WSEAS TRANSACTIONS on INFORMATION

SCIENCE & APPLICATIONS Stergios Papadimitriou, Konstantinos Terzidis

Matlab-like Scripting for the Java Platform with the jLab environment

STERGIOS PAPADIMITRIOU, KONSTANTINOS TERZIDIS
Department of Information Management
Technological Educational Institute of Kavala
65404 Kavala,

GREECE

sterg@teikav.edu.gr, kter@teikav.edu.gr

Abstract: - The jLab environment extends the potential of Java for scientific computing. It provides a
Matlab/Scilab like scripting language that is executed by an interpreter implemented in the Java language. The
jLab environment combines effectively Groovy like compiled scripting with the interpreted jScript one. A special
purpose modification of the Groovy language, called GroovySci is developed for effective compiled scripting.

The paper concentrates on the topic of using the jLab scripting engine from within a pure Java application, in
order to allow the application to utilize the scientific scripting potential of jLab and its large scientific libraries.
The implementation is inspired by the JSR 223 standard but it is much simpler. The same methodology for script
invocation can also be used within the Groovy effective compiled scripting framework. We describe the basics of
the Groovy scripting environment. To our knowledge, this is the first full Matlab like scientific scripting for Java.

The jLab environment is open source and can be downloaded from https://jlab.dev.java.net

Key-Words: - Java, Scripting, Interpreters, Matlab, Scientific Programming, Groovy Scripting

1 Introduction

The Java platform provides rich resources for both
desktop and web application development [4,11].
However, using those resources from outside the
platform has been impractical unless you resort to
proprietary software solutions. No industry
standard has defined or clarified how developers
can use Java class files from other programming
languages. Scripting languages haven't had a
standard, industry-supported way to integrate with
Java technologies.

However, today things they are changed. One
change is Java Specification Request (JSR) 223,
which helps developers integrate Java technology
and scripting languages by defining a standard
framework and application programming interface
(API) to do the following:

1. Access and control Java technology-based

objects from a scripting environment

ISSN: 1790-0832 1345

2. Create web content with scripting
languages

3. Embed scripting environments within
Java technology-based applications

This article focuses on the specification's
third goal and demonstrates how to use a
scientific Matlab-like scripting programming
environment from a Java platform
application. The later environment is the
jLab environment described in detail in
[12,13]. It is a Matlab/Scilab/Octave like
programming environment [3,5,6,7,8,9]
coded in pure Java. Its main component is a
mathematical scripting engine implemented
in pure Java with techniques similar to those
described in [1,2]. Scientific programming
issues have been addressed previously in
[16,17,18].

The paper describes the utilization of jLab

Issue 9, Volume 5, September 2008

WSEAS TRANSACTIONS on INFORMATION
SCIENCE & APPLICATIONS

scripting engine from within a pure Java
application, in order to allow the application to
utilize the scientific scripting potential of jLab and
its large scientific libraries. The implementation is
inspired by the JSR 223 standard but it is much
simpler. The simplicity of the interface is a crucial
factor for its adoption by the scientific community.
To our knowledge, this is the first full Matlab like
scientific scripting for Java. The jLab environment
is open source and can be downloaded from https://
jlab.dev.java.net

The paper proceeds by describing the advantages
offered by the scripting languages in section 2.
Section 3 outlines basic concepts of the JSR 223
specification and places our design in terms of it.
Section 4 is the main core of the paper since it
describes the most useful routines for parameter
communication between the Java program and the
jLab scripting engine and vice versa. Also, it
presents a simple and illustrative code example.
Section 5 describes the basics of the Groovy
compiled scripting engine that coexists in jLab and
can utilized in the same way for more effective
compiled scripting. Finally, the conclusions are
presented along with directions for future work.

2 Rationale for Scripting Languages
Most scripting languages are dynamically typed.
You can usually create new variables without
predetermining the variable type, and you can
reuse variables to store values of different types.
Also, scripting languages tend to perform many
type conversions automatically, for example,
converting the number 10 to the text "10" as
necessary. Although some scripting languages are
compiled, most languages are interpreted. Script
environments generally perform the script
compilation and execution within the same
process. Usually, these environments also parse
and compile scripts into intermediate code when
they are first executed.

These qualities of scripting languages help you
write applications faster, execute commands
repeatedly, and tie together components from
different technologies. Special-purpose scripting
languages can perform specific tasks more easily
or more quickly than can more general-purpose

ISSN: 1790-0832 1346

Stergios Papadimitriou, Konstantinos Terzidis

languages. For example, many developers
think that the Perl scripting language is a
great way to process text and to generate
reports. Other developers use the scripting
languages available in bash or ksh
command shells for both command and job
control. Other scripting languages help to
define wuser interfaces or web content
conveniently. Developers might use the Java
programming language and platform for any
of these tasks, but scripting languages
sometimes perform the job as well or better.
This fact doesn't detract from the power and
richness of the Java platform but simply
acknowledges that scripting languages have
an important place in the developer's toolbox.

Combining scripting languages with the Java
platform provides developers an opportunity
to leverage the abilities of both
environments. You can continue to use
scripting languages for all the reasons you
already have, and you can use the powerful
Java class library to extend the abilities of
those languages. If you are a Java language
programmer, you now have the ability to ship
applications that your customers can
significantly and dynamically customize. The
synergy between the Java platform and
scripting languages produces an environment
in which developers and end users can
collaborate to create more useful, dynamic
applications.

3. Architecture of the JSR 223 and

Discovery Mechanism

Version 6 of the Java Platform, Standard
Edition (Java SE), does not mandate any
particular script engine, but it does include
the Mozilla Rhino engine for the JavaScript
programming language. The Java SE 6
platform implements the java.script
APIs, which allow you to use script engines
that comply with JSR 223.

An important design goal of this API is
portability. It means to serve as a standard
API for embedding all kinds of scripting
languages, although these are characterized

Issue 9, Volume 5, September 2008

WSEAS TRANSACTIONS on INFORMATION
SCIENCE & APPLICATIONS

by diversity in terms of the functionalities that they
provide. The API tends to cover all the features
that a certain scripting engine can supply, and at
the same time it enables simple engines, with just
basic functionalities, to comply with the API.

Thus, the Scripting API provides the ability to
application developers to determine the features
that are implemented in certain scripting engines at
runtim. The developers can adjust their code for
specific cases, or fail correctly if the scripting
engine does not implement certain optional
features.

The discovery mechanism refers to the way with
which the available scripting engines are detected.
The Scripting API is based on the service provider
mechanism described in the Jar File Specification.
According to this specification, the service is a set
of interfaces and (possibly abstract) classes. The
service provider represents an implementation of
the service, i.e. an implementation of the interfaces
and abstract classes.

The mechanism allows to make service providers
available to the application dynamically, by
adding them to the classpath. The Jar File
Specification achieves this by specifying that the
files located in the META-INF/services folder of
the JAR archieves should be used as the service
providers configuration files. Furthermore, the
configuration files should be named after the
service interfaces (or abstract classes) they
implement, and the name must include the service
package as well. Finally, the files should contain a
newline-separated list of particular classes that
implement the service.

Scripting engines are created through the factory
method defined in the
javax.script.ScriptEngineFactory interface. So
the ScriptEngineManager class searches through
all the JAR files in the application's classpath and
registers engine factories that are found in the
META-
INF/services/javax.script.ScriptEngineFactory
files of those archives. For example the jLab .jar
archive (e.g. The jLabLinSol.jar or the
jLabWin.jar) contains the following entry:
com.sun.script.jLab.jLabScriptEngineFactory
in its META-

ISSN: 1790-0832 1347

Stergios Papadimitriou, Konstantinos Terzidis

INF/services/javax.script.ScriptEngineFactor
y file. This implies that the class
com.sun.script.jLab.jLabScriptEngineFac
tory implements the ScriptEngineFactory
functionality for the jLab engine.

However, although initially we had
implemented a design based on the
ScriptEngineFactory concept, we observed
that although such indirect designs are
elegant and promote generality, they are
rather difficult and inconvenient for the
majority of the scientific community. Thus,
we redesigned the interface in order to
become much more direct and simpler.

The redesigned interface is based on direct
instantiation of the jLabScriptEngine object.
All that the user has to perform is to have the
Jjar of the jLab system on the classpath and
to import the jLabScriptEngine class (i.e.
import jLabScriptEngine.jLabScriptEngine).

The jLab Script engine (jLabScriptEngine)
keeps a reference to the jLab interpreter
object that will be used to evaluate the script.
The Java Virtual Machine classloader loads
the jLabScriptEngine class from the jLab .jar
file (which we recall is accessible from the
classpath). The getClass().getResource()
method is used to load a simple resource
placed within the directory of the
jLabScriptEngine class (i.e.
“resources/engine.gif”). The returned URL is
used to extract the name of the jLab's jar file
which is important. The jLabScriptEngine
can then create a full jLab scripting engine
object from the jar file. Subsequently it
initializes the execution environment by
clearing the bindings.

The important eval() method executes the
script. There are overloaded versions but the
most important is the method that takes a
Bindings parameter that control the context
at which the script at which the script will be
executed. The eval() method initially
retrieves the current context in order to
restore it later after its execution. Then it sets
the new bindings for the evaluation of the
script. These bindings are passed to the

Issue 9, Volume 5, September 2008

WSEAS TRANSACTIONS on INFORMATION
SCIENCE & APPLICATIONS

scripting interpreter object that is responsible for
evaluating the expression with the bindings.

4. Evaluation

The utilization of the scripting facilities of the jLab
scripting engine from a Java program is
straightforward. We have provided a simple and
effective interface for communicating parameters
between the Java program and the scripting engine.
This interface follows the spirit of JSR223 but we
designed it different in two ways in order to have it
more effective for scientific programs:

a. the implementation of the full generality of
JSR223 is avoided. Although the design of JSR223
is excellent from the software engineering point of
view, we believe that the average scientist likes a
much simpler and straightforward set of routines,
in order to keep the intefacing lines of code up to a
few simple lines only. The JSR 223 is full of
concepts such as script engine managers, script
engine factories, script engine metadata etc., that
although they are technically elegant, they usually
confuse the average scientist that usually is not an
expert in software engineering methodologies.

b. some additional variants of the get() method
are implemented in order to retrieve easily the
binded values of the main data types used in
scientific programs, i.e. Strings, floats, vectors and
matrices.

Thus the implemented interface consists of the
following routines:

1.// put a binding for the variable key at the
ENGINE_SCOPE
public void put(String key, Object value)

2. // get the binding for variable key from the
ENGINE_SCOPE

public Object get(String key)

The two methods above can handle arbitrary
objects. However, practically more usefull are the
following methods that handle the basic types:

3. /I get the double value computed for the
variable by the Interpreter

public double getBindingAsDouble(String
variableName);

ISSN: 1790-0832 1348

Stergios Papadimitriou, Konstantinos Terzidis

This method returns to the Java program the
value of the numeric variable variableName
as a double type.

4. // get the double value computed for the
variable by the Interpreter

public double getBindingAsDouble(String
variableName);

This method returns to the Java program the
value of the numeric variable variableName
as a double type.

5. // get the String value computed for the
variable by the Interpreter

public String getBindingAsString(String
variableName);

This method returns to the Java program the
value of the alphanumeric variable
variableName as a String type.

6. // get the Vector value computed for the
double [] variable variableName

public double [] getBindingAsVec(String
variableName);

This method returns to the Java program the
value of the alphanumeric variable
variableName as a String type.

7. /] get the Matrix value computed for the
double [][] variable variableName

public double [1[]
getBindingAsMatrix(String variableName);
This method returns to the Java program the
value of the alphanumeric variable
variableName as a Matrix type.

With this interface the utilization of the
mathematical scripting potential of the jLab
scripting engine from Java programs is kept
very simple. For example, the following
example Java code, first constructs a jLab
scripting engine object, with the call:
jLabScriptEngine jLabSEng = new
jLabScriptEngine(); Then it creates a
Binding object in order to pass the binded
variables to the interpreter, ie.
Bindings binding = new SimpleBindings();

At this object the code puts the variables that
we have to transfer to the interpreter, i.e.
binding.put("freq1", new Double(10.0)),

Issue 9, Volume 5, September 2008

WSEAS TRANSACTIONS on INFORMATION
SCIENCE & APPLICATIONS

binding.put("freq2", new Double(4.0));

binding.put("amplitude", new Double(3.0));
Afterwards the expression that we have to evaluate
is passed to the interpreter object, i.e.
LabSEng.eval("t=0:0.01:20; freq = freql*freq2;
x=sin(freq1*t)+amplitude*cos(freq2*t); plot(t,x);
y=o0nes(20,20)*20; title('Evaluation with freq =
'+freq);", binding);
Finally, the last interaction step is to retrieve the
computed values that we are interested for. The
example code retrieves both a double, a vector and
a matrix.

The program listing that follows is the complete
Java program. In order to compile and execute this
program we need only place the .jar archive of the
jLab system (i.e. the jLabLinSol.jar or the
jLabWin.jar) in a place accessible by the Java
classpath, e.g. a specific example using the -cp
option, for compile:

javac -Cp
/export/home/sterg/NBProjects/jLab/jLabPr/dist/jL
abLinSol.jar:. testJLAB.java

and for running the example:

java -Cp
/export/home/sterg/NBProjects/jLab/jLabPr/dist/jL
abLinSol.jar:. testJLAB

The complete program listing follows:
import java.util.Collection;

import java.util.List;

import java.util. Map;

import java.util. Map.Entry;

import java.util.Set;

import javax.script.ScriptEngineFactory;
import javax.script.ScriptEngineManager;
import jLabScriptEngine.jLabScriptEngine;
import javax.script.Bindings;

import javax.script.ScriptException;
import groovy.lang.Binding;

import javax.script.SimpleBindings;
import javax.swing.JOptionPane;

public class jLabEngineTest {
public static void main(String[] args) {
jLabScriptEngine jLabSEng = new
jLabScriptEngine();
try {
Bindings binding = new SimpleBindings();
binding.put("freql", new Double(10.0));

ISSN: 1790-0832 1349

860 -

04y -

132

0%6h | - |

096

-7

-148

-3

Stergios Papadimitriou, Konstantinos Terzidis

binding.put("freq2", new Double(4.0)),
binding.put("amplitude"”, new Double(3.0));
jLabSEng.eval("t=0:0.01:20; freq =
freql*freq2; x=sin(freq1*t)
+amplitude*cos(freq2*t); plot(t,x);
y=ones(20,20)*20; title('Evaluation with
freq = '+freq);", binding);
double freqRes =
jLabSEng.getBindingAsDouble("freq2");
double [] x = new double [1];
x = jLabSEng.getBindingAsVec("x");
for (int k=0; k<100; k++)
System.out.printin("x["+k+"]= "+x[k]);
double [][] y = new double [1][1];
y = jLabSEng.getBindingAsMatrix("y");
for (int k=0; k<10; k++)
for (int m=0; m<10; m++)
System.out.printin("y["+k+"]
["+m+"]="+y[k][m]);
System.out.printin("freqRes =
"+freqRes);
}

catch (ScriptException ex) {
ex.printStackTrace(),
}
}

}
The figure that follows (Figure 1) illustrates

the signal computed and plotted by the jLab
interpreter on behalf of the Java program.

Evaluaton with ieg= 40.0
T T T

Figure 1: The jLab scripting engine
computes and plots this graph, when it is

Issue 9, Volume 5, September 2008

WSEAS TRANSACTIONS on INFORMATION
SCIENCE & APPLICATIONS

invoked from the simple Java program described
above

5 The Groovy Scripting Framework

The Groovy approach to scripting is very different
from the j-Script one presented previously. We
developed also a Groovy based compiled scripting
framework that works in the same way as the
previously described interpreted jScripts and we
call this as GroovySci.

In order to understand the mechanics involved
suppose that a Groovy script named
groovyScript.groovy is to be evaluated. The
following steps then are involved [14]:

a. The file groovyScript.groovy is fed into the
Groovy parser.

b. The parser generates an Abstract Syntax Tree
(AST) that fully represents all the code in the file.
Actually, the Groovy parser is based on the
ANTLR (ANother Tool for Language Recognition)
tool, described in detail in [15].

c. The Groovy class generator takes the AST and
generates Java bytecode from it. Depending on the
contents of the script file, this phase can create
multiple classes. These classes are then available
through the Groovy classloader.

d. The Java runtime is invoked in a manner
equivalent to running java groovyScript.

Thus, contrary to j-Script scripting, Groovy does
not directly interprets the scripts. Classes are
always fully constructed before runtime and do not
change while running.

A Scripts in Groovy are represented by the
class Script. If a Groovy file does not
contain any class declaration, it is handled
as a Script. This is performed by
transparently creating a Script class from
the script code. The generated class has the
same name as the source script filename.
The source code of the script is mapped into
a run method, and an additional main
method is constructed for the initiation of
the script execution.

ISSN: 1790-0832 1350

Stergios Papadimitriou, Konstantinos Terzidis

A When a Groovy file declares one class
with the same name as the file, then
there exists the same one-to-one
relationship as in Java.

L A Groovy source file may contain
multiple class declarations of any
visibility. Different from Java is the
fact that there is no enforced rule that
any of these classes must match the
filename. The groovyc compiler
generates class files for all the
declared classes.

» A Groovy source file can have both
class declarations and scripting code.
The scripting code in this case is
wrapped into a main class to be
executed with a name equal to the
Groovy's script source filename.
Thus, it is important in such a
situation to avoid declaring a class
with the same name as the source
filename.

However, Groovy can be characterized as a
“scripting super-Java”. It is a lot easier and
quicker for the programmer to work with
Groovy instead of Java. One of its strongest
features is that it is a dynamic language [14].

Dynamic languages have the potential of
seemingly modifying classes at runtime. We
can for example add new methods to a
running class. Groovy can achieve this
flexibility even though the bytecodes of the
generated classes cannot change. The
bytecode that the Groovy class generator
produces is necessary different from that of
the Java compiler, not in format but in
content. The dynamic nature of Groovy
makes relatively easy to extend the language
with Matlab like matrix operations.

The concept of the workspace is implemented
in GroovySci with the use of undeclared
variables. In this case these variables are
assumed to come from the script's binding
and are added to the Hashtable data structure

Issue 9, Volume 5, September 2008

WSEAS TRANSACTIONS on INFORMATION
SCIENCE & APPLICATIONS

that implements the binding. The binding is a data
store that enables transfer of variables to and from
the caller of a script. This trick gives the illusion to
the user that the code is directly interpreted but
isn't. Classes that are not scripts, do not participate
in the variable binding technique, thus they should
not have undeclared variables.

The declared variables of these classes are kept
local to the class that implements the script and are
not exported to the calling environment through the
binding.

Naming in the Groovy system becomes very
important when we do not compile explicitly. In
this case, Groovy finds a class by matching the
class name to a corresponding *.groovy source file.
Thus the source file name becomes important in the
class resolving process. After finding such a file, all
its declared classes are parsed and become known
to Groovy.

The default field visibility has a special meaning in
GroovySci. When no visibility modifier is attached
to a field declaration, a property is generated for the
respective name.

At GroovySci's methods, declaring explicit return
parameter types is optional. If the return type
declarations are omitted, Object is used. For
example, the classic Java declaration:

public static void main(String [] args)

can be recasted in Groovy as:
static main (args)

We note that the public modifier is optional and
was omitted since public is the default visibility for
GroovySci's methods. Also, because return types
are not used by the dynamic method dispatch(), the
void declaration is also omitted.

Usually most programming environments support
positional parameters, where the meaning of each
argument is determined from its position in the
parameter list. GroovySci in addition offers the
named parameters, that facilitate the handling of
methods that accept many parameters.

Groovy's method invocation is accomplished with
the InvokerHelper class [14]. This class has an

ISSN: 1790-0832 1351

Stergios Papadimitriou, Konstantinos Terzidis

invokeMethod method that has the prototype:
public static Object invokeMethod(Object object,
String methodName, Object arguments)

This method accomplishes the important task
of invoking the given method on the object. It
works as follows:

If the object is a Class its calls a static
method from the class. This is accomplished
by retrieving the metaclass of the class from
the metaclass registry object. The metaclass
registry keeps globally the association
between the class objects and their
metaclasses. Thus, the call:

MetaClass metaClass =
metaRegistry.getMetaClass(theClass);

retrieves the metaClass object that
corresponds to the class object that is passed
as parameter. Obviously, if the object is a
class we can only call its static methods. This
is accomplished with the call:
metaClass.invokeStaticMethod(object,
methodName, as Array(arguments));

If the object is a class instance then the
invocation code distinguishes two cases:

a. if the object does not implement the
GroovyObject interface (i.e. it is not a
builder, closure etc.) then the method is
invoked with the call:
invokePojoMethod(object, methodName,
arguments);

This method retrieves first the class of the
object, i.e.:
Class theClass = object.getClass();

Then the metaRegistry object is queried in
order to obtain the metaclass of the former
class object, i.e.

MetaClass metaClass =
metaRegistry.getMetaClass(theClass);

Finally, this metaclass object is used to
invoke the method:
metaClass.invokeMethod(object, methodName,
asArray(arguments));

b. if the object implements the GroovyObject

Issue 9, Volume 5, September 2008

WSEAS TRANSACTIONS on INFORMATION
SCIENCE & APPLICATIONS

interface the invoking protocol is somewhat
different and it is undertaken by the
invokePogoMethod().

This method first casts the object as an instance of
GroovyObiject in order to exploit the pecularities of
the later. Subsequently, the object is asked if it
implements the GroovylInterceptable interface.

If it's a pure interceptable object (even intercepting
toString(), clone(), ...) then the invocation is
performed with the call:
groovy.invokeMethod(methodName,
asUnwrappedArray(arguments));

The Interceptor class allows to specify code that is
executed before and after the method itself is
optionally called. These code chunks are specified
with the beforeInvoke() and afterInvoke() methods.
Object beforelnvoke(Object object, String
methodName, Object[] arguments);

The Delegating metaclass is a metaclasss that
delegates the metaclass functionality to the
delegate metaclass. The later metaclass is kept in a
field of the delegating metaclass. The purpose of
the delegating metaclass is to delegate the
metaclass related operations to its delegate. The
basic operations that are delegated include:
addNewlInstanceMethod(), addNewStaticMethod(),
addMetaMethod(), getMethods(), getProperty(),
getProperty(), invokeConstructor(),
invokeMethod(), invokeStaticMethod(),
setMetaClass(), getMetaClass().

The ExpandoMetaClass is the metaclass that
allows the addition of new methods on the fly.
Thus, it constitues a basic component of the
dynamic object orientation of the Groovy system.
By default methods are only allowed to be added
before initialize() is called. In other words you
create a new ExpandoMetaClass, add some
methods and then call initialize(). If you attempt to
add new methods after initialize() has been called
an error will be thrown. This is to ensure that the
MetaClass can operate appropriately in multi
threaded environments as it forces you to do all
method additions at the beginning, before using the
MetaClass. In order to be able to expand
dynamically the methods of a class object an
ExpandoMetaClass object should be constructed

ISSN: 1790-0832 1352

Stergios Papadimitriou, Konstantinos Terzidis

for it. The method invokeMissingMethod()
overrides the default missing behaviour and
adds the capability to look up a method from
super class. This class also has the potential
of recursively searching for a particular
method in a class hierarchy.

A ProxyMetaClass is a subclass of
MetaClass, ProxyMetaClass manages calls
from Groovy Objects to POJOs (Plain Old
Java Objects). It enriches Metaclass with the
feature of making method invocations
interceptable by an Interceptor. To this end, it
acts as a decorator (decorator pattern)
allowing to add or withdraw this feature at
runtime.

A MetaClass within Groovy defines the
behaviour of any given Groovy or Java class.
The MetaClass interface defines two parts,
the client API which is defined via the
MetaObjectProtocol interface and the
contract with the Groovy system.

In general the compiler and Groovy runtime
engine interact with the methods of the
MetaClass class, while MetaClass clients
interact with the methods defined by the
MetaObjectProtocol interface.

6 Conclusion

The paper has presented a powerful scripting
language that is executed by an interpreter
implemented in the Java language. This
language supports all the basic programming
constructs and an extensive set of built in
mathematical routines that cover all the basic
numerical analysis tasks.

The main scope of the paper was to
demonstrate the potential of utilizing this
scripting engine from Java code. This allows
the programmer to exploit the full potential
of a mixed mode programming paradigm:

¢ Java compiled code for the
computationally demanding
operations and

Issue 9, Volume 5, September 2008

WSEAS TRANSACTIONS on INFORMATION
SCIENCE & APPLICATIONS

¢ Scripting code for fast implementation of
the program's structure.

Although the creation of j-Script code is easier, and
quicker, the alternative option of implementing
compute intensive code in Java, offers to the
competent Java programmer the advantages of
execution speed, enhanced code robustness and the
potentiality to exploit existing open-source Java
libraries.

Thus, jLab can serve also and as an environment
for the gradual development of complex systems,
starting from an initial prototype that consists
mostly of scripting code and in stages replacing
script code with pure Java code.

This design permits to obtain both speed efficiency
and flexibility while at the same time allows the
utilization of the wvast amounts of scientific
software that is implemented in the Java language.

Acknowledgment

The authors wish to thank the Research
committee of the Technology Education
Institute of Kavalas, Greece, for the partial
financial support of this research.

References:

[1] David A. Watt and Deryck F Brown,
"Programming Language Processorsin
Java", 2000, Pearson Education

[2] Steven John Metsker, "Building
Parsers with Java", Addison-Wesley,2001

[3] Stephen L. Campbell, Jean-Philippe
Chancelier, Ramine Nikoukhah,
"Modeling and Simulation in
Scilab/Scicos", Springer, 2006

[4] Cay Horstmann, Gary Cornell, "Core
Java 2", Vol I Fundamentals, Vol II -
Advanced Techniques. Sun Microsystems
Press, 7th edition, 2005

[5] Norman Chonacky, David Winch, "3Ms
for Instruction: Reviews of Maple,
Mathematica and Matlab", Computing in
Science and Engineering, May/June 2005,
Part I, pp. 7-13

ISSN: 1790-0832 1353

Stergios Papadimitriou, Konstantinos Terzidis

[6] Norman Chonacky, David Winch,
"3Ms for Instruction: Reviews of
Maple, Mathematica and Matlab",
Computing in Science and
Engineering, July/August 2005, Part
II, pp. 14-23

[7] Michael Trott, "The Mathematica
Guidebook: Programming", Springer,
2004

[8] Erwin Kreyszig, "Maple
Computer Guide for Advanced
Engineering Mathematics (8th Ed.)",
Wiley, 2000

[9] John W. Eaton, "GNU Octave
Manual", Network Theory Ltd, 2002

[10] Desmond J. Higham, Nicholas]J.
Higham, "Matlab Guide", Second
Edition, SIAM Computational
Mathematics, 2005

[11] Budi Kumiawan, A Tutorial:
Java 6 New Features,
BrainySoftware, 2006

[12] S. Papadimitriou, Scientific
programming with Java classes
supported with a scripting
interpreter, IET Software, 1, (2), pp.
48 - 56, 2007

[13] Papadimitriou S, Terzidis K.,
“jLab: Integrating a scripting
interpreter with Java technology for
flexible and efficient scientific
computation”, Computer Languages,
Systems & Structures (2008),
Elsevier, in print

[14] Dierk Konig, Andrew Glover,
Paul King, Guillaume Laforge, Jon
Skeet, Groovy In Action, Manning
Publications, 2007

[15] Terence Parr, The Definitive
ANTLR Reference: Building Domain-
Specific Languages, The Pragmatic
Programmers, 2007

[16] Stergios Papadimitriou,
Konstantinos Terzidis, Seferina
Mavroudi, Skarlas Lambros,

Spiridon D. Likothanasis, “Fuzzy
rule based classifiers from SV
Learning”, WSEAS Transactions On
Computers, Issue 7, Vo 4, July 2005

Issue 9, Volume 5, September 2008

WSEAS TRANSACTIONS on INFORMATION
SCIENCE & APPLICATIONS

[17] Stergios Papadimitriou, Konstantinos
Terzidis, The Design and Implementation
of a Java Based Open Source
Mathematical Programming Environment,
WSEAS Trans. On Information Science
and Applications, Issue 7, Vo 4, April
2007, pp. 836-840

[18] Stergios Papadimitriou, Konstantinos
Terzidis, Seferina Mavroudi, Skarlas
Lambros, Spiridon D. Likothanasis, Fuzzy
rule based classifiers from SV Learning,
WSEAS Transactions On Computers, Issue
7, Vo 4, July 2005, pp. 661-670

ISSN: 1790-0832

1354

Stergios Papadimitriou, Konstantinos Terzidis

Issue 9, Volume 5, September 2008

