij). If we define a matrix 
P by 

P=T† f -1[TA†], (24) 

where T† is the MP generalized inverse of T, then 
Equation (23) becomes 

XW=TP   (25) 

A method used for the regularization of ill-posed 
problems is Tikhonov regularization [18], in which 
the solution for W of (25) can be found by 
minimizing 

||XW-TP||2+λ||W||2, (26) 

where λ is a positive constant. The solution for (26) 
is given by 

Ŵ=(XTX+λI)-1XTTP. (27) 

This is the direct solution for W. An indirect 
solution is given by 

Ŵ =XTY, (28) 

where 
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Y = (XXT+λI)-1TP. (29) 

Eq. (24) shows the determining method of matrix P. 
However, we do not know A at beginning of 
training process, so the matrix P should be 
randomly assigned and then it can be used to 
estimate input weights and hidden layer biases by 
Eq. (27) or Eq. (28). After determining these 
parameters, the output weights are computed by the 
MP generalized inverse as given by Eq. (20). 

In summary, the RLS-ELM algorithm for 
compact SLFNs can be described as follows: 

Algorithm RLS-ELM: Given a training set 
S={(xj,tj) | j=1,…,N}, activation function f(x), and 
number of hidden node Ñ. 

- Randomly assign the values for the matrix P. 
- Estimate the input weights wm and biases bm 

by using Eq. (27) or Eq. (28). 
- Determine the output matrix H of the hidden 

layer by using Eq. (19). 
- Determine the output weight matrix A by 

using Eq. (20). 

Thus, the network parameters of SLFNs can be 
determined by the non-iterative procedures. They 
are simple and have low computational complexity, 
which results in extremely high speed for both 
training and testing. 

In many real-world applications, the number of 
outputs C is much smaller than the number of inputs 
d. Hence, though we still assign random values for 
matrix P, the number of randomly chosen values for 
matrix P (CxÑ) is much smaller than (d+1)xÑ that is 
used for the original ELM. Especially, in hematocrit 
estimation, the number of sampled current points is 
d=59 while C=1. Therefore, if we use the whole of 
current points as input features then RLS-ELM 
assigns only Ñ random values for matrix P which is 
reduced sixty times in comparison with the original 
ELM. 

In addition, Bartlett claimed that the networks 
tend to produce better generalization performance if 
the network parameters have small norm [19]. The 
solution for W by using (27) or (28) is found with 
small norm which tend to offer better generalization 
performance of trained SLFNs. The number of 
hidden units is also reduced significantly by using 
RLS-ELM. In hematocrit estimation with the whole 
current points, it is 5 while that for the original ELM 
is 15. Therefore, the memory needed to saving 
network parameters is reduced three times by using 
RLS-ELM, this is important in hardware 
implementation. 
 

4.3 ELS-ELM algorithm 
This section briefly introduces another improvement 
of ELM for training SLFNs with compact networks 
called as evolutionary least squares ELM (ELS-
ELM) algorithm [20]. It is combination of ELM and 
differential evolution (DE) [21], in which the input 
weights and hidden layer biases are determined by 
using least-squares and three steps of DE process. 
Suppose that input weights and hidden layer biases 
form an individual in population: 

θ={ , ,…, , b1, b2,…, bÑ}. 1
Tw 2

Tw T
Nw %

Each individual in the initial generation is generated 
by [22]: 

Ŵ=X†TP, (26) 

where X† is MP generalized inverse of X. 
The output weights corresponding to each 

individual are computed by MP generalized inverse. 
Three steps of DE process are used and individuals 
with better fitness values are retained for the next 
generation. The fitness function is chosen as the root 
mean squares error (RMSE) on the whole training 
set or the validation set and defined as follows: 

( )2

1

1 N

j j
j

RMSE o t
N =

= −∑ , (27) 

where o and t are actual output and desired output 
corresponding to the j-th input pattern. In summary, 
the ELS-ELM for SLFNs can be described as 
follows: 

a) Initialization: Generate the initial generation 
being composed of parameter vectors { θi,G | i=1, 
2, …, NP} as the population, where NP is the 
population size. 
For each individual θ in the population, we do: 
i) Randomly assigning the values for the 

matrix P. 
ii) Estimating input weights and hidden layer 

biases of θ by using Eq. (26). 
iii) Calculating the hidden-layer output matrix 

H by Eq. (19). 
iv) Determining the output weights A by using 

Eq. (20). 
v) Calculate the fitness value. 

b) Training process: 
At each generation G, we do: 
i) Mutation: the mutant vector is generated as 

vi,G+1= θr1,G+F(θr2,G - θr3,G), where r1, r2, r3 
are different random indices and F is a 
constant factor used to control the 
amplification of the differential variation. 
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ii) Crossover: the trial vector is formed so that 

  

if

or
if

and

rand

rand

≤⎧
⎪
⎪= ⎨

>⎪
⎪ ≠⎩

v

μ
θ

ji,G+1

ji,G+1

ji,G+1

b(j) CR

j = rnbr(i)

b(j) CR

j rnbr(i),

where rand b(j) is the j-th evaluation of a 
uniform random number generator, CR is 
the crossover constant and rnbr(i) is a 
randomly chosen index which ensures at 
least one parameter from vji,G+1. 

iii) Determine the output weights by Eq.(20). 
iv) Evaluate the fitness for each individual. 
v) Selection: The new generation is 

determined by: 
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where φ( · ) is the fitness function and є is a 
predefined tolerance rate. Three steps of DE process 
are repeated until the goal is met or a maximum 
learning epochs is completed. This algorithm can 
obtain compact networks and good performance for 
function approximation. Therefore, the performance 
for hematocrit estimation can be improved. 
 
5 Experimental Results 
In this section, experimental results of nonlinear 
methods for hematocrit estimation are presented. 
Blood samples in dataset were collected from 
volunteers that were randomly selected. During data 
collection for experiments, there were outliers 
which affect the final results. We can remove these 
outliers by using distance based or area-descent 
based methods [23]. After removing outliers, we 
have a dataset of 199 blood samples. Every sample 
was divided into two parts. The first part was used 
in determining the transduced current curve. The 
second part was used to determine the desired 
hematocrit value which is measured from accurate 
machine in hospital. The distribution of accurate 
hematocrit values is shown in Fig. 8 with mean 
value of 36.02 and deviation of 6.39. This 
distribution is fairly representing the trend of 
hematocrit values for human beings. The dataset 
was divided into two subsets: 40 percent of the data 
set was used for training and the remaining 60 
percent was used for blind test for the methods used 
for this study which are introduced in the Section 4. 

The input features were normalized into the range [0, 
1]. 

In the experimental study for SVM, we tried 
different combination of cost parameters C and 
parameters v: C=[211, 210, …, 2-1, 2-2] and v=[20, 2-1, 
…, 2-10]. The average results of 50 trials for each 
combination of (C, v) were computed and the best 
performance was obtained when C=29 and v=2-2. In 
ELS-ELM algorithm, the population size NP was set 
to twice the number of parameters of the networks; 
F and CR were set to 1 and 0.8, respectively. The 
number of hidden units used for ELM was 15, and 
that for both RLS-ELM and ELS-ELM was 5. 

 
Figure 8. The distribution of collected hematocrit 

 

Training Testing 
Method 

RMSE Mean RMSE Mean

SVM 3.73 0.25 4.58 -0.09

ELS-ELM 4.25 10-5 4.63 -0.18

RLS-ELM 4.30 10-7 4.90 -0.05

ELM 4.27 10-4 4.90 -0.26
Table 1. Comparison of root mean square errors 

(RMSE) without using extra features 
 

Training Testing 
Method 

RMSE Mean RMSE Mean

SVM 3.73 0.23 4.12 -0.19

ELS-ELM 3.72 10-8 3.97 0.10

RLS-ELM 3.69 10-8 4.05 -0.15

ELM 3.81 10-2 4.20 0.10
Table 2. Comparison of root mean square errors 

(RMSE) with using extra features 

The average results of fifty trials without using extra 
features are shown in Table 1, and those with using 
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extra features are shown in Table 2. In Table 1, we 
can see that the ELS-ELM can obtain RMSE of 4.63 
for testing set which is smallest in comparison with 
the mentioned ELM algorithms, and the RMSE for 
SVM approach was 4.58 which is little smaller than 
the ELM based methods. In Table 2, we can see that 
ELS-ELM can obtain RMSE of 3.97 which is 
smallest in comparison with other mentioned 
nonlinear methods. Furthermore, results obtained by 
using extra features are better than those without 
using extra features. 

Although the nonlinear methods that we used for 
estimating hematocrit density from the whole blood 
using a glucose biosensor do not give considerable 
difference in performance, these results can be very 
important fact for the next studies in reducing 
effects of hematocrit in glucose measurements by 
portable devices. In other words, one can select a 
method depending upon the computational 
complexity of the methods while considering the 
specification and computational capability of the 
hand-held measurement system. 

 
6 Conclusions 
As generally accepted in clinical laboratory, the 
hematocrit is an important factor for clinical 
decision marking and significantly affects the 
accuracy of glucose measurements from the whole 
blood. Estimating hematocrit density by using the 
transduced current can be an important research step 
for enhancing performance of glucose 
measurements by handheld devices. 

This paper introduces application of nonlinear 
methods for hematocrit estimation from the 
transduced current curve obtained by using portable 
devices. The experimental results show that the 
nonlinear models achieve acceptable performance. 
In comparison with ELM, RLS-ELM and ELS-ELM 
can obtain better performance with compact 
networks which can save memory in hardware 
implementation and make the trained networks 
responding fast to the new input patterns. This fact 
is very important for application of a method to 
hand-held device which has limited computational 
specification in both hardware and software. 
Experimental results also show that two extra 
features extracted from the current curve contribute 
significantly in enhancing performance of 
hematocrit estimation. 
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