
Environment-Independent Methodology
for Accessing External Data Sources

LAURA M. CASTRO, VÍCTOR M. GULÍAS, CARLOS ABALDE, JAVIER PARÍS
Department of Computer Science

University of A Coruña
Campus de Elviña s/n - A Coruña

SPAIN
{lcastro,gulias,cabalde,javierparis}@udc.es http://www.madsgroup.org

Abstract: - Software engineering is not a static field. Hardware is evolving, and so needs to do software
development. Someone walking into a computer store today and buying a personal computer, will most likely
end up owning a machine with more than one CPU. And that machine will most likely end up on a network,
connected to a lot of other machines and devices. We are talking about paralelism and distribution, two features
that threaten to make the software development process harder. To cope with these new parameters, new tools
are claiming a place in the vangard of software creation. At the same time, there are also well-known
established components, such as our traditional databases, that we still use (and need to use) the same way they
have been used for many years. In this article, an environment-independent methodology to combine these two
different worlds is be presented, showing that past and future can work together if we properly use abstraction
and high-level software engineering tools.

Key-Words: - Software engineering, database access, design patterns, functional programming.

1 Introduction
From its early days, data management has been one
of the main purposes of computing. Almost all
software applications need to pay special attention
to management, storage and retrieval of the
information needed to carry out the task they are
designed for. This is why databases are essential
components in most software systems, whether they
be critical or not, regardless of their purpose, scope,
or scale.

Database Management Systems (DBMS) are
pieces of software which provide structured storage
to data, and also a query language to inspect and get
the information back. There are multiple well-
known DBMSs, both in the proprietary and the free
software worlds. The most commonly known are
perhaps Oracle [1], DB2 [2], Microsoft SQL Server
[3], PostgreSQL [4], MySQL [5] or Sybase [6], and
they have been for years very successful products.
All of them implement the relational database model
[7] and have long market experience behind them,
which also means they grant stability and reliability
enough to be trusted by developers and software
companies.

On the other hand, in the field of software
development new challenges appear every day, and
so do new initiatives, new ideas, new tools and new
solutions. Nowadays, we live in a world where

many things happen at the same time and where
information and knowledge is spread all over. This
paralelism and distribution reaches not only the
hardware, but also the software process as well, and
as previously known development environments do
not seem to adjust to this new conditions very well,
new ones are beginning to stand out, striving for
recognition to take their place.

Erlang/OTP is a functional language and a set of
libraries that were created as a platform to develop
robut applications meant to run over a net of
computers. It was originated inside Ericsson
Telecommunications in the early nineties and its
initial aim was to be a tool to program telephone
switches. But it turned out to be a programming
environment that helped out to speed up the
development and to reduce the maintenance effort
while generating highly reliable robust pieces of
software. This was the key for it to step out from the
telephony world and start being used for other
purposes.

Nowadays, Erlang/OTP has proved to be a very
suitable framework, perfectly valid to develop
almost any kind of software application, especially
when robustness, reliability, high-avaliability,
maintenance ease and transparent distributabion are
essential requisites [8, 9, 10, 11, 12]. As it became
more and more popular, the set of libraries and

WSEAS TRANSACTIONS on INFORMATION
SCIENCE & APPLICATIONS

Laura M. Castro, Victor M. Gulias,
Carlos Abalde, Javier Paris

ISSN: 1790-0832 1355 Issue 9, Volume 5, September 2008

http://www.madsgroup.org/

utilities included in the Erlang/OTP distribution
increased enormously. In modern releases, it even
provides its own DBMS, called Mnesia [13].
Amongst the most innovative properties of Mnesia,
which is actually a distributed DBMS with a hybrid
object-relational data model [14], we find a very
high level of fault-tolerance, together with dynamic
distribution and reconfiguration. But still, the great
influence and major importance of traditional
DBMSs is too hard to overcome in many cases.
Even more if data is already saved in such storage,
i.e. when migrating an application, or building a
new one that will work with, or share, already-
modeled, pre-existing data.

For these reasons, in its way to a place in the
industry world, Erlang/OTP faces the challenge of
getting on with traditional DBMSs. In this article we
take a close look to it, in an effort to understand how
these two agents can work together in the best
possible way, not only with regard to the
technological solutions available, but also bearing in
mind storage and retrieval strategies. For the former
point of view, we have explored and compared two
of the most important approaches, standard vs.
native communication solutions. For the latter, we
show that well-known database access patterns are
of the most valuable help, and how to apply those
patterns, essentially identified with the object-
oriented world, on a functional environment.

2 External Data Sources
A database is a structured collection of pieces of
information, stored in a computer system and
accessible to be questioned, either by a human or by
a computer program, through a special query
language.

The nature of the pieces of information stored by
a database, which can be seen or considered as its
structural description, is called database schema
[15]. Depending on how the database schema is
organised or modelled, different database models
are possible. Some of the most relevant database
models are:

• Hierarchical model, where the database
schema is a tree-like structure with one root and
a number of branches or subdivisions (figure 1).
• Network model, where data relationships are
represented in a many-to-many way, allowing
arbitrary graphs and not only trees (like in the

hierarchical model), thus resembling a network
(figure 2).

• Relational model, where information, and
relationships amongst information items, are
modelled according to the set theory [16] (figure
3).
• Objectual model, where schema components
are objects, comparable to the concept of
“object” in Object-Oriented Programming [17]
(figure 4).

From these main models, the relational model
was the first formal database model [18]. It has a
strong mathematical background which includes set
theory and two-value predicate logic. In the
relational model, stored data is operated upon by
means of relational algebra [19]. Thanks to this
formalism and its rigorousness, relational databases
became popular in the eighties and even though
other database models where formalised afterwards,
and many other new formal models have appeared
since, none of them has been able to take its place as
the most commonly used database model. For this
reason, we will only focus on this specific type of
databases.

Fig. 3: Example of data in a relational model

Fig. 4: Example of data in an objectual model

Fig. 1 Example of data in a hierarchical model

Fig. 2: Example of data in a network model

WSEAS TRANSACTIONS on INFORMATION
SCIENCE & APPLICATIONS

Laura M. Castro, Victor M. Gulias,
Carlos Abalde, Javier Paris

ISSN: 1790-0832 1356 Issue 9, Volume 5, September 2008

2.1 Access Types
In order to inspect the collection of data stored in a
relational database (RDB), a person (or a computer
application) must use, as previously mentioned, a
particular query language. The query language for
relational databases is an ANSI [20] and ISO [21]
standard called Structured Query Language (SQL
[22]). To proceed, a human user would type some
SQL-queries in an interactive environment. After
being introduced, those queries would be processed
by the DBMS, which would retrieve the matching
data, and the results would appear on the screen. If
this process is to be carried out by an external
software application (that may need to query the
database in order to obtain some data to later on
process it, generate some results, or perform some
task), the interaction mechanism needs to be slightly
different.

There are several ways in which a computer
application can submit SQL-queries to a relational
database:

• Using a standard API, such as Open Database
Connectivity (ODBC [23]). An API (stands for
Application Programming Interface) is a source
code interface provided to support standard and
independent requests for services. The use of
standard APIs makes it possible for two
independent parties (computer programs,
application components, system agents) to
interact in a clean, pluggable and reliable way
(figure 5).

• Using a database-native API. Even though
using a database-native API is generally more
efficient than using just a generic standard API
(and may offer special features/services), this is
also a solution that binds the program to a
specific database, thus compromising (or at least
restricting) the future flexibility and
maintainability of the system (figure 6).

• Using sockets, to directly connect to the
database. This implies taking care of all low-
level details of the application-to-database
communication, which usually is too much work
to even take this option under consideration,
unless the system under development has very
strong speed and efficiency requirements which
cannot be fulfilled using an already-existing API
(figure 7).

2.2 Erlang and ODBC
As previously said, ODBC (Open DataBase
Connectivity) is a standard API which allows us to
query a relational database. Thus, it is a way of
communicating applications and database servers
using a standard set of functions to open a
connection with the database, send queries, and get
the results back.

Each ODBC-compatible DBMS provides an
implementation of the ODBC API, which internally
translates ODBC calls into its own native database
dialect. To be able to connect to a DBMS via
ODBC, an ODBC driver is also needed, which is the
piece of software client applications will link to,
thus remaining fully independent from the DBMS.
Actually, the fact that the clients only perform
standard function calls makes them independent
from the driver as well.

Erlang/OTP platform provides support for
ODBC, hence allowing Erlang programmers to
build applications that can communicate with a
relational database via ODBC. And since the
ODBC-support module is part of the standard set of
libraries, OTP, such communication takes place in a
transparent, Erlang-like style (see source code
fragment 1).

Fig. 5: ODBC-based application architecture outline

Fig. 6: Database-native driver alternative outline

Fig. 7: Direct to-socket-communication solution outline

WSEAS TRANSACTIONS on INFORMATION
SCIENCE & APPLICATIONS

Laura M. Castro, Victor M. Gulias,
Carlos Abalde, Javier Paris

ISSN: 1790-0832 1357 Issue 9, Volume 5, September 2008

2.3 Erlang Native Drivers
As happens on many other programming
environments and development tools, some native
drivers that have appeared recently are available for
Erlang/OTP. These Erlang drivers are database-
specific, and what they allow is to directly connect
to a given DBMS (PostgreSQL or MySQL, at the
moment) from an Erlang environment.
Nevertheless, the actual communication is, again,
transparent for the Erlang client applications (see
source code 2).

3 Database Access Patterns
From an application conception to its actual
development, some initial work needs to be done.
Apart from requirements elicitation and
functionalities determination, the broad analysis
task, as fas as persistence aspects are concerned,
will usually involve some of (or all) the following
steps:

• Identification of the persistent business
objects. By persistent business objects in a
system we understand those information or data
elements whose life can extend during the
running time of the application or even beyond,
from one execution to the next. Once those
relevant elements are recognized, their persistent
parts or components (usually referred to as the
object “state”) need to be identified as well.
These are the ones the relational database will
take care of.
• Identification of the persistence operations.
Persistence operations usually include creation,
deletion, update, search and retrieval of the
persistent elements (and/or their states)
enumerated in the previous step.
• Control flow definition. A control flow is the
sequence of operations that need to be executed
in order to carry out some of the use cases of a
system or application, i.e. a piece of its
functionality, a service. Eventually, persistence
operations will be involved in some of those use-
case operations.
• Functionality or service API implementation.
Once the control flow is clear and stated, related
use-cases (services) should be grouped together,
and one or more interaction or service APIs
should be defined, to be the interaction points
used by other parts of the system (or even third-
party clients).
These four stages help us approach and organise

the process of designing and building the storage
and retrieval module/subsystem of an application.
The actual implementation is the last task, for which
some other formal tools are available to help
developers to perform it in a more efficient and,
ideally, error-free manner. One of this conceptual
tools are software design patterns.

A software pattern is a “repeatable software
solution to a particular kind of problem, which has
proved to be both efficient and simple” [24].
Applying software design patterns during the design
and development process of a system or application,
helps to reduce the development effort, prevents the
appearance of common or already-known errors,
and increases its maintainability.

In the next sections some software design
patterns closely related to database access are
presented and explained.

3.1 Value Object Pattern

Table 1 Erlang/ODBC code sample

Table 2: Native Erlang driver code sample

WSEAS TRANSACTIONS on INFORMATION
SCIENCE & APPLICATIONS

Laura M. Castro, Victor M. Gulias,
Carlos Abalde, Javier Paris

ISSN: 1790-0832 1358 Issue 9, Volume 5, September 2008

The Value Object (VO) pattern represents the
abstraction of the state or value of a business object
in the domain [24]. The business object properties
are modeled as the VO internal attributes, protected
with a restricted access. The interaction of the
business object with the outside world, its
functionalities, and the access to its properties is
modeled as the VO operations, with the appropriate
visibility in each case.

The structure of the VO pattern is shown in
figure 8, using the UML modelling language [25,
26].

We can use the VO pattern to abstract the
persistent properties of a business concept as
elements which will be saved on a permanent
storage (RDB). Access to this data is restricted and
conducted through function calls, which can be
read-only (“access” functions/methods) or read-
write (“update” functions/methods).

3.2 Data Access Object Pattern
The Data Access Object (DAO) pattern, which
structure can be seen in figure 9, hides the
interaction with the persistent storage (database)
from the rest of the system or application, setting
apart business logic from persistence logic [24].

A DAO is an element in the system that will
provide an internal API to recover/store VO data,
abstracting the external storage source (typically,
and in our examples, a relational database, but it
could be any other storage media). A DAO is the

software piece of the system that will encapsulate all
the datasource access details, for example, the
invocation of a standard API to access the database
using ODBC, or else the instructions to deal directly
with a particular database by means of a native
driver, or even the implementation of a customised
access to the database.

We will usually model at least one DAO for each
VO, in a one-to-one correspondence. Thus, the
DAO will be responsible of all the persistence
operations involving its associated VO. In case we
have to deal with some complex VOs, composed by
several basic VOs, we can define a DAO that makes
use of other DAOs, like presented in figure 10.

From a theoretical point of view, we can
consider that the DAO pattern mixes functionalities
commonly identified with two different software
patterns:

• Adaptor pattern [24], since it provides an
interface for persistence, regardless of the type of
datasource and the access method we choose for
it.
• Factory pattern [24], since it creates
(recovers, and also stores) VOs, making this
process datasource-independent for the rest of
the system.

3.3 Facade Pattern
The Facade pattern provides a single interface to a
set of components/functionalities in a system [24].
By using facades, clients do not need to know the
structure, members, or any other internal details and
complexities in a system: they just interact with the
facade component, which has convenient methods
for fulfilling their needs.

The use of facades as interfaces for the
functionality of a system (or part of it) decouples it
from its clients (or other parts of the system),
allowing modifications to be transparent (since only
facade internals are affected), and thus increasing
modularity and maintainability. Apart from offering
a neat access point to a set of logically related use

Fig. 8: Value Object pattern structure

Fig. 9: Data Access Object pattern structure

Fig. 10: Data Access Object for a complex VO

WSEAS TRANSACTIONS on INFORMATION
SCIENCE & APPLICATIONS

Laura M. Castro, Victor M. Gulias,
Carlos Abalde, Javier Paris

ISSN: 1790-0832 1359 Issue 9, Volume 5, September 2008

cases, a facade can represent workflow as well. This
implies more flexibility (and simplicity) in
developing the system, because different facades
can be created (as many as needs), each of them
presenting a single specific-purposed well-designed
API, leading to a better structure and
compartimentalisation, since modifications on those
parts of the system isolated by facades will not
affect the clients of the facades, but only the facades
themselves.

Thus, the combination of these software patterns
(Value Object, Data Access Object and Facade)
represents the perfect mechanism to model the
persistence subsystem of an application. This will
configurate, as we have already explained, a
flexible, modular and reusable solution from which
other components of the system or clients will
remain as independent as possible, and future
changes in the internal architecture will have
minimum repercussion.

4 Erlang Implementation
Erlang is a distributed, concurrent, functional
programming language. As a functional language,
Erlang has no constructs inducing side effects (with
the exception of thread communications
-processes-). Values in Erlang (i.e. non-reducible
expressions) range from numbers and atoms
(symbolic lower-case constants) to complex data
structures1 (lists, tuples, and records -useful
syntactic sugar for accessing tuples by name instead
of by position, similar to C structures-) and
functional values.

An Erlang function is defined by a set of
equations, each stating a different set of constraints
based primarily on the structure of the arguments
(pattern-matching). Iterative control flow is carried
out by using recursion and expresssions are
evaluated eagerly. Functions are grouped into
modules (implementation files), and a subset of

1 Since Erlang has no static type system either, lists and
tuples/records can be heterogeneous and hold any valid value.

those functions can be exported, declaring both
function name and arity, to be used from other
modules.

Experience shows that using a functional
language to develop complex systems whose logic
involves complicated algorithms contributes greatly
to reduce the development effort. The reason lies in
that functional languages are more abstract, higher
level languages, and thus they are closer to our
reasoning level. Hence, it is easier to deal with more
complex problems when approaching them from a
functional point of view.

Erlang popularity is increasing these days as
paralelism and distribution are more and more
present in systems, equipment and requirements.
Erlang/OTP was designed from scratch having in
mind, as main objectives, distribution and
reliability. Thus, the language provides, for instance,
simple mechanisms to run code on several different
nodes with almost no effort, and also powerful
supervision capabilities [27]. Last but not least, its
concurrency model, based on asynchronous
message-passing, eases the developer task when
specifically programming parallel behaviour for
distributed environments [28]. Knowing this, it is
not strange that Erlang has been recently referred to
as “the next Java” [29].

Our challenge here is combining this innovative
and convenient development platform with analysis
and design solutions that seem to be only thought
for the object-oriented world. We will show here
that it is not a utopia to use software design patterns
and then implement our application using a
functional language.

The storage access use case we have presented
here is one of the simplest scenarios of object-
oriented design that we can try to implement in a
non-object-oriented development environment.
Figure 12 shows the typical architecture that will
correspond to what we have explained in previous
sections.

As we can see, the proposed structure is merely
based on a set of different entities or objects,
offering different operations, with and without
internal state. Their interrelationships are just based
on plain UML assotiations, and use dependencies.
Despite being a typical UML diagram, most likely
to be related to an object-oriented implementation,
there is no inheritance and there is no polimorphism
involved.

Fig. 11: Facade pattern structure
(interaction with DAO and VO)

WSEAS TRANSACTIONS on INFORMATION
SCIENCE & APPLICATIONS

Laura M. Castro, Victor M. Gulias,
Carlos Abalde, Javier Paris

ISSN: 1790-0832 1360 Issue 9, Volume 5, September 2008

So we just need to define a model in our
functional development environment to represent
the concept of “object”, its internal state (attributes)
and its operations, to be able to implement such a
design in Erlang/OTP. The model we propose here
is leant on around Erlang modules, which we have
mentioned at the beginning of this section.

Erlang modules are the implementation unit
elements in this language (like classes in Java). We
propose identifying each object/class in our design
with an Erlang module. To represent object internal
state, we suggest using Erlang records (similar to C
structures) defined inside the corresponding Erlang
modules. Finally, the object interface (operations)
can be modelled precisely by the set of exported
functions of each Erlang module.

Thus, following this ideas, each Value Object in
the system, representing an application business
object, will correspond with a module (see code
fragment 3), with a record definition -if there are
object attributes to implement- and a list of exported
functions, including the appropriate access and
update ones, as object interface.

As we previously outlined in section 3.2, for
each class representing a business object (VO), a

DAO module is required. Again, an Erlang module
for each DAO will be implemented. Source code
fragment 4 shows an abstract and generic view of an
Erlang DAO.

DAO modules take care of data persistence; in
the previous source code example, the external data
source is a relational database accessed via ODBC,
but this details are hidden from and are transparent
to DAO clients (no matter whether external ones or
part of the same system). Furthermore, any change
in storage nature or storage access method will only
affect the DAOs and not their clients.

The only thing a DAO does need from their
clients, as we can see in source code example 4, is a
transaction identifier, in order to allow the
invocation of different methods grouped in a single
transaction, when needed. Transactionality implies
that, given any error at any of the grouped steps, the
whole process would be rolled back (cleanly
undone) and the database information would remain
intact, as if nothing (no operation) had happened. Of
course, this kind of responsibility is not desirable to
fall on clients, so a facade is very helpful here. This
facade will not only present a set of logically related
use-cases, but also encapsulate transactionality
issues (see source code 5).

Table 3: Erlang VO implementation example

Table 4: Erlang DAO implementation example

Fig. 12: Proposed architecture for database access

Table 5: Erlang facade implementation example

WSEAS TRANSACTIONS on INFORMATION
SCIENCE & APPLICATIONS

Laura M. Castro, Victor M. Gulias,
Carlos Abalde, Javier Paris

ISSN: 1790-0832 1361 Issue 9, Volume 5, September 2008

In systems with a design like the one presented
here, clients only need to invoke the use cases
(functionalities) they want in each moment. Their
requests will be translated by the facade in as many
internal modules (DAOs and VOs) methods calls as
needed, grouped to be transactional if appropriate,
and finally performed in a clean, secure and
transparent way. If anything changes in such
system, clients are very unlikely to notice, since two
different levels of abstraction (DAOs, for storage
details, and facades, for use-case implementation
details) protect them.

4.1 Performance Comparison
Almost all major relational database vendors and all
free software DBMS provide ODBC support. On the
other hand, native solutions exist in Erlang only for
the latter: MySQL [30] and PostgreSQL [31] Erlang
native drivers. We have conducted several
performance tests in order to compare and contrast
these alternatives. We have tested Erlang ODBC
access to a PostgreSQL database, and Erlang native
access to the same DBMS.

Our experiments consisted in the execution of
real use-case queries (taken from the risk
management application ARMISTICE [32, 33, 34,
35]) a number of times, both using ODBC +
PostgreSQL, and PostgreSQL Erlang native support,
and the measurement of the time elapsed in each
case.

ARMISTICE is an information system whose
business logic has been developed using
Erlang/OTP. Using a functional language such as
Erlang was a key factor for success not only in
implementing a software application to deal with
such a complex business domain as insurance
management, but also in reaching an abstraction
level at the definition of the system which makes it
applicable to different business fields. This
innovative risk management system (RMIS) is

meant to be a tool for both the expert and the daily
non-expert users. An advanced profile will use
ARMISTICE to specify a set of resources and their
relevant properties of interest, as well as the
insurance policies contracted to protect those
resources from the consequences of potentially
harmful events, whichever these might be for each
particular case. On the other hand, the system is of
assistance also to the kind of user that, without any
expert knowledge regarding coverages and
warranties, has to deal with incident reports,
accident claims, and file trackings. In this case,
ARMISTICE, which has been in production at an
international company for a few years now, helps by
retrieving and isolating just the relevant information
for each scenario, according to the provided
contextual data, and thus, giving valuable support to
actions and decisions.

The selected queries involved complex read
(SELECT) queries, performing in every case not
only SELECT...FROM clauses with
WHERE/GROUP BY filters, but also several
SUBSELECTS and JOINS, all of them
corresponding to three different ARMISTICE
application use cases, namely:

• Report of all risk situations (objects of
interest for the risk manager) belonging to a
specific risk group (test #1). Risk situations are
the largest group of persistent business objects in
ARMISTICE, so inspecting and recovering all
the risk situations belonging to a specific risk
group, their attributes and values, is a database-
intensive operation.
• Report of all risk groups (abstractions to
group risk situations with the same attributes, i.e.
shops, vehicles,...). A risk group defines the
properties a certain (sub)set of risk situations
must have, and also their default values. In our
ARMISTICE study case, there are few risk
groups in comparison with the great number of
risk situations associated with each one, so this
test (test #2) is much less database-intensive than
the previous one.
• Report of all the risk situations belonging to a
specific risk group that have no coverage. Risk
situations in the system are usually covered
against hazards by means of insurance policies
(also defined and managed by the system, and
stored on the same database). However, recent
risk situations may still be uncovered if a
coverage request has not been fulfilled and
processed yet. Ideally, the set of uncovered risk
situations should be empty, so this report is
reviewed quite often (meaning this is a
frequently invoked use case). On the other hand,

Fig. 13: Performance test results

WSEAS TRANSACTIONS on INFORMATION
SCIENCE & APPLICATIONS

Laura M. Castro, Victor M. Gulias,
Carlos Abalde, Javier Paris

ISSN: 1790-0832 1362 Issue 9, Volume 5, September 2008

since creation of new risk situations and
coverage requests are operations performed
almost daily, the set of uncovered risk situations
tends to be small, making this test (test #3) not
too database-intensive in terms of amount of
information involved (but being, as we
previously noticed, database-intensive in terms
of invocation frequence).
Results of these three tests in figure 12, compare

and contrast ARMISTICE server performance when
using ODBC-access to the database, and when using
Erlang native PostgreSQL access. By executing
these basic use cases we pretend to obtain some
evidence about which datasource access method is
preferable. As we can see, time measurements
indicate that, the elapsed time falling in similar
ranges, the first option turns out to be more efficient
in all the cases. This might not be the expected
result, since one should think that a native solution
would take advantage of its intricsic properties to
improve its performance in terms of effectiveness.
All in all, in light of these results, other factors need
to be considered and, in our opinion, each particular
solution maturity level is the key to understanding
these results. While ODBC access support to
relational databases has been part of Erlang/OTP for
quite a few years now, native access to PostgreSQL
is justs a couple of years old now. This not only
means that the first is more likely to have been more
extensively used, but also debugged and fine-tuned.
In consequence, it would be interesting to repeat
these tests as soon as new releases of the
Erlang/OTP native PostgresSQL driver appear, and
check if there is any significant change in these
measurements.

Of course, relevance of complex queries as
performance indexes depends on the software
application. In this case, results show that the
ODBC alternative is better in most cases (which, as
previously said, may be due to driver development
and optimisation status), but further testing might
also be performed to ensure convenience of each
option for a particular environment, business model
and application workload.

5 Conclusions
In this article we have analysed, studied and
presented the scenario of accessing a relational
database from an Erlang environment. Relational
databases are the most commonly used kind of
databases nowadays, and even though there are
other, newer and more complex database models in
the market, relational DBMSs are not likely to lose

their predominance, at least in the next years to
come.

As far as Erlang is concerned, it is undoubtly a
very interesting development platform, most of all
bearing in mind requirements that are more and
more demanded day after day: robustness, fault
tolerance, high availability, distributability,
concurrency, reliability, ease of maintenance...
Thus, we have explored different solutions available
when combining the Erlang/OTP development
environment with relational DBMS storage.
However, other implementations of similar native
solutions for this functional development platform
are appearing, so extending the same experiments to
cover also those options should be an interesting
exercise.

Despite the specific case study we have
presented here, the design methodology that has
been explained can be applied regardless of the
implementation stage details (development
environment, programming paradigm, type of
application, etc.). Nevertheless, only careful
analysis of application workload, business use cases,
and nature of both data operations and data
properties, together with technology solution
maturity, would provide enough judgement
references, in each case, to choose not only between
database access alternatives, but even between
technological approaches [36].

In any case, we have illustrated, once more, how
addressing the design and development of a new
software product using abstraction and high-level
software engineering tools (such as design patterns),
gives a greater degree of confidence in the quality of
the final outcome.

Acknowledgements
This work has been partially supported by MEyC
TIN 2005-08986 and XUGA PGIDIT06PXIC10516
4PN.

References:
[1] Oracle, Oracle Database Management System,

http://www.oracle.com.
[2] IBM, DB2 Database Management System,

http://www.ibm.com/db2.
[3] Microsoft Corporation, Microsoft SQL Server,

http://www.microsoft.com/sql.
[4] PostgreSQL Server, http://www.postgresql.org.
[5] MySQL, http://www.mysql.com.
[6] Sybase, Sybase Adaptive Server Enterprise,

http://www.sybase.com.

WSEAS TRANSACTIONS on INFORMATION
SCIENCE & APPLICATIONS

Laura M. Castro, Victor M. Gulias,
Carlos Abalde, Javier Paris

ISSN: 1790-0832 1363 Issue 9, Volume 5, September 2008

http://www.sybase.com/
http://www.mysql.com/
http://www.postgresql.org/
http://www.microsoft.com/sql
http://www.ibm.com/db2
http://www.oracle.com/

[7] David Maier, Theory of Relational Databases,
Computer Science Press, 1983.

[8] Lambdastream S.L., Video on Demand Kernel
Architecture (VoDKA),
http://www.lambdastream.com/lambda/products
/VoDKA?l=EN.

[9] Igalia S.L., SERVAL: Internet Software VLAN
Switch developed in Erlang,
http://serval.igalia.com.

[10]Yaws, High Performance WebServer,
http://yaws.hyber.org.

[11]Tsung, Multi-protocol distributed load testing
tool, http://tsung.erlang-projects.org.

[12]Ejabberd, Jabber/XMPP instant messaging
server, http://www.ejabberd.im.

[13]Mnesia, Distributed functional object-relational
Erlang/OTP database,
http://www.erlang.org/doc/apps/mnesia/index.ht
ml.

[14]Irina Astrova, Ahto Kalja, Storing OWL
Ontologies in SQL3 Object-Relational
Databases, 8th WSEAS International Conference
on Applied Informatics and Communications
(AIC'08), 2008, pp. 99-103.

[15]Ramez Elmasri and Shamkant B. Navathe,
Fundamentals of Database Systems, Addison
Wesley, 2006.

[16]Karel Hrbacek and Thomas Jech, Introduction
to Set Theory, CRC, 1999.

[17]Timothy Budd, An Introduction to Object-
Oriented Programming, Addison Wesley, 2001.

[18]Abraham Silberschatz, Henry F. Korth and S.
Sudarshan, Database Systems and Concepts,
McGraw-Hill, 2005.

[19]C. J. Date, An Introduction to Database
Systems, Addison Wesley, 2003.

[20]ANSI, American National Standards Institute,
http://www.ansi.org.

[21]ISO, International Standards Organization,
http://www.iso.org.

[22]Kevin Kline, Daniel Kline and Brand Hunt,
SQL in a Nutshell, O'Reilly, 2004.

[23]Roger E. Sanders, ODBC 3.5 Developers
Guide, McGraw-Hill, 1998.

[24]Eric Gamma, R. Helm, R. Johnson and J.
Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison
Wesley, 1996.

[25]Grady Booch, Ivar Jacobson, James Rumbaugh,
The Unified Modeling Language UML, Addison
Wesley, 1998.

[26]Artis Teilans, Arnis Kleins, Yuri Merkuryev
and Andris Grinbergs, Design of UML Models

and their Simulation using ARENA, WSEAS
TRANSACTIONS on COMPUTER RESEARCH,
Vol. 3, No. 1, 2008, pp. 67-73.

[27]Francesco Cesarini and Simon Thompson,
Erlang programming, O'Reilly, 2008.

[28]Joe Armstrong, Programming Erlang: Software
for a Concurrent World, Pragmatic Bookshelf,
2007.

[29]Ralph Johnson, Erlang, the next Java, 2007.
[30]Mickael Remond, MySQL native Erlang driver,

http://support.process-
one.net/doc/display/CONTRIBS/Yxa.

[31]Erlang-Consulting, PostgreSQL Erlang native
driver, http://www.erlang-
consulting.com/aboutus/opensource.

[32]ARMISTICE, Advanced Risk Management
Information System: Tracking Insurances,
Claims and Exposures,
http://www.madsgroup.org/armistice, 2002.

[33]Víctor M. Gulías, Carlos Abalde, Laura M.
Castro and Carlos Varela, Formalisation of a
functional risk management system, 8th

International Conference on Enterprise
Information Systems, INSTICC Press, 2006, pp.
516-519.

[34]Víctor M. Gulías, Carlos Abalde, Laura M.
Castro and Carlos Varela, A new risk
management approach deployed over a
client/server distributed functional architecture,
18th International Conference on Systems
Engineering, IEEE Computer Society, 2005, pp.
370-375.

[35]David Cabrero, Carlos Abalde, Carlos Varela
and Laura M. Castro, ARMISTICE: An
experience developing management software
with Erlang, Principles Logics and
Implementations of High-Level Programming
Languages, 2003.

[36]Jiri Kohout and Katerina Kucerova, Two views
on data integration, 8th WSEAS International
Conference on Applied Informatics and
Communications (AIC'08), 2008, pp. 506-514.

WSEAS TRANSACTIONS on INFORMATION
SCIENCE & APPLICATIONS

Laura M. Castro, Victor M. Gulias,
Carlos Abalde, Javier Paris

ISSN: 1790-0832 1364 Issue 9, Volume 5, September 2008

http://www.madsgroup.org/armistice
http://www.erlang-consulting.com/aboutus/opensource
http://www.erlang-consulting.com/aboutus/opensource
http://support.process-one.net/doc/display/CONTRIBS/Yxa
http://support.process-one.net/doc/display/CONTRIBS/Yxa
http://www.iso.org/
http://www.ansi.org/
http://www.erlang.org/doc/apps/mnesia/index.html
http://www.erlang.org/doc/apps/mnesia/index.html
http://www.ejabberd.im/
http://tsung.erlang-projects.org/
http://yaws.hyber.org/
http://serval.igalia.com/
http://www.lambdastream.com/lambda/products/VoDKA?l=EN
http://www.lambdastream.com/lambda/products/VoDKA?l=EN

