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Abstract:  -  The  jLab  environment  extends  the  potential  of  Java  for  scientific  computing.  It  provides  a 
Matlab/Scilab like scripting language that is executed by an interpreter implemented in the Java language. The 
scripting language supports the basic programming constructs with Matlab like matrix manipulation operators. 
The jLab "core" provides the general purpose functionality with an extensive set of built  in mathematical 
routines that cover all the basic numerical analysis tasks. 
The important advantage of jLab compared to other similar environments is the potentiality to dynamically 
and automatically integrate Java code to the system in order to obtain both execution speed and to reduce the 
programming  effort.  This  task  is  supported  both  by  an  easy  to  use  extension  Java  class  wizard  and  by 
application specific class wizards that automate the utilization of jLab's scientific libraries. 
However, the incorporation of external Java general purpose code is not as convenient as the scripting code 
development is. Also, j-scripting is relatively slow compared to Groovy scripting that operates by compiling 
the  scripts  to  Java  classes.  This  was  the  motivation  for  the  adaptation  of  the  general   purpose  Groovy 
“scripting SuperJava” language as a parallel and cooperative scripting option in the jLab environment. The 
paper concentrates on the issues involved in the implementation of the multiscripting environment and on the 
benefits that can be obtained by the combination of these two very different scripting frameworks. The Groovy 
agile  scripting  language  for  the  Java  platform  is  both  very  flexible  and  powerful.  We  describe  the 
modifications to the Groovy language and some of the most basic extensions that we have implemented in 
order to build the GroovySci language, the compiled scripting language of the jLab platform. 
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1   Introduction
Recently with the growing speed and potentiality 
of computers the populatity of integrated scientific 
programming   environments  has  significantly 
risen.  These  environments  in  general  demand 
much  more  time  and  space  resources  from  the 
traditional  compiled  programming  languages  (i.e. 
C++ and Fortran). 
However, they greatly facilitate the task of creating 
quickly  reliable  scientific  software,  even  from 
scientists with little programming expertise. 
Two categories of general  scientific software can 
be  identified:  a.   computer  algebra  systems that 
perform  extensively  symbolic  mathematical 
evaluations (e.g. Maple [8], Mathematica [7]) and 
b.  matrix  computation systems  that  are  oriented 
toward numerical computations and are well suited 
for engineering applications (e.g. the Matlab [10] 

that dominates at the commercial market and the 
open source "clones" Scilab [3] and Octave [9]). 
An excellent  recent  comparative review of three 
well-established  commercial  products  can  be 
found in [5, 6]. 
These systems are usually implemented in C/C++/
Fortran and they are available in platform specific 
binary formats or in also platform specific build 
from source configurations  (e.g. the open source 
Scilab and Octave systems). 
To the contrary, the Java programming language 
in  which  the  presented  jLab  environment  is 
implemented allows platform independence.  The 
j-Lab scripting engine is implemented according 
to  the  principles  presented  in  [1,2].  We  have 
tested  jLab  on  Linux,  Solaris,  MacOS  X,  and 
Windows XP and it runs in the same way, on all 

WSEAS TRANSACTIONS on 
INFORMATION SCIENCE and APPLICATIONS Stergios Papadimitriou, Konstantinos Terzidis

ISSN: 1790-0832 1511 Issue 11, Volume 5, November 2008

mailto:sterg@teikav.edu.gr
mailto:sterg@teikav.edu.gr
mailto:sterg@teikav.edu.gr


these different environments,  without any change 
of the code and without even requiring installation. 
All that it requires is the installation of the free and 
open  source Java Runtime Environment (JRE) of 
Sun  Microsystems  to  provide  the  Java  Virtual 
Machine.  jLab  is  open-source  and  can  be 
downloaded from  https://jlab.dev.java.net/.  
 However,  even  though  the  j-Script  engine 
presented in [12,13] operates generally efficiently, 
there are cases where the speed of the j-Scripting is 
not sufficient and/or a more powerful and general 
purpose  scripting  language  is  required.  This  fact 
has formed the motivation of integrating the new 
Groovy  programming  language  [14]  within  the 
framework  of  jLab  as  an  alternative  scripting 
engine.  Thus  the  user  benefits  an  important 
performance  optimization  when Groovy scripting 
is exploited instead of j-Scripting. 
But the Groovy Scripting also benefits a lot when 
it is executed at the context of jLab. In addition to 
its extensibility jLab has a large set of basic classes 
integrated within its "kernel".  First of all it has a 
powerful  programming  environment  for  writing 
scripts and using the domain specific wizards (e.g. 
ODE wizard [12,13]).  Second, j-Scripting is more 
convenient  for  plotting  and  for  simple  scripts. 
Third,  and  perhaps  more  important,  the  Groovy 
programmer has access to a large library of Java 
numerical  routines  since  Groovy  can  directly 
utilize any Java class [14] . 
The numerical  analysis  functionality  provided by 
the jLab kernel (i.e. built-in) routines is in fact very 
strong:  jLab is  based  on the NUMAL numerical 
library [16].  The construction  of this  library was 
directed  by  P.W.  Hemker  of  the  Mathematisch 
Centrum  at  Amsterdam  (Mathematical  Centre  - 
MC)  and  carried  out  by  a  large  group  of 
(numerical) mathematicians from the MC and the 
Dutch Universities of Amsterdam and Groningen. 
The  library  initially  was  developed  in  Algol  60. 
Recently,  H. T. Lau, has ported the library to Java 
and the source is available with his book [16]. The 
book  describes  clearly  the  interface  of  the 
functions  and  facilitates  significantly  the 
incorporation of the powerful NUMAL numerical 
machinery in jLab.  Although Lau does not give 
many details on the numerical analysis algorithms 
involved,  a  subset  of  those  algorithms  are 
explained at the classical "Numerical Recipes" text 
[17].  Additionally,  jLab  incorporates  the 

functionality of the WEKA machine learning and 
data  mining  framework  [15],  and  some  others 
Java coded scientific libraries. The set of available 
libraries can be easily and dynamically extended 
as  described  in  [14].  Also,  both  the  j-Script 
engine  and  the  Groovy  script  engine  can  fully 
utilize the available scientific code.
 The  paper  proceeds  as  follows:  Section  2 
describes  the  basics  of  the  Groovy  scripting 
framework. Section 3 describes the concept of the 
global  variable  workspace and the mechanics  of 
variable sharing between the two scripting engines 
and the script engine switching. Section 4 presents 
an example where the two scripting engines  are 
exploited  for  building  efficiently  a  data  mining 
application. The Java classes of the WEKA library 
are  utilized.  The  Groovy  scripting  is  generally 
more efficient for data preprocessing while the j-
Scripting is more convenient for the interfacing to 
the  WEKA  libraries.  Section  5  decribes  the 
implementation of the Matlab-like matrix support 
in GroovySci.  Section 6 lights on the GroovySci's 
internals  by  tracing  some  method  invocations. 
Section  7  describes  the  basics  of  the 
autocompletion  system,  that  is  valuable  for 
effective  code  development.  Finally,  the 
conclusions  are  presented  along  with  directions 
for future work.

2   The Groovy Scripting Framework
The Groovy approach to scripting is very different 
from the j-Script one. In order to understand the 
mechanics involved suppose that a Groovy script 
named  groovyScript.groovy  is  to  be  evaluated. 
The following steps then are involved [14]:
a.   The  file  groovyScript.groovy  is  fed  into  the 
Groovy parser.
b. The parser generates an Abstract Syntax Tree 
(AST)  [1, 2] that fully represents all the code in 
the file.
c. The Groovy class generator takes the AST and 
generates Java bytecode from it. Depending on the 
contents  of  the script  file,  this  phase can  create 
multiple classes. These classes are then available 
through the Groovy classloader.
d.  The  Java  runtime  is  invoked  in  a  manner 
equivalent to running  java groovyScript.
Thus, contrary to j-Script scripting, Groovy does 
not  directly  interprets  the  scripts.  Classes  are 
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always fully constructed before runtime and do not 
change while running.
However,  Groovy  can  be  characterized  as  a 
“scripting super-Java”. It is a lot easier and quicker 
for the programmer to work with  Groovy instead 
of Java. One of its strongest features is that it is a 
dynamic language [14]. Dynamic languages have 
the  potential  of  seemingly  modifying  classes  at 
runtime. We can for example add new methods to 
a running class. Groovy can achieve this flexibility 
even though the bytecodes of the generated classes 
cannot change. The bytecode that the Groovy class 
generator produces is necessary different from that 
of the Java compiler, not in format but in  content.  
The  dynamic  nature  of  Groovy  makes  relatively 
easy  to  extend  the  language  with  Matlab  like 
matrix  operations.  The  project 
http://groovy.codehaus.org/GroovyLab aims  to 
achieve this. The Groovy version that is exploited 
in jLab benefits from the additional functionalities 
that are implemented with the GroovyLab project. 

3.   The Global Workspace and Script 
Switching
This section concetrates  on the important  subject 
of the implementation of the effective cooperative 
infrastructure  between the two radically  different 
scripting engines. 
A global workspace keeps the variables that  the 
user  can  directly  evaluate  and  examine.  The 
workspace  for  these  variables  is  implemented 
within  the  j-Script  engine  implementation  and 
they are shared by the Groovy environment. 

The  implementation  allows  Groovy  scripting  to 
coexist  with  jLab  scripting  and  to  handle  a 
common  workspace.  The  parameter  sharing  is 
accomplished  with  the  binding  mechanism  of 
Groovy.   A  Binding  object  is  used  to  keep  the 
shared parameters.  
The  method  passBindingFromGroovyToJLab() 
updates the jLab workspace with all the variables 
binded  in  the  Groovy  environment.  This  routine 
first  obtains  the reference  to  the  jLab interpreter 
object. This reference then is used to retrieve the 
list of the jLab global  variables.  In order to get 
access to the Groovy's global variables we need to 
obtain a reference to the Groovy variable binding. 
This reference is used for obtaining a Map of the 
binded  variables  at  the  Groovy's  context  and 

subsequently  a  set  view  of  the  variables  in  the 
Map. 
Subsequently  this  set  view  is  used  to  iterate 
through the Groovy's variables. For each Groovy 
binded variable we get its name and we create a 
corresponding jLab global variable. Depending on 
the type of the Groovy variable we have to take 
different actions. If the Groovy variable is double 
[], i.e.  a jLab vector,   we need to create a jLab 
vector  to  take  its  value.  This  is  performed  by 
instantiating  a  NumberObject with  the 
corresponding Vector  (i.e. double []) as its value. 
Similarly the case of a  Matrix  (i.e.  double [][]) 
return type is handled.  The following code snipet 
helps  to  obtain  a  more  specific  view  of  the 
interfacing code.

  // updates the jLab workspace with all the variables 
binded in the Groovy environment
    public  static  void 
passBindingsFromGroovyToJLab()  {
       if 
(GlobalValues.enablePassParamsFromGroovyTojLab) 
{ 
  Interpreter   jLabInterpreterObj  = 
jExec.jLab.jLab.interpreter;    //  object  to  jLab 
interpreter
 VariableList  currentVars  = 
GlobalValues.getGlobalVariables();  // get the current 
list of variables
  Binding  groovyBinding  = 
GlobalValues.groovyBinding;    // get the reference to 
the Groovy variable binding
 Map variables = groovyBinding.getVariables();  // get 
a Map of the binded variables at the Groovy's context
  Set  bindElemsSet = variables.keySet();  // return a 
set view of the variables in the Map
  Iterator bindedElemsIter  =  bindElemsSet.iterator(); 
// iterate through the Groovy's variables
   while (bindedElemsIter.hasNext())  { 
                String  currentVarName  =  (String) 
bindedElemsIter.next();   //  get  the  name  of  the 
Groovy's variable
                Variable  var  = 
currentVars.createVariable(currentVarName);   // 
create a jLab corresponding variable 
                Object  currentVarValue  = 
variables.get(currentVarName);  // get the value of the 
Groovy's variable
        if (( currentVarValue instanceof  double []))   // a 
Vector
            {  
           var.assign(new 
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jExec.Tokens.NumberObject((double 
[])currentVarValue));
            }
       else
           if (( currentVarValue instanceof  double [][]))
       {
           var.assign(new 
jExec.Tokens.NumberObject(((double  []
[])currentVarValue)));
       }
       else  {  // floating point or String 
             if  (currentVarValue instanceof  Integer) 
             {
                 int   varValue  =  ((Integer) 
currentVarValue).intValue();
                 var.assign(new 
jExec.Tokens.NumberObject((double) varValue));
             }
             else if ( currentVarValue instanceof Long)  {
                 long   varValue  =  ((Long) 
currentVarValue).longValue();
                 var.assign(new 
jExec.Tokens.NumberObject((double) varValue));
             }
             else if ( currentVarValue instanceof Float)  {
                 float   varValue  =  ((Float) 
currentVarValue).floatValue();
                 var.assign(new 
jExec.Tokens.NumberObject((double) varValue));
             }
             else if ( currentVarValue instanceof Double)  {
                 double   varValue  =  ((Double) 
currentVarValue).doubleValue();
                 var.assign(new 
jExec.Tokens.NumberObject((double) varValue));
             }
             else //  (currentVarValue instanceof String)   // 
simple scalar numeric values  or Strings can be treated 
as Strings and passed to jLab 
                {
            String  varValue  = 
currentVarValue.toString();   //  get  the  value  of  the 
Groovy's variable as a String
            var.assign(new 
jExec.Tokens.StringObject(varValue));   //  assign  this 
value to the jLab workspace

       }
              }  // floating point or String

            
          }
        }
    }
     
    //  makes the data of the jLab's workspace available 
to Groovy

    public  static  void 
passBindingsFromJLabToGroovy() {
      if 
(GlobalValues.enablePassParamsFromJLabToGroovy) 
{
         Binding  groovyBinding  = 
GlobalValues.groovyBinding;    // get the reference to 
the Groovy variable binding
        Variable var;
        VariableList  currentVars  = 
GlobalValues.getGlobalVariables();  // get the current 
list of variables
        Iterator jLabVarIter = currentVars.getIterator();
        while (jLabVarIter.hasNext())

{
        Map.Entry  next  = 
((Map.Entry)jLabVarIter.next());
        var = ((Variable)next.getValue());  
   jExec.Tokens.DataObject  varData  = 
(jExec.Tokens.DataObject)var.getData();
         if (varData != null) {
     String varName = var.getName();
     if (varData instanceof  NumberObject)   { // number 
object check to see if it is an array, vector or simply 
scalar
     double  [][]  valsAll  =  ((NumberObject) 
varData).values;
     int valsXLen = valsAll.length;
     int valsYLen = valsAll[0].length;
     if ( valsXLen > 1 || valsYLen > 1) {  // array
         if (valsXLen == 1 || valsYLen == 1)  {  // a 
vector
           double [] valsVecAll = valsAll[0];
           groovyBinding.setVariable(varName, 
valsVecAll);
         }  // a vector
          else   // a matrix
         groovyBinding.setVariable(varName, valsAll);
         }   // array
     else  {   // a simple scalar
             double  val  = 
((NumberObject)varData).values[0][0];
             groovyBinding.setVariable(varName, val);  
               } 
            } // number object
             else 
                       groovyBinding.setVariable(varName, 
(String) varData.toString());

}   // varData != null
         }  // jLabVarIter.hasNext()
      }    // 
GlobalValues.enablePassParamsFromJLabToGroovy
    }

}
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In  order  to  demonstrate  the  coexistence  and 
cooperation of the two scripting frameworks we 
present  a  simple benchmark  script  that  simply 
computes  a large two-dimensional  matrix  with 
elements  aij=i∗ j ,0i2000, 0 j500 .  The  j-
Script  code  that  performs  this  computation  is 
listed below:

#  tic;  k=1;  m=1;  while  (k<2000)  {  while  (m<500)  
{ a(k,m)=k*m; m++; } k++; } tm=toc;

The time for the execution of this loop is about tm 
= 1.769. This execution time can be much smaller 
with  the  exploitation  of  the  compiled  Groovy 
scripting.  The  symbol  '@'  is  used  to  switch  the 
jLab's mode to Groovy scripting and the symbol '`' 
to  return  to  j-Scripting.  The  corresponding  code 
and execution time follows:

# tic;  @  k=1;  m=1; a = new double[2000][1000];  
while (k<2000) { while (m<1000) { a[k][m]=k*m;  m+
+; } k++; } ` tm=toc;

The execution time at the same Pentium Dual-Core 
2.0 Gz  PC  is tm = 0.052 i.e. about 35 times faster. 
For  even  more  complex  code,  the  speedup 
improvement  of  Groovy  scripting  becomes  even 
more significant and improvements of 200 to 500 
times faster are usually obtained. 

4.   Example  of  the  multi-scripting at  a 
data mining application   
The  example  application  demonstrates  the 
utilization  of  the  multiscripting  facility  for 
exploiting both the flexibility of j-Scripting and the 
generality  and  speed  of  Groovy  scripting  at  the 
context of a data mining application.
Jlab utilizes the WEKA [17] machine learning and 
data  mining  environment  in  order  to  have  an 
effective  library  plug-in  for  data  mining  and 
computational  intelligence  applications.  Since 
WEKA is entirely in Java and open-source, it is a 
straightforward task to utilize its machine learning 
models both from the j-Scripting engine and from 
the Groovy framework. The example demonstrates 
the  application  of  the  WEKA's  Multilayer 
Perceptron  implementation,  with  a  simple  data 
preprocessing in Groovy.  This data preprocessing 

simply keeps those training instances that have a 
positive third attribute, i.e. data[k][2] >0, for all k. 
Groovy  is  a  powerful  language  for  performing 
effectively complex data preprocessing operations 
and  therefore  it  fits  well  in  the  jLab's 
multiscripting framework.
The example code is presented below:

clear("all");
dataFile  =  getFileNamePathOpenDialog("Please 
specify your data file");
data = ReadARFFFile(dataFile);
[N M] = size(data);
//  switch  to  Groovy  mode  in  order  to  perform 
efficient data filtering
@
// use Groovy scripting in order to perform flexible and 
efficient data filtering
cnt=0;  k=0;
while (k<N) {
  if (data[k][2] > 0)  cnt++;
  k++;
}
filteredData = new double[cnt][M];
k=0; cnt=0;
while (k<N) {
 if (data[k][2] > 0) 
   for (m=0; m<M; m++)
       filteredData[cnt][m] = data[k][m];
    k++;
 }
// the WEKA preprocessing stage has finished
// switch now to j-Script mode 
% use half of the data for training and half for testing
trainData = filteredData(1:2:N, :);  
testData = filteredData(2:2:N,:);
ClassIdx = M;
TestingClassLabel = testData(:,ClassIdx);
//learningRate  =  getNumberDialog("Enter  learning 
rate", "0.1");
//momentum = getNumberDialog("Enter momentum", 
"0.01");
  % This will set what the hidden layers are made up of 
when auto build is
  % enabled. Note to have no hidden units, just put a 
single 0, Any more
  % 0's will indicate that the string is badly formed and 
make it unaccepted.
  % Negative numbers, and floats  will  do the same. 
There are also some
  % wildcards. These are 'a' = (number of attributes + 
number of classes) / 2,
  % 'i' = number of attributes, 'o' = number of classes, 
and 't' = number of
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  % attributes + number of classes.
  % param h A string with a comma seperated list of 
numbers. Each number is 
  % the number of nodes to be on a hidden layer.
 //hiddenLayerString = getStringDialog("'a' = (number 
of attributes + number of classes) / 2, 'i'  = number of 
attributes, 'o' = number of classes, and 't' = number of
//attributes + number of classes. param h A string with a 
comma seperated list of numbers. Each number is  the 
number of nodes to be on a hidden layer.");
 nepochs = 500;
decayString = "false";
configureParameters = 1;  // present the MLP network 
parameter configuration screen prior to training
uiOnString = "true";
% train the Multilayer Perceptron
rs  =  MLPNet(trainData,  configureParameters);   // 
hiddenLayerString, learningRate, momentum, nepochs, 
decayString, uiOnString);
% now evaluate its performance on the test data
evalNet = MLPNetEval(testData);
classesPredicted = round(evalNet);
successCnt  = 
sum(TestingClassLabel==classesPredicted');
successRatio = successCnt/length(TestingClassLabel);
disp('MLPNet successRatio = '+successRatio);
figure(1);  xaxis  =  1:1:length(evalNet);  plot(xaxis, 
TestingClassLabel','g');
hold("on"); plot(xaxis, evalNet,'r'); title("green: actual, 
red: predicted"); 

The example above demonstrates the switching to 
Groovy scripting with the control character '@' (at 
the boldfaced text) in order to preprocess the data. 
After, this preprocessing we return again to j-Script 
mode,  where  it  is  more  convenient  to  call  the 
WEKA classes for performing data mining. 

5. The Matlab like matrix support
The  support  for  high-level  Matlab  like  matrix 

operations  is  essential  for  any  mathematical 
programming environment. 

Groovy  provides  the  hooks  on  which  to 
implement  effective  matrix  operations  at  the 
language  level.  The  language  bases  its  operators 
on  method  calls  and  allows  to  override  them in 
order to implement subtype specific behavior.

Thus,  the  addition  operator,  i.e.  A  +  B,  is 
overrided  to  perform  matrix  addition,  by 
implementing  the  method  plus,  i.e.  A.plus(B). 
Similarly,  the  other  basic  mathematical 

operations, A – B, A * B, A / B, A % B, A ** B 
are overloaded by implementing the methods:
A.minus(B),  A.multiply(B),  A.div(B),  A.mod(B),  

A.power(B). 
In  order  to  provide  convenient  array  indexing 

operations it is necessary for the Matrix class to 
override  the  array  indexing,  i.e.  the  subscript 
operation  [].  This  is  achieved  in  Groovy  by 
implementing  the  methods  A.getAt(idx), 
A.putAt(idx,  elem),  where  idx denotes  the array 
index and elem is the element to put.
Also  a  large  number  of  high  level  matrix 

operators are implemented in GroovySci.  Some 
of these operators are:

Matrix + Matrix
Matrix + Number
Matrix - Matrix
Matrix - Number
Matrix * Matrix
Matrix * Number
Matrix / Matrix
Matrix / Number
Matrix ** int"

Static  operators  on  the  Matrix   object  also 
implement the basic linear algebra operators. 
Some of these static operators are:

sum(Matrix)
prod(Matrix)
cumsum(Matrix)
cumprod(Matrix)
inverse(Matrix)

solve(Matrix  A,  Matrix  b),  
returns X Matrix verifying A*X = b.

rank(Matrix)
trace(Matrix)
det(Matrix)
cond(Mtrix)
norm1(Matrix)
norm2(Matrix)
normF(Matrix)
normInf(Matrix)
Cholesky_L(Matrix)
Cholesky_SPD(Matrix)
QR_Q(Matrix)
QR_H(Matrix)
QR_R(Matrix)
LU_L(Matrix)
LU_U(Matrix)
LU_P(Matrix)
Singular_S(Matrix)
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Singular_U(Matrix)
Singular_V(Matrix)
Singular_values(Matrix)
Eigen_D(Matrix)
Eigen_V(Matrix)
random(int, int),  independant random     

values  (between 0.0 and 1.0)  Matrix  of  given  
size, alias to rand(int, int) random(int,  
int, double min, double max)

randomUniform(int m, int n, double min, 
double max) 

randomDirac(int  m,  int  n,  double[]  
values, double[] prob) 

randomNormal(int m, int n, double mu,  
double sigma) 

randomChi2(int m, int n, int d) 
randomLogNormal(int  m,  int  n,  double  

mu, double sigma) 
randomExponential(int  m,  int  n, double 

lambda) 
randomTriangular(int  m,  int  n,  double  

min, double max) 
randomTriangular(int  m,  int  n,  double  

min, double med, double max) 
randomBeta(int m, int n, double a, double  

b) 
randomCauchy(int  m,  int  n,  double  mu,  

double sigma) 
randomWeibull(int  m,  int  n,  double 

lambda, double c) 

The  following  static  sort/find  methods  are  
available:

sort(Matrix)
sort(Matrix, int columnIndex)
min(Matrix)
max(Matrix)

The  following  static  transformation  methods  
are available:

transpose(Matrix)
alias to t(Matrix)

resize(Matrix, int, int)
rowsMatrix >> Matrix

appends rowsMatrix  to  Matrix  at  last  position  
(i.e. add last row)

columnsMatrix >>> Matrix
appends  columnsMatrix  to  Matrix  at  last  
position (i.e. add last column)

Matrix << rowsMatrix

appends rowsMatrix to Matrix at first position  
(i.e. add first row)

The  following  static  statistic  sample  methods  
are also available:

mean(Matrix)
variance(Matrix)
covariance(Matrix,Matrix)
correlation(Matrix,Matrix)

6. Tracing Invocations
 In order to understand the mechanics involved 
at  the  GroovySci's  compiled  scripting  we  
trace  some  distinctive  method  calls.  Suppose  
that  the  user  requires  the  computation  of  the  
expression:

 b = sin(4*a)
where  a  was  computed  previously  with  the 

command:
a = rand(4,5)

i.e. is  a Matrix object, of dimension 4x5, filled with 
pseudorandom numbers. Since a was computed 
exists  in the global  binding  of  variables.  The  
following steps are involved:

1.  A script  is  prepared  named  ScriptN.groovy 
where N  corresponds  to  an  auto-generated  script 
numbering, e.g.  the  name is  Script2.groovy for  the 
second generated script. 

2. The ScriptN.groovy script is compiled.
3. The compiled class is cached and is returned.
4. At InvokerHelper:
4a.  The  InvokerHelper  creates  an  object  of 
ScriptN class.
4b. It sets the current binding for the execution 
of the current script.(Script Execution Phase)
5.  Resolve  the  class  Matrix  for  the  method 
sin().
6.  Resolve  the  class  Integer  for  the  int 
argument 4.
7. Get the variable a from the current binding.
8. Invoke the method multiply() on the Groovy 
object  Int{4}  and  with  as  arguments  of  the 
method the matrix a.
9. the object is of class Integer. The metaclass 
registry is invoked to find the metaclass for the 
Integer class.
10. the metaclass is used to invoke the method 
“multiply”  on  the  object  “4”  and  with 
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arguments the Matrix a.
11.  the invoke()  method on the Integer  object 
“4” delegates the call to the invoke() method of 
the Integer class.
12.  the method “multiply”  is  retrieved  for  the 
“Integer”  target  class  and  with  arguments  the 
Matrix.
13. the method is retrieved from the hash map 
of  meta-methods.  These  methods  should  be 
defined in the DefaultGroovyMethods class.

Let's also trace what happens with the command
 d[7][9] = 8.5

1. Load class BigDecimal for the right hand side
2. The method getGroovyObjectProperty for the 
property d sets a parameter
GlobalValues.currentPropertyProcessed= 
messageName. 
In the particular  case the messageName is the 
variable being processed i.e. the “d” variable. 

3.  The  receiver.getProperty(messageName) call 
returns the value of the matrix d. 

4.  An  invocation  of  the  getAt() method  is 
performed on the object d and arguments 7.

5. The invoke Plain Old Groovy Object method is 
called  with  parameters  object,  methodName, 
and  {7},  i.e.  (invokePogoMethod(object, 
methodName, {7}) 

6. Call the
InvokerHelper(receiver, messageNAme, 

messageArguments)
where 
receiver: the matrix M 
mesageName: getAt
messageArguments: 2
7. the InvokerHelper calls

invokePojoMethod(Object object, String 
methodName, Object arguments)

object: Matrix M
methodName: “getAt”
arguments: 2
8. The Matrix M is a GroovyObject. Thus the 

InvokerHelper calls
GroovyObject groovy = (GroovyObject) object;
groovy.getMetaClass().invokeMethod  (object,  
methodName, asArray(srguments));

9.  The  metaclass  of  the  GroovyObject  is 
implemented  with  the  MetaClassImpl  class. 
This metaclass object calls 
invokeMethod(“M” “getAt”, “{2}”)

Subsequently, the invokeMethod() code 
calls the important routine 
getMethodWithCaching() 
in  order  to  try  to  use  the  cache  to  find  the 
method. 
The  caching  system  uses  the 
MetaMethodIndex class  where  the  important 
DefaultGroovyMethods are cached.

6. Figure Handling 
A  very  important  issue  for  mathematical 

programming environments is to have effective 
figure plotting facilities.

In  GroovySci,  a  figure  “manager”  class 
performs the necessary bookeeping and updates 
a set of structures in order to present to the user 
a  Matlab-like  figure  interface.  Each  figure  is 
represented by a FrameView object. The Matlab 
like  subplots  are  represented  with  PlotPanel 
objects. A 2-D array of PlotPanel objects holds 
the  subplots  associated  with  each  figure,  i.  e. 
FrameView object.  A  handle  where  plot 
operations  are  directed  is  kept  with  the 
currentPlot  variable  that  points  to  the  current 
FrameView object. 

Figure objects  are distinguished as either 2D 
Figure  objects  or  3D  ones.  The  newPlot2D() 
creates a new 2D figure object if either we do 
not  have a current  2D ploting panel  or a new 
figure is explicitly requested. A figure panel that 
is not splitted in subplots it is handled as if an 
explicit subplot2D(1,1,1) command was issued. 

The Plot2DCanvas class controls whether the 
mouse operations perform a rotation, a zoom or 
a  translation.  Each  axes  can  be  set  either  to 
LINEAR  or  to  LOGARITHMIC  mode.  The 
Canvas  class  implements  the  operations  for 
adding  plots  to  it,  e.g.  addGridPlot(), 
addCloudPlot()  etc.  An  AWTDrawer() 
component is used for plotting within a canvas. 
The AWTDrawer() class uses a Projection class 
for  the  implementation  of  the  necessary 
projections.

7. Autocompletion
Java is fast, robust, extensible, portable and an 

open  platform  for  the  academic  community 
(recently it become also and open-source). These 
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facts are some of the basic reasons for the leading 
popularity  of  the  Java  language  and  platform. 
Large  high  quality  scientific  libraries  by  the 
academic and engineering community in Java. The 
aim of jLab is to exploit effectively this huge base 
of outstanding work. 

Therefore, jLab explores three famous libraries 
of scientific code:

a. the NumAl library for numerical analysis
b. the WEKA machine learning framework.
c. the jSci scientific library.
The  AutoCompletion  system  automatically 

retrieves information for the computational classes 
of these libraries. The Java reflection API is used 
to  dynamically  interrogate  the  classes  for  their 
methods  and  to  provide  the  method  prototypes 
dynamically to the user. Also, since methods are 
available  with  their  short  names  (e.g.  eig()  for 
eigenvalue computations) and methods of similar 
functionality many times exist in different libraries 
(e.g.  eigenvalue  related  methods  exist  both  in 
NumAl  and  in  jSci),  the  public  methods  of  the 
scientific libraries are indexed and with their short 
name first then the package name.

Shell  control  commands  can  be  implemented 
easily  in  GroovySci.  A  class 
groovySci.BasicCommands is used to implement a 
set of basic shell control commands. This class is 
then  imported  implicitly  by  the  interactive  shell 
and  thus  the  implemented  methods  become 
available as user commands.

For example to implement the  dir command a 
static  method  dir  is  implemented  in  the 
groovySci.BasicCommands class. 

8   Conclusion
The  paper  concerned  a  powerful  scientific 
programming  environment  that  explores  two 
cooperative  scripting  languages:  the  j-Script 
scripting engine that is executed by an interpreter 
implemented in the Java language and the Groovy 
“scripting super-Java” scripting Engine. 
The main scope of the paper was to demonstrate 
the  potential  of  the  cooperation  of  these  much 
different scripting engines. 
Thus, jLab can serve also and as an environment 
for the gradual development of  complex systems, 
starting  from  an  initial  prototype  that  consists 
mostly of j-scripting code and in stages replacing 

script  code  with  Groovy  code  that  can  be 
compiled  to  Java  class  code  or  with  pure  Java 
code. 
This  design  permits  to  obtain  both  speed 
efficiency and flexibility  while at  the same time 
allows  the  utilization  of  the  vast  amounts  of 
scientific software that is implemented in the Java 
language. 
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