
Design of a Real Time Transaction Processing Monitor (TPM)

Benchmark Testbed

MARIA LUISA CATALAN, DENNIS A. LUDENA R., HIDENORI HUMENO,

MASAYOSHI ARITSUGI

Graduate School of Science and Technology

Kumamoto University

39-1, Kurokami 2-chome, Kumamoto City 860-8555

JAPAN

{maru123, dennis}@st.cs.kumamoto-u.ac.jp

aritsugi@cs.kumamoto-u.ac.jp

Abstract: - The Transaction Processing Monitor (TPM) is the most-used middleware in different e-commerce

systems from large enterprises to medium and small businesses available in the internet. Due to its growing

popularity, the necessity for a more efficient TPM performance is now the major concern between the developers

and researchers. The need for a high-end benchmark platform for a TPM is at present very vital to meet the high

performance needs of online transactions. In addition to the performance characteristics of the TPM, we also

have to ensure the security of the transactions. In this paper, we perform a detailed analysis of the current

software packages available for this application. And therefore, we propose a secure, isolated, and highly

configurable environment using the real-time emulation capabilities of NS2 and the virtualization capabilities of

Xen, in order to provide a testbed with the characteristics and behavior of a real network.

Key-Words: - Virtualization, Emulation, Networking, Transaction Processing, Benchmark, Modelling

1 Introduction
The TPM (Transaction Processing Monitor) is at

present the most used middleware for online

transactions processing systems. Due to the great

increase of using online transactions around the

world, the need to develop a more efficient TPM

system is becoming an enormous concern among

developers.

TPM handles thousands of transactions coming from

different sources and geographical locations, all

trying to get the desired information without errors in

the shortest amount of time. For this reason, an urgent

need for a new and efficient middleware system that

can perform and manage the task more efficiently is

now in great demand [1, 2].

However, the required budget to develop a test

platform is high, and the flexibility is limited [3]. In

addition, most of the variables are controlled, which

makes the platform too much predictive in its

behavior.

Back in our first approach (shown in Figure 1), we

determined the best environment to realize the

creation of a test platform based on virtualization

technology. The main parts of this system are:

- PC which will handle the Database

- PC which will handle the TPM system

- Virtualized users

For the virtualized users, we use Xen which has

special kernel that allows mainly only two types of

virtualization: The Paravirtualization and Fully

Virtualization [7, 8].

The virtual users can send Ethernet frames to and

from the simulation. This approach has the advantage

of using real TCP/IP stack. In the case of Xen’s

paravirtualization feature, we have a direct access to

the hardware [9, 10]. But the major limitation that we

faced was the required memory for each user.

This condition did not allow us to create more users

in order to benchmark the system. Figure 1 shows the

architecture of our previous study, the three PC

Linux-based systems.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

MARIA LUISA CATALAN, DENNIS A. LUDENA R.,
 HIDENORI HUMENO, MASAYOSHI ARITSUGI

ISSN: 1790-0832 1490 Issue 10, Volume 5, October 2008

Figure 1. Desired architecture
[1]

As for the network emulation tool, we are going to

use NS2. NS2 is very well known among developers

and researchers around the world because of its

capabilities to test new network protocols.

2 TP (Transaction Processing) Monitor
A TP monitor is a complex middleware program

designed to manage the execution of a transaction. In

the event a client initiates a transaction, the TP

monitor sends the transaction to the database

depending on the type of request and sends back a

response.

The core concept is a transaction which strictly

considers the ACID requirements [11].

An acronym which stands for Atomicity (all

transactions are either completely committed, or are

not done at all), Consistency (the transactions

transforms into a new correct state), Isolation, (the

series of transaction stages must not be visible to

other transactions), and Durability (once the

transaction commits, the results should be preserved

despite any failures).

The types of jobs performed through the TP monitor

are: process management, transaction management,

and client/server communication management.

Figure 2. Hierarchy of the TPC Business environment
[11]

.

2.1 The TPC-C
TPC-C stands for Transaction Processing

Performance Council which is an on-line transaction

processing (OLTP) benchmark. TPC-C is more

complex than previous OLTP benchmarks, such as

TPC-A because of its multiple transaction types,

more complex database and overall execution

structure. TPC-C involves a combination of five

concurrent transactions of different types and

complexity, either executed on-line or queued for

deferred execution.

The database is comprised of nine types of tables

with a wide range of record and population sizes.

TPC-C is measured in transactions per minute

(tpmC).

The characteristics of the TPC-C are:

• The simultaneous execution of multiple

transaction types that span a breadth of

complexity

• On-line and deferred transaction execution modes

• Multiple on-line terminal sessions

• Moderate system and application execution time

• Significant disk input/output

• Transaction integrity (ACID properties)

• Non-uniform distribution of data access through

primary and secondary keys

• Databases consisting of many tables with a wide

variety of sizes, attributes, and relationships

• Contention on data access and update

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

MARIA LUISA CATALAN, DENNIS A. LUDENA R.,
 HIDENORI HUMENO, MASAYOSHI ARITSUGI

ISSN: 1790-0832 1491 Issue 10, Volume 5, October 2008

Figure 2 shows the general model of the usage of

TPC-C system.

3 Virtualization Technologies
Virtualization is now a hot research topic for both

servers and desktops due to its standard software

application wherein multiple virtual machines can be

held on a host PC [12]. Through virtualization,

experiments with routers and networks also become

possible, as well as between the host computer and

the virtual laboratory without risking the real

environment [13].

Here, we provide a high level overview of the most

popular methods of virtualization [14], the Full

virtualization and the Paravirtualization.

3.1 Full Virtualization
Fully virtualization is the most popular method

supported by VMWare and Microsoft (Virtual PC).

For desktops, this means running the virtualized

operating system over a fully installed operating

system like Windows or Linux. Inside the virtual

machine application, a user is isolated and can create

different virtual machine configurations (guests)

where each of the guests can have their own virtual

devices, including drivers, hardware and peripherals.

Users can install an operating system and applications

into each of the virtual machines created inside the

full virtualization solution. Administering one of the

guests is just like administering a single operating

system.

3.2 Paravirtualization
Paravirtualization solutions, like the Xen Virtual

Machine Monitor (VMM) requires a special

operating system installation [14]. In Linux, this is

simply a customized kernel and management

software piece. This method, like full virtualization

provides secure isolation between the virtual

machines. Xen requires the installation of a Xen-

capable Linux kernel that can act as the control

operating system. This controls the paravirtualization

layer that resides between physical devices and guest

operating systems.

The main technical difference between this method

and the full virtualization comes in the

paravirtualization layer, which connects the I/O

device between different guests and provides direct

driver access to the guests.

Paravirtualization layers can provide access to direct

hardware resources, while full virtualization solutions

provide access to virtualized device drivers only, thus

lacks the support to some of the latest hardware

features.

Paravirtualization can also be used to provide device

access to operating systems that the native drivers

might not have for these devices available. Each of

the guest operating system installations are full Linux

installations with their own devices, file and storage

requirements, etc.

Table 1 shows a comparison of the different

virtualization methods.

 Method 1: Method 1: Method 1: Method 1:

Full Full Full Full
VirtualizationVirtualizationVirtualizationVirtualization

Method 2: Method 2: Method 2: Method 2:
ParavirtualizationParavirtualizationParavirtualizationParavirtualization

Benefits

• Works with
existing
operating
system (OS)
installations

• Unmodified
guest OS’s

• Full isolation
between guest
OS’s

• Access to direct
devices and resources
(USB2)

• Open Source solutions
can be modified by
anyone

• Low price

• Better performance
compared to full
virtualization

• Full isolation among
guests

Constraints

• Proprietary
Solutions
controlled by the
Virtualization
companies

• Price

• No direct device
driver access

• Requires modified
host and guest OS’s

• Not as fully
supported and
developed as the
commercial solutions

Table 1. Virtualization technology comparison

summary [15]

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

MARIA LUISA CATALAN, DENNIS A. LUDENA R.,
 HIDENORI HUMENO, MASAYOSHI ARITSUGI

ISSN: 1790-0832 1492 Issue 10, Volume 5, October 2008

Name Guest OS(s)

Guest OS

SMP

available

Drivers

supported guest

OS available

Guest OS speed

relative to host

OS

License

HyperV

Supported drivers

for Windows 2000,

Windows 2003,

Windows 2008,

Windows XP,

Windows Vista,

Linux (SUSE 10

Released, more

announced)

Yes Yes

Native drivers IO

is non-emulated

for better IO

performance.

However,

substantial

performance loss

on some workload

(network and and

disk intensive

especially).

Proprietary

(Free with

Windows

Server 2008)

User Mode

Linux
Linux ?

Special guest

kernel +

modules

required

Near native (Runs

slow as call calls

are proxied)

GPL Version

2

Virtual PC

2007

DOS, Windows,

OS/2, Linux (SUSE,

Xubuntu), Open

Solaris (Belenix)

No Yes

Near native with

Virtual Machines

additions

Proprietary

(Free from Jul

2006)

Virtuozzo

Various Linux

Distributions,

Windows

Yes Compatible Native Proprietary

VMware

Server

DOS, Windows,

Linux FreeBSD,

Netware, Solaris,

Virtual Appliances

Yes

(2 – way)
Yes

Up to near native,

substantial

performance loss

on some workload

(network or disk

intensive

specially)

Proprietary

(Free)

VMware

Workstation

6.0

DOS, Windows,

Linux FreeBSD,

Netware, Solaris,

Darwin, Virtual

Appliances

Yes

(2 – way)
Yes Up to near native Proprietary

VMware

Player 2.0

DOS, Windows,

Linux FreeBSD,

Netware, Solaris,

Virtual Appliances

Yes

(2 – way)
Yes

Up to near native,

substantial

performance loss

on some workload

(network or disk

intensive

specially)

Proprietary

(Free)

Xen

Linux, Solaris,

Windows XP &

2003 server (needs

vers. 3.0 and a

Vanderpool or

Pacifica–capable

CPU), Plan 9

Yes

Not required

with the

exemption of the

networking

drivers where a

NAT is required.

A modified guest

kernel or special

hardware level

abstraction is

required for

guest OSs.

Up to near native

speed, substantial

performance loss

on some workload

(network and disk

intensive

specially)

GPL

 Table 2. Virtual Systems Comparison
[18, 19]

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

MARIA LUISA CATALAN, DENNIS A. LUDENA R.,
 HIDENORI HUMENO, MASAYOSHI ARITSUGI

ISSN: 1790-0832 1493 Issue 10, Volume 5, October 2008

3.3 Xen System
Here, Xen 3.0 is used because of its high end

features, Linux friendly environment, and high VMM

performance [7]. In addition, it has distinctive

characteristics in relation to paravirtualization

management like, better performance compared to the

fully virtualization environment such as; easy facility

for storage area needed during the installation

process, and the capability to work in an independent

operating system and network [16]. In this work, we

use CentOS 5.0 Final as a host system.

One of the advantages of using a virtualized

environment is its easy management during

configuration. In a real multi-user environment,

manual work is necessary to change the configuration

of terminals.

With virtualization, we can create and store groups of

virtual machines or virtual environments in different

storage devices like: RAID Hard Disk, SATA/IDE

Hard Disk, or DVD, in less time and effort.

Table 2 [18, 19] provides a comparison of the

different characteristics of Xen against some of the

most popular virtualization packages. The following

are some of the applications where these packages are

used: Hobbyist, Developer, Business, Enterprise

server consolidation, Hosting service separation,

Security Isolation, Research, Tester, etc.

Moreover, Xen is capable of creating a small network

inside the host PC. In this network can be used:

routers, switches, and different network devices.

This capability is vital for our purposes because we

need to create several scenarios, where various

network topologies are included.

As we can observe in Table 2, Xen contains several

advantages compared with some of the popular

virtualization packages in the market.

Figure 3. Example of virtualized users
[1]

4 Network Emulation
As we consider in the previous study [1], we need to

create an emulated network environment where the

packages created in several terminals will be

transported in this network.

 Customizable Modularity Friendly GUI Scalability

NS-2 Yes No
No information

available
Yes

PDNS Yes Yes Yes Yes

OPNET
No information

available
No

No information

available
Yes

NetSim Yes No
No information

available

No information

available

GTNETS Yes No
No information

available

No information

available

CNet
No information

available
No

No information

available

No information

available

Simnet
No information

available
No

No information

available

No information

available

Table 3. Comparative chart among the network simulators

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

MARIA LUISA CATALAN, DENNIS A. LUDENA R.,
 HIDENORI HUMENO, MASAYOSHI ARITSUGI

ISSN: 1790-0832 1494 Issue 10, Volume 5, October 2008

This emulated network will have the following

characteristics:

4.1 Customizable network environment

The system is capable of creating several small,

medium and large network topologies, like: wireless,

ATM, Ethernet, etc.

4.2 Capability to receive traffics generated

from another real or virtual terminals

The system is capable of receiving traffics generated

from other terminals. These terminals could be real

PCs or from a virtual environment. In our particular

case, we create a SOHO (Small Office Home Office)

Network. The traffic from this network will be

applied to the simulated network.

4.3 User Friendly GUI

The system has the basic GUI features so that we will

be able to observe the results in a graphical way. And

also, perform some configurations through the GUI.

4.4 Scalability

The system has the capability to increase the number

of nodes or modify the topologies in the network

without difficult or complicated procedures. There

are several packages in the market that can meet the

requirements. In order to select the most suitable

package for our purposes, we make an extensive

study comparing the main characteristics of these

systems.

Analyzing the Table 3 results, we can observe that

PDNS (Parallel Distributed NS) could be the best

alternative for our purposes. But the problem in this

case is the support of this network emulated software.

PDNS was developed by the College of Computing,

Georgia Institute of Technology [22], and the last

modification or update was made in March 2004. So

we can conclude that the system is not update or at

least that the update process was stopped for any

reason, which makes the system not reliable for new

kernel applications. In this case in order to keep the

system as economic as possible, we decide to use

NS2. NS2 is the widest network emulation package.

It has an official support from the developers. The

GUI is not as rich as other packages but there are

some third party applications that offer more

interesting GUI for NS2.

5 The NS2 Network Emulator
NS is a discrete event simulator directed to the

networking research. NS provides several simulation

environments like: TCP/IP, wireless, and different

tools to test protocols under research [5, 6]. NS began

as a variant of the REAL network simulator in 1989

and has evolved substantially over the past few years.

In 1995 ns development was supported by DARPA

through the VINT project at LBL, Xerox PARC,

UCB, and USC/ISI [4].

Figure 4. NS2 Architecture
[6]

As shown in Figure 3, in a simplified user's view, NS

is an Object-oriented Tcl (OTcl) script interpreter that

has a simulation event scheduler and network

component object libraries, and network setup. In

other words, to use NS, the programming is done in

OTcl script language.

To setup and run a simulation network, a user should

write an OTcl script that initiates an event scheduler,

sets up the network topology using the network

objects and the plumbing functions in the library.

Then, tells traffic sources when to start and stop

transmitting packets through the event scheduler.

Because of the discrete event nature of NS2, the

scheduler become the vital part of the system.

Through this system, we will be able to know exactly

when to start a service or procedure, and when to stop

them. Through the tracking of the simulation times,

the scheduler is capable to activate the events that

were previously defined in the OTcl file.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

MARIA LUISA CATALAN, DENNIS A. LUDENA R.,
 HIDENORI HUMENO, MASAYOSHI ARITSUGI

ISSN: 1790-0832 1495 Issue 10, Volume 5, October 2008

The event scheduling also allows us to generate

several channel characteristics pre-defined in the

OTcl script, like: delays, errors, packet loss and more.

This feature is very relevant to our development

purposes, since the TPM is a TCP/IP client server

application. We need to find and develop the most

“close to the real” environment. Through this, the

tested events will have all the realistic design

considerations.

Figure 5 shows the NS2 architecture. Depending on

the user level, the simplest one could stand in the

bottom corner where it can run OTcl based

applications. While, an advanced user can exploit

some of the C++ / OTcl capabilities to generate

complex simulations. All the components together

make the NS2. In other words, NS is an extended Tcl

interpreter with network simulator libraries.

Figure 5. NS2 Architecture
[6]

6 Real time applications in NS2
As explained before, one of the most important

features of NS2 is the capability to generate traffic

through the scheduler, which we can define in the

OTcl script. In the case of real time applications we

should use the “real time scheduler” in the first line

of our OTcl script, chart 1.

 set ns [new Simulator] $ns use-scheduler RealTime

Chart 1. Declaration of the real time scheduler in NS2

[6, 23, 24]

Objects including tap agents and network objects are

the interfaces between the simulator and the real

network traffic [5]. Tap agents are in charge of

embedded real-time data into simulated packets and

vice-versa. The Sending and Reception in the real

time data are the ones in charge of the Network

objects, which are installed in the Tap Agents [6].

Figure 6. Interaction between the different parts of

the real-time emulation in NS2
[6, 23, 24]

In NS2 emulation capabilities are divided into:

6.1 Opaque mode

In Opaque mode, the data from the real time network

is treated as black data packets. And, the simulator

treats network data as uninterpreted data.

In particular, real-world protocol fields are not

directly manipulated by the simulator.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

MARIA LUISA CATALAN, DENNIS A. LUDENA R.,
 HIDENORI HUMENO, MASAYOSHI ARITSUGI

ISSN: 1790-0832 1496 Issue 10, Volume 5, October 2008

Figure 7. Opaque mode Emulation
[6, 23, 24]

In opaque mode, live data packets may be dropped,

delayed, re-ordered, or duplicated. But because no

protocol processing is performed, protocol-specific

traffic manipulation scenarios (e.g. ``drop the TCP

segment containing a retransmission of sequence

number 2045'') may not be performed.

In protocol mode, the simulator is able to interpret

and/or generate live network traffic containing

arbitrary field assignments.

6.2 Protocol mode

In Protocol Mode, the real time data may be

interpreted/generated by the simulator. In order to

connect the real time network with the simulator we

use a series of objects called tap agents and Network

objects. Figure 9 shows how they interact.

We mentioned that NS2 is an event scheduler based

emulation package, which means that we have to

declare the sequence events in the time. In order to

inject real time data to the emulation, we have to use

a modified or parallel version of this scheduler, called

Real Time scheduler.

Real Time Scheduler

The Real-time scheduler ties event execution within

the simulator to real time. It is necessary to have PC

resources available to keep up with arriving packets,

and the simulator virtual time should closely track

real time.

Figure 8. Protocol mode Emulation
[6, 23, 24]

If the simulator becomes too slow to keep up with

elapsing real time, a warning is continually produced

if the skew exceeds a pre-specified constant ``slop

factor'' (currently 10ms).

Tap Agents

The class TapAgent is a simple class derived from the

base Agent class. As such, it is able to generate

simulator packets containing arbitrarily-assigned

values within the ns common header.

The tap agent handles the setting of the common

header packet size field and the type field. It uses the

packet type PT_LIVE for packets injected into the

simulator. Each tap agent can have at most one

associated network object, although more than one

tap agent may be instantiated on a single simulator

node [23, 24].

Network Objects

The Network objects are in charge of giving access to

a live network (or to trace file captured network

packages). There are several forms of network

objects depending on the protocol layer specified for

access to the underlying network, in addition to the

facilities provided by the host operating system.

Generally, network objects provide an entrypoint into

the live network at a particular protocol layer (e.g.

link, raw IP, UDP, etc) and with a particular access

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

MARIA LUISA CATALAN, DENNIS A. LUDENA R.,
 HIDENORI HUMENO, MASAYOSHI ARITSUGI

ISSN: 1790-0832 1497 Issue 10, Volume 5, October 2008

mode (read-only, write-only, or read-write). Some

network objects provide specialized facilities, such as

filtering or promiscuous access (i.e. the pcap/bpf

network object) or group membership (i.e. UDP/IP

multicast).

The C++ class Network is provided as a base class

from which specific network objects are derived.

Three network objects are currently supported:

pcap/bpf, raw IP, and UDP/IP.

7 Benchmark architecture
We already analyze the capabilities of NS2 and Xen.

The proposed architecture is to combine both of the

above mentioned architectures in order to present a

dynamic platform for testing TPM.

Figure 9 shows the architecture of the proposed

platform.

As shown in the figure, there are several “virtual

users”. We are going to follow the original

architecture (Figure 1) in the next implementation

step.

Figure 9. Proposed TPM Benchmark Testbed

Some of the characteristics of the following

architecture will be:

7.1 Scalability
The system could increase the number of “virtual

users” that can send transaction requests to the TPM

system.

7.2 Isolation
The system is completely independent from the

university network, which allows several experiments

without interference from the normal traffic of the

network.

7.3 High simulation capabilities
Using some of the features of NS2, the system is

capable of generating the following: errors in the

network, package drops, several channel conditions,

etc. which allow the system to deal with a more

realistic environment.

7.4 Configurability
Exploiting the combined high capabilities of Xen

virtualization and the NS2 Emulation, the system will

have a high configurability grade. The system could

generate numerous scenarios where the TPM can be

tested, therefore, providing the researchers with a

wide experimentation space to test research studies

and developments.

Also, this system can be integrated into an educative

platform, like Learning by Development (LbD) [20].

Regardless of the specific application shown, the

system can be configured to test another network

based e-Learning systems [21. 25].

Figure 10. General view of the complete system.

8 Conclusion
In this paper, we introduce the initial configuration of

a real-time benchmark testbed. The use of the

emulation capabilities of NSE, will allow us to inject

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

MARIA LUISA CATALAN, DENNIS A. LUDENA R.,
 HIDENORI HUMENO, MASAYOSHI ARITSUGI

ISSN: 1790-0832 1498 Issue 10, Volume 5, October 2008

real traffics from the “virtual users” or real users

(with the use of a tunneling software).

The proposed architecture will allow us to test not

only the TPM system, but also specific client server

applications based on the TCP/IP protocols, and also

other applications based on standard communications

protocols.

Our future work will be focused on the design details,

performance tests and analysis of the simulations.

Acknowledgment
We dedicate this paper in the memory of Professor

Hidenori Umeno, for his teachings, unconditional

support and kind advice.

References:

[1] Catalan, Maria Luisa, Ludena, Dennis, Umeno,

H., A dynamic network simulator for testing TP

monitor system performance and behavior,

Proceedings of the International Conference on

Control, Automation and Systems, ICCAS, 2007,

pp. 1851 – 1854.

[2] C. Edwards, A. Harwood and E. Tanin, Network

Virtualisation for Transparent Testing and

Experimentation of Distributed Applications,

Proceedings of the 2005 13th IEEE International

Conference on Networks, Volume 2, 2005, pages

1089- 1094

[3] Breslau, L.; Estrin, D.; Fall, K.; Floyd, S.;

Heidemann, J.; Helmy, A.; Huang, P.; McCanne,

S.; Varadhan, K.; Ya Xu; Haobo Yu; Advances

in Network Simulation, Computer, Volume 33,

Pages 59-67, 2000

[4] Jansen, S. and McGregor, A., Performance,

Validation and Testing with the Network

Simulation Cradle, Proceedings of 14th IEEE

International Symposium on Modeling, Analysis,

and Simulation of Computer and

Telecommunication Systems, MASCOTS 2006,

pages 355-362, 2006

[5] Kevin Fall, Kannan Varadhan, The ns Manual,

The VINT Project, 2008

[6] http://www.isi.edu/nsnam/ns/

[7] W. Huang, J. Liu, B. Abali and Dhabaleswar K.

Panda, A case for High Performance Computing

with Virtual Machines, International Conference

on Supercomputing, Proc. of the 20th Annual

International Conference on Supercomputing,

Cairns, Queensland, Australia, pp: 125-134, 2006

[8] R. Haukioja and N. Dunbar, Introduction to Linux

Virtualization Solutions, Hewlett-Packard

Development Company, L. P. 2007 available at

http://opensource.hp.com/techbriefs/haukioja_dun

bar.html

[9] David Chisnall, The Definitive Guide to the Xen

Hypervisor, Prentice Hall, 2008

[10] David E. Williams, Juan Garcia, Virtualization

with Xen, Syngress, 2007

[11] C. Browne, Transaction Processing Monitors,

available at

http://cbbrowne.com/info/tpmonitor.html

[12] Ji Hu, Dirk Cordel and Christoph Meinel, A

Virtual Laboratory for IT Security Education,

presented at the Int. Conference on Information

Systems in E-Business and EGovernment

(EMISA), Luxembourg, Oct. 2004, pp: 60–71.

[13] J. Nieh and C. Vaill, Experiences Teaching

Operative Systems Using Virtual Platforms and

Linux, presented at ACM SIGOPS Operating

Systems Review, Volume 40, Issue 2, April 2006,

pp: 100-104.

[14] K. Begnum, J. Sechrest and S. Jenkins, Getting

more from your Virtual Machine, presented at

Journal of Computing Sciences in Colleges,

Volume 22 , Issue 2, December 2006, pp: 66 –

73.

[15] Open Source and Linux from HP:HP TechBrief-

Introduction to Linux Virtualization.

http//www.hp.com/cgi-

bin/pfnew.cgi?IN=http://opensource.hp.com/techb

riefs/haukio…

[16] W. Huang, J. Liu, B. Abali and Dhabaleswar K.

Panda, A case for High Performance Computing

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

MARIA LUISA CATALAN, DENNIS A. LUDENA R.,
 HIDENORI HUMENO, MASAYOSHI ARITSUGI

ISSN: 1790-0832 1499 Issue 10, Volume 5, October 2008

with Virtual Machines, presented at International

Conference on Supercomputing, Proc. of the 20th

Annual International Conference on

Supercomputing, Cairns, Queensland, Australia

2006, pp: 125-134.

[17] W. I. Bullers Jr, S. Burd and A. F. Seazzu,

Virtual Machines-An Idea Whose Time Has

Returned: Application to Network, Security, and

Database Courses, presented at Technical

Symposium on Computer Science Education,

Proc. of the 37th SIGCSE Technical Symposium

on Computer Science Education, Houston, Texas,

USA 2006, pp: 102-106.

[18] Comparison of virtual machines, available:

http://en.wikipedia.org/wiki/Comparison_of_virtu

al_machines

[19] Stephen Soltesz, Herbert Pötzl, Marc E.

Fiuczynski, Andy Bavier, and Larry Peterson,

Container-based operating system virtualization:

a scalable, high-performance alternative to

hypervisors. ACM SIGOPS Operating Systems

Review archive Volume 41 , Issue 3 (June

2007), pp: 275 – 287. 2007

[20] Jyri Rajamaki and Rauno Pirinen. Linkage of

Learning by Developing and Virtual Learning

Case: Network Design Specialisation Studies. 2nd

WSEAS European Computing Conference

(ECC’08), Malta, pp: 397 – 402. 2008

[21] F. de Arriaga, C. Gingell, A. Aarriaga, J.

Arriaga, and F. Arriaga Jr. A General Student’s

Model Suitable for Intelligent E-Learning

Systems. 2nd WSEAS European Computing

Conference (ECC’08), Malta, pp: 167 – 172.

2008.

[22] PDNS - Parallel/Distributed NS, available on:

http://www.cc.gatech.edu/computing/compass/pd

ns/index.html

[23] Kevin Fall and Kannan Varadhan. The ns

Manual. The VINT Project, 2008

[24] Richard M. Fujimoto, Kalyan S. Perumalla, and

George F. Riley. Network Simulation. Published

by Morgan & Claypool Publishers, 2007

[25] Krzysztof Tokarz and Piotr Jedrychowski.

Control Application for eLearning system. 2nd

WSEAS European Computing Conference

(ECC’08), Malta, pp: 234 – 239. 2008.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

MARIA LUISA CATALAN, DENNIS A. LUDENA R.,
 HIDENORI HUMENO, MASAYOSHI ARITSUGI

ISSN: 1790-0832 1500 Issue 10, Volume 5, October 2008

