
Scientific programming with an environment that combines effectively
compiled and interpreted scripting at the Java platform

STERGIOS PAPADIMITRIOU, KONSTANTINOS TERZIDIS
Department of Information Management

Technological Educational Institute of Kavala
65404 Kavala,

GREECE
sterg@teikav.edu.gr , kter@teikav.edu.gr

Abstract: - The jLab environment extends the potential of Java for scientific computing. It provides a
Matlab/Scilab like scripting language that is executed by an interpreter implemented in the Java language. The
scripting language supports the basic programming constructs with Matlab like matrix manipulation operators.
The jLab "core" provides the general purpose functionality with an extensive set of built in mathematical
routines that cover all the basic numerical analysis tasks.
The important advantage of jLab compared to other similar environments is the potentiality to dynamically
and automatically integrate Java code to the system in order to obtain both execution speed and to reduce the
programming effort. This task is supported both by an easy to use extension Java class wizard and by
application specific class wizards that automate the utilization of jLab's scientific libraries.
However, the incorporation of external Java general purpose code is not as convenient as the scripting code
development is. Also, j-scripting is relatively slow compared to Groovy scripting that operates by compiling
the scripts to Java classes. This was the motivation for the adaptation of the general purpose Groovy
“scripting SuperJava” language as a parallel and cooperative scripting option in the jLab environment. The
paper concentrates on the issues involved in the implementation of the multiscripting environment and on the
benefits that can be obtained by the combination of these two very different scripting frameworks. The Groovy
agile scripting language for the Java platform is both very flexible and powerful. We describe the
modifications to the Groovy language and some of the most basic extensions that we have implemented in
order to build the GroovySci language, the compiled scripting language of the jLab platform.

Key-Words: - Java, Scripting, Interpreters, Matlab, Scientific Programming, Class Loaders, Groovy, Binding

1 Introduction
Recently with the growing speed and potentiality
of computers the populatity of integrated scientific
programming environments has significantly
risen. These environments in general demand
much more time and space resources from the
traditional compiled programming languages (i.e.
C++ and Fortran).
However, they greatly facilitate the task of creating
quickly reliable scientific software, even from
scientists with little programming expertise.
Two categories of general scientific software can
be identified: a. computer algebra systems that
perform extensively symbolic mathematical
evaluations (e.g. Maple [8], Mathematica [7]) and
b. matrix computation systems that are oriented
toward numerical computations and are well suited
for engineering applications (e.g. the Matlab [10]

that dominates at the commercial market and the
open source "clones" Scilab [3] and Octave [9]).
An excellent recent comparative review of three
well-established commercial products can be
found in [5, 6].
These systems are usually implemented in C/C++/
Fortran and they are available in platform specific
binary formats or in also platform specific build
from source configurations (e.g. the open source
Scilab and Octave systems).
To the contrary, the Java programming language
in which the presented jLab environment is
implemented allows platform independence. The
j-Lab scripting engine is implemented according
to the principles presented in [1,2]. We have
tested jLab on Linux, Solaris, MacOS X, and
Windows XP and it runs in the same way, on all

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Stergios Papadimitriou, Konstantinos Terzidis

ISSN: 1790-0832 1511 Issue 11, Volume 5, November 2008

mailto:sterg@teikav.edu.gr
mailto:sterg@teikav.edu.gr
mailto:sterg@teikav.edu.gr

these different environments, without any change
of the code and without even requiring installation.
All that it requires is the installation of the free and
open source Java Runtime Environment (JRE) of
Sun Microsystems to provide the Java Virtual
Machine. jLab is open-source and can be
downloaded from https://jlab.dev.java.net/.
 However, even though the j-Script engine
presented in [12,13] operates generally efficiently,
there are cases where the speed of the j-Scripting is
not sufficient and/or a more powerful and general
purpose scripting language is required. This fact
has formed the motivation of integrating the new
Groovy programming language [14] within the
framework of jLab as an alternative scripting
engine. Thus the user benefits an important
performance optimization when Groovy scripting
is exploited instead of j-Scripting.
But the Groovy Scripting also benefits a lot when
it is executed at the context of jLab. In addition to
its extensibility jLab has a large set of basic classes
integrated within its "kernel". First of all it has a
powerful programming environment for writing
scripts and using the domain specific wizards (e.g.
ODE wizard [12,13]). Second, j-Scripting is more
convenient for plotting and for simple scripts.
Third, and perhaps more important, the Groovy
programmer has access to a large library of Java
numerical routines since Groovy can directly
utilize any Java class [14] .
The numerical analysis functionality provided by
the jLab kernel (i.e. built-in) routines is in fact very
strong: jLab is based on the NUMAL numerical
library [16]. The construction of this library was
directed by P.W. Hemker of the Mathematisch
Centrum at Amsterdam (Mathematical Centre -
MC) and carried out by a large group of
(numerical) mathematicians from the MC and the
Dutch Universities of Amsterdam and Groningen.
The library initially was developed in Algol 60.
Recently, H. T. Lau, has ported the library to Java
and the source is available with his book [16]. The
book describes clearly the interface of the
functions and facilitates significantly the
incorporation of the powerful NUMAL numerical
machinery in jLab. Although Lau does not give
many details on the numerical analysis algorithms
involved, a subset of those algorithms are
explained at the classical "Numerical Recipes" text
[17]. Additionally, jLab incorporates the

functionality of the WEKA machine learning and
data mining framework [15], and some others
Java coded scientific libraries. The set of available
libraries can be easily and dynamically extended
as described in [14]. Also, both the j-Script
engine and the Groovy script engine can fully
utilize the available scientific code.
 The paper proceeds as follows: Section 2
describes the basics of the Groovy scripting
framework. Section 3 describes the concept of the
global variable workspace and the mechanics of
variable sharing between the two scripting engines
and the script engine switching. Section 4 presents
an example where the two scripting engines are
exploited for building efficiently a data mining
application. The Java classes of the WEKA library
are utilized. The Groovy scripting is generally
more efficient for data preprocessing while the j-
Scripting is more convenient for the interfacing to
the WEKA libraries. Section 5 decribes the
implementation of the Matlab-like matrix support
in GroovySci. Section 6 lights on the GroovySci's
internals by tracing some method invocations.
Section 7 describes the basics of the
autocompletion system, that is valuable for
effective code development. Finally, the
conclusions are presented along with directions
for future work.

2 The Groovy Scripting Framework
The Groovy approach to scripting is very different
from the j-Script one. In order to understand the
mechanics involved suppose that a Groovy script
named groovyScript.groovy is to be evaluated.
The following steps then are involved [14]:
a. The file groovyScript.groovy is fed into the
Groovy parser.
b. The parser generates an Abstract Syntax Tree
(AST) [1, 2] that fully represents all the code in
the file.
c. The Groovy class generator takes the AST and
generates Java bytecode from it. Depending on the
contents of the script file, this phase can create
multiple classes. These classes are then available
through the Groovy classloader.
d. The Java runtime is invoked in a manner
equivalent to running java groovyScript.
Thus, contrary to j-Script scripting, Groovy does
not directly interprets the scripts. Classes are

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Stergios Papadimitriou, Konstantinos Terzidis

ISSN: 1790-0832 1512 Issue 11, Volume 5, November 2008

https://jlab.dev.java.net/

always fully constructed before runtime and do not
change while running.
However, Groovy can be characterized as a
“scripting super-Java”. It is a lot easier and quicker
for the programmer to work with Groovy instead
of Java. One of its strongest features is that it is a
dynamic language [14]. Dynamic languages have
the potential of seemingly modifying classes at
runtime. We can for example add new methods to
a running class. Groovy can achieve this flexibility
even though the bytecodes of the generated classes
cannot change. The bytecode that the Groovy class
generator produces is necessary different from that
of the Java compiler, not in format but in content.
The dynamic nature of Groovy makes relatively
easy to extend the language with Matlab like
matrix operations. The project
http://groovy.codehaus.org/GroovyLab aims to
achieve this. The Groovy version that is exploited
in jLab benefits from the additional functionalities
that are implemented with the GroovyLab project.

3. The Global Workspace and Script
Switching
This section concetrates on the important subject
of the implementation of the effective cooperative
infrastructure between the two radically different
scripting engines.
A global workspace keeps the variables that the
user can directly evaluate and examine. The
workspace for these variables is implemented
within the j-Script engine implementation and
they are shared by the Groovy environment.

The implementation allows Groovy scripting to
coexist with jLab scripting and to handle a
common workspace. The parameter sharing is
accomplished with the binding mechanism of
Groovy. A Binding object is used to keep the
shared parameters.
The method passBindingFromGroovyToJLab()
updates the jLab workspace with all the variables
binded in the Groovy environment. This routine
first obtains the reference to the jLab interpreter
object. This reference then is used to retrieve the
list of the jLab global variables. In order to get
access to the Groovy's global variables we need to
obtain a reference to the Groovy variable binding.
This reference is used for obtaining a Map of the
binded variables at the Groovy's context and

subsequently a set view of the variables in the
Map.
Subsequently this set view is used to iterate
through the Groovy's variables. For each Groovy
binded variable we get its name and we create a
corresponding jLab global variable. Depending on
the type of the Groovy variable we have to take
different actions. If the Groovy variable is double
[], i.e. a jLab vector, we need to create a jLab
vector to take its value. This is performed by
instantiating a NumberObject with the
corresponding Vector (i.e. double []) as its value.
Similarly the case of a Matrix (i.e. double [][])
return type is handled. The following code snipet
helps to obtain a more specific view of the
interfacing code.

 // updates the jLab workspace with all the variables
binded in the Groovy environment
 public static void
passBindingsFromGroovyToJLab() {
 if
(GlobalValues.enablePassParamsFromGroovyTojLab)
{
 Interpreter jLabInterpreterObj =
jExec.jLab.jLab.interpreter; // object to jLab
interpreter
 VariableList currentVars =
GlobalValues.getGlobalVariables(); // get the current
list of variables
 Binding groovyBinding =
GlobalValues.groovyBinding; // get the reference to
the Groovy variable binding
 Map variables = groovyBinding.getVariables(); // get
a Map of the binded variables at the Groovy's context
 Set bindElemsSet = variables.keySet(); // return a
set view of the variables in the Map
 Iterator bindedElemsIter = bindElemsSet.iterator();
// iterate through the Groovy's variables
 while (bindedElemsIter.hasNext()) {
 String currentVarName = (String)
bindedElemsIter.next(); // get the name of the
Groovy's variable
 Variable var =
currentVars.createVariable(currentVarName); //
create a jLab corresponding variable
 Object currentVarValue =
variables.get(currentVarName); // get the value of the
Groovy's variable
 if ((currentVarValue instanceof double [])) // a
Vector
 {
 var.assign(new

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Stergios Papadimitriou, Konstantinos Terzidis

ISSN: 1790-0832 1513 Issue 11, Volume 5, November 2008

http://groovy.codehaus.org/GroovyLab

jExec.Tokens.NumberObject((double
[])currentVarValue));
 }
 else
 if ((currentVarValue instanceof double [][]))
 {
 var.assign(new
jExec.Tokens.NumberObject(((double []
[])currentVarValue)));
 }
 else { // floating point or String
 if (currentVarValue instanceof Integer)
 {
 int varValue = ((Integer)
currentVarValue).intValue();
 var.assign(new
jExec.Tokens.NumberObject((double) varValue));
 }
 else if (currentVarValue instanceof Long) {
 long varValue = ((Long)
currentVarValue).longValue();
 var.assign(new
jExec.Tokens.NumberObject((double) varValue));
 }
 else if (currentVarValue instanceof Float) {
 float varValue = ((Float)
currentVarValue).floatValue();
 var.assign(new
jExec.Tokens.NumberObject((double) varValue));
 }
 else if (currentVarValue instanceof Double) {
 double varValue = ((Double)
currentVarValue).doubleValue();
 var.assign(new
jExec.Tokens.NumberObject((double) varValue));
 }
 else // (currentVarValue instanceof String) //
simple scalar numeric values or Strings can be treated
as Strings and passed to jLab
 {
 String varValue =
currentVarValue.toString(); // get the value of the
Groovy's variable as a String
 var.assign(new
jExec.Tokens.StringObject(varValue)); // assign this
value to the jLab workspace

 }
 } // floating point or String

 }
 }
 }

 // makes the data of the jLab's workspace available
to Groovy

 public static void
passBindingsFromJLabToGroovy() {
 if
(GlobalValues.enablePassParamsFromJLabToGroovy)
{
 Binding groovyBinding =
GlobalValues.groovyBinding; // get the reference to
the Groovy variable binding
 Variable var;
 VariableList currentVars =
GlobalValues.getGlobalVariables(); // get the current
list of variables
 Iterator jLabVarIter = currentVars.getIterator();
 while (jLabVarIter.hasNext())

{
 Map.Entry next =
((Map.Entry)jLabVarIter.next());
 var = ((Variable)next.getValue());
 jExec.Tokens.DataObject varData =
(jExec.Tokens.DataObject)var.getData();
 if (varData != null) {
 String varName = var.getName();
 if (varData instanceof NumberObject) { // number
object check to see if it is an array, vector or simply
scalar
 double [][] valsAll = ((NumberObject)
varData).values;
 int valsXLen = valsAll.length;
 int valsYLen = valsAll[0].length;
 if (valsXLen > 1 || valsYLen > 1) { // array
 if (valsXLen == 1 || valsYLen == 1) { // a
vector
 double [] valsVecAll = valsAll[0];
 groovyBinding.setVariable(varName,
valsVecAll);
 } // a vector
 else // a matrix
 groovyBinding.setVariable(varName, valsAll);
 } // array
 else { // a simple scalar
 double val =
((NumberObject)varData).values[0][0];
 groovyBinding.setVariable(varName, val);
 }
 } // number object
 else
 groovyBinding.setVariable(varName,
(String) varData.toString());

} // varData != null
 } // jLabVarIter.hasNext()
 } //
GlobalValues.enablePassParamsFromJLabToGroovy
 }

}

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Stergios Papadimitriou, Konstantinos Terzidis

ISSN: 1790-0832 1514 Issue 11, Volume 5, November 2008

In order to demonstrate the coexistence and
cooperation of the two scripting frameworks we
present a simple benchmark script that simply
computes a large two-dimensional matrix with
elements aij=i∗ j ,0i2000, 0 j500 . The j-
Script code that performs this computation is
listed below:

tic; k=1; m=1; while (k<2000) { while (m<500)
{ a(k,m)=k*m; m++; } k++; } tm=toc;

The time for the execution of this loop is about tm
= 1.769. This execution time can be much smaller
with the exploitation of the compiled Groovy
scripting. The symbol '@' is used to switch the
jLab's mode to Groovy scripting and the symbol '`'
to return to j-Scripting. The corresponding code
and execution time follows:

tic; @ k=1; m=1; a = new double[2000][1000];
while (k<2000) { while (m<1000) { a[k][m]=k*m; m+
+; } k++; } ` tm=toc;

The execution time at the same Pentium Dual-Core
2.0 Gz PC is tm = 0.052 i.e. about 35 times faster.
For even more complex code, the speedup
improvement of Groovy scripting becomes even
more significant and improvements of 200 to 500
times faster are usually obtained.

4. Example of the multi-scripting at a
data mining application
The example application demonstrates the
utilization of the multiscripting facility for
exploiting both the flexibility of j-Scripting and the
generality and speed of Groovy scripting at the
context of a data mining application.
Jlab utilizes the WEKA [17] machine learning and
data mining environment in order to have an
effective library plug-in for data mining and
computational intelligence applications. Since
WEKA is entirely in Java and open-source, it is a
straightforward task to utilize its machine learning
models both from the j-Scripting engine and from
the Groovy framework. The example demonstrates
the application of the WEKA's Multilayer
Perceptron implementation, with a simple data
preprocessing in Groovy. This data preprocessing

simply keeps those training instances that have a
positive third attribute, i.e. data[k][2] >0, for all k.
Groovy is a powerful language for performing
effectively complex data preprocessing operations
and therefore it fits well in the jLab's
multiscripting framework.
The example code is presented below:

clear("all");
dataFile = getFileNamePathOpenDialog("Please
specify your data file");
data = ReadARFFFile(dataFile);
[N M] = size(data);
// switch to Groovy mode in order to perform
efficient data filtering
@
// use Groovy scripting in order to perform flexible and
efficient data filtering
cnt=0; k=0;
while (k<N) {
 if (data[k][2] > 0) cnt++;
 k++;
}
filteredData = new double[cnt][M];
k=0; cnt=0;
while (k<N) {
 if (data[k][2] > 0)
 for (m=0; m<M; m++)
 filteredData[cnt][m] = data[k][m];
 k++;
 }
// the WEKA preprocessing stage has finished
// switch now to j-Script mode
% use half of the data for training and half for testing
trainData = filteredData(1:2:N, :);
testData = filteredData(2:2:N,:);
ClassIdx = M;
TestingClassLabel = testData(:,ClassIdx);
//learningRate = getNumberDialog("Enter learning
rate", "0.1");
//momentum = getNumberDialog("Enter momentum",
"0.01");
 % This will set what the hidden layers are made up of
when auto build is
 % enabled. Note to have no hidden units, just put a
single 0, Any more
 % 0's will indicate that the string is badly formed and
make it unaccepted.
 % Negative numbers, and floats will do the same.
There are also some
 % wildcards. These are 'a' = (number of attributes +
number of classes) / 2,
 % 'i' = number of attributes, 'o' = number of classes,
and 't' = number of

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Stergios Papadimitriou, Konstantinos Terzidis

ISSN: 1790-0832 1515 Issue 11, Volume 5, November 2008

 % attributes + number of classes.
 % param h A string with a comma seperated list of
numbers. Each number is
 % the number of nodes to be on a hidden layer.
 //hiddenLayerString = getStringDialog("'a' = (number
of attributes + number of classes) / 2, 'i' = number of
attributes, 'o' = number of classes, and 't' = number of
//attributes + number of classes. param h A string with a
comma seperated list of numbers. Each number is the
number of nodes to be on a hidden layer.");
 nepochs = 500;
decayString = "false";
configureParameters = 1; // present the MLP network
parameter configuration screen prior to training
uiOnString = "true";
% train the Multilayer Perceptron
rs = MLPNet(trainData, configureParameters); //
hiddenLayerString, learningRate, momentum, nepochs,
decayString, uiOnString);
% now evaluate its performance on the test data
evalNet = MLPNetEval(testData);
classesPredicted = round(evalNet);
successCnt =
sum(TestingClassLabel==classesPredicted');
successRatio = successCnt/length(TestingClassLabel);
disp('MLPNet successRatio = '+successRatio);
figure(1); xaxis = 1:1:length(evalNet); plot(xaxis,
TestingClassLabel','g');
hold("on"); plot(xaxis, evalNet,'r'); title("green: actual,
red: predicted");

The example above demonstrates the switching to
Groovy scripting with the control character '@' (at
the boldfaced text) in order to preprocess the data.
After, this preprocessing we return again to j-Script
mode, where it is more convenient to call the
WEKA classes for performing data mining.

5. The Matlab like matrix support
The support for high-level Matlab like matrix

operations is essential for any mathematical
programming environment.

Groovy provides the hooks on which to
implement effective matrix operations at the
language level. The language bases its operators
on method calls and allows to override them in
order to implement subtype specific behavior.

Thus, the addition operator, i.e. A + B, is
overrided to perform matrix addition, by
implementing the method plus, i.e. A.plus(B).
Similarly, the other basic mathematical

operations, A – B, A * B, A / B, A % B, A ** B
are overloaded by implementing the methods:
A.minus(B), A.multiply(B), A.div(B), A.mod(B),

A.power(B).
In order to provide convenient array indexing

operations it is necessary for the Matrix class to
override the array indexing, i.e. the subscript
operation []. This is achieved in Groovy by
implementing the methods A.getAt(idx),
A.putAt(idx, elem), where idx denotes the array
index and elem is the element to put.
Also a large number of high level matrix

operators are implemented in GroovySci. Some
of these operators are:

Matrix + Matrix
Matrix + Number
Matrix - Matrix
Matrix - Number
Matrix * Matrix
Matrix * Number
Matrix / Matrix
Matrix / Number
Matrix ** int"

Static operators on the Matrix object also
implement the basic linear algebra operators.
Some of these static operators are:

sum(Matrix)
prod(Matrix)
cumsum(Matrix)
cumprod(Matrix)
inverse(Matrix)

solve(Matrix A, Matrix b),
returns X Matrix verifying A*X = b.

rank(Matrix)
trace(Matrix)
det(Matrix)
cond(Mtrix)
norm1(Matrix)
norm2(Matrix)
normF(Matrix)
normInf(Matrix)
Cholesky_L(Matrix)
Cholesky_SPD(Matrix)
QR_Q(Matrix)
QR_H(Matrix)
QR_R(Matrix)
LU_L(Matrix)
LU_U(Matrix)
LU_P(Matrix)
Singular_S(Matrix)

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Stergios Papadimitriou, Konstantinos Terzidis

ISSN: 1790-0832 1516 Issue 11, Volume 5, November 2008

Singular_U(Matrix)
Singular_V(Matrix)
Singular_values(Matrix)
Eigen_D(Matrix)
Eigen_V(Matrix)
random(int, int), independant random

values (between 0.0 and 1.0) Matrix of given
size, alias to rand(int, int) random(int,
int, double min, double max)

randomUniform(int m, int n, double min,
double max)

randomDirac(int m, int n, double[]
values, double[] prob)

randomNormal(int m, int n, double mu,
double sigma)

randomChi2(int m, int n, int d)
randomLogNormal(int m, int n, double

mu, double sigma)
randomExponential(int m, int n, double

lambda)
randomTriangular(int m, int n, double

min, double max)
randomTriangular(int m, int n, double

min, double med, double max)
randomBeta(int m, int n, double a, double

b)
randomCauchy(int m, int n, double mu,

double sigma)
randomWeibull(int m, int n, double

lambda, double c)

The following static sort/find methods are
available:

sort(Matrix)
sort(Matrix, int columnIndex)
min(Matrix)
max(Matrix)

The following static transformation methods
are available:

transpose(Matrix)
alias to t(Matrix)

resize(Matrix, int, int)
rowsMatrix >> Matrix

appends rowsMatrix to Matrix at last position
(i.e. add last row)

columnsMatrix >>> Matrix
appends columnsMatrix to Matrix at last
position (i.e. add last column)

Matrix << rowsMatrix

appends rowsMatrix to Matrix at first position
(i.e. add first row)

The following static statistic sample methods
are also available:

mean(Matrix)
variance(Matrix)
covariance(Matrix,Matrix)
correlation(Matrix,Matrix)

6. Tracing Invocations
 In order to understand the mechanics involved
at the GroovySci's compiled scripting we
trace some distinctive method calls. Suppose
that the user requires the computation of the
expression:

 b = sin(4*a)
where a was computed previously with the

command:
a = rand(4,5)

i.e. is a Matrix object, of dimension 4x5, filled with
pseudorandom numbers. Since a was computed
exists in the global binding of variables. The
following steps are involved:

1. A script is prepared named ScriptN.groovy
where N corresponds to an auto-generated script
numbering, e.g. the name is Script2.groovy for the
second generated script.

2. The ScriptN.groovy script is compiled.
3. The compiled class is cached and is returned.
4. At InvokerHelper:
4a. The InvokerHelper creates an object of
ScriptN class.
4b. It sets the current binding for the execution
of the current script.(Script Execution Phase)
5. Resolve the class Matrix for the method
sin().
6. Resolve the class Integer for the int
argument 4.
7. Get the variable a from the current binding.
8. Invoke the method multiply() on the Groovy
object Int{4} and with as arguments of the
method the matrix a.
9. the object is of class Integer. The metaclass
registry is invoked to find the metaclass for the
Integer class.
10. the metaclass is used to invoke the method
“multiply” on the object “4” and with

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Stergios Papadimitriou, Konstantinos Terzidis

ISSN: 1790-0832 1517 Issue 11, Volume 5, November 2008

arguments the Matrix a.
11. the invoke() method on the Integer object
“4” delegates the call to the invoke() method of
the Integer class.
12. the method “multiply” is retrieved for the
“Integer” target class and with arguments the
Matrix.
13. the method is retrieved from the hash map
of meta-methods. These methods should be
defined in the DefaultGroovyMethods class.

Let's also trace what happens with the command
 d[7][9] = 8.5

1. Load class BigDecimal for the right hand side
2. The method getGroovyObjectProperty for the
property d sets a parameter
GlobalValues.currentPropertyProcessed=
messageName.
In the particular case the messageName is the
variable being processed i.e. the “d” variable.

3. The receiver.getProperty(messageName) call
returns the value of the matrix d.

4. An invocation of the getAt() method is
performed on the object d and arguments 7.

5. The invoke Plain Old Groovy Object method is
called with parameters object, methodName,
and {7}, i.e. (invokePogoMethod(object,
methodName, {7})

6. Call the
InvokerHelper(receiver, messageNAme,

messageArguments)
where
receiver: the matrix M
mesageName: getAt
messageArguments: 2
7. the InvokerHelper calls

invokePojoMethod(Object object, String
methodName, Object arguments)

object: Matrix M
methodName: “getAt”
arguments: 2
8. The Matrix M is a GroovyObject. Thus the

InvokerHelper calls
GroovyObject groovy = (GroovyObject) object;
groovy.getMetaClass().invokeMethod (object,
methodName, asArray(srguments));

9. The metaclass of the GroovyObject is
implemented with the MetaClassImpl class.
This metaclass object calls
invokeMethod(“M” “getAt”, “{2}”)

Subsequently, the invokeMethod() code
calls the important routine
getMethodWithCaching()
in order to try to use the cache to find the
method.
The caching system uses the
MetaMethodIndex class where the important
DefaultGroovyMethods are cached.

6. Figure Handling
A very important issue for mathematical

programming environments is to have effective
figure plotting facilities.

In GroovySci, a figure “manager” class
performs the necessary bookeeping and updates
a set of structures in order to present to the user
a Matlab-like figure interface. Each figure is
represented by a FrameView object. The Matlab
like subplots are represented with PlotPanel
objects. A 2-D array of PlotPanel objects holds
the subplots associated with each figure, i. e.
FrameView object. A handle where plot
operations are directed is kept with the
currentPlot variable that points to the current
FrameView object.

Figure objects are distinguished as either 2D
Figure objects or 3D ones. The newPlot2D()
creates a new 2D figure object if either we do
not have a current 2D ploting panel or a new
figure is explicitly requested. A figure panel that
is not splitted in subplots it is handled as if an
explicit subplot2D(1,1,1) command was issued.

The Plot2DCanvas class controls whether the
mouse operations perform a rotation, a zoom or
a translation. Each axes can be set either to
LINEAR or to LOGARITHMIC mode. The
Canvas class implements the operations for
adding plots to it, e.g. addGridPlot(),
addCloudPlot() etc. An AWTDrawer()
component is used for plotting within a canvas.
The AWTDrawer() class uses a Projection class
for the implementation of the necessary
projections.

7. Autocompletion
Java is fast, robust, extensible, portable and an

open platform for the academic community
(recently it become also and open-source). These

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Stergios Papadimitriou, Konstantinos Terzidis

ISSN: 1790-0832 1518 Issue 11, Volume 5, November 2008

facts are some of the basic reasons for the leading
popularity of the Java language and platform.
Large high quality scientific libraries by the
academic and engineering community in Java. The
aim of jLab is to exploit effectively this huge base
of outstanding work.

Therefore, jLab explores three famous libraries
of scientific code:

a. the NumAl library for numerical analysis
b. the WEKA machine learning framework.
c. the jSci scientific library.
The AutoCompletion system automatically

retrieves information for the computational classes
of these libraries. The Java reflection API is used
to dynamically interrogate the classes for their
methods and to provide the method prototypes
dynamically to the user. Also, since methods are
available with their short names (e.g. eig() for
eigenvalue computations) and methods of similar
functionality many times exist in different libraries
(e.g. eigenvalue related methods exist both in
NumAl and in jSci), the public methods of the
scientific libraries are indexed and with their short
name first then the package name.

Shell control commands can be implemented
easily in GroovySci. A class
groovySci.BasicCommands is used to implement a
set of basic shell control commands. This class is
then imported implicitly by the interactive shell
and thus the implemented methods become
available as user commands.

For example to implement the dir command a
static method dir is implemented in the
groovySci.BasicCommands class.

8 Conclusion
The paper concerned a powerful scientific
programming environment that explores two
cooperative scripting languages: the j-Script
scripting engine that is executed by an interpreter
implemented in the Java language and the Groovy
“scripting super-Java” scripting Engine.
The main scope of the paper was to demonstrate
the potential of the cooperation of these much
different scripting engines.
Thus, jLab can serve also and as an environment
for the gradual development of complex systems,
starting from an initial prototype that consists
mostly of j-scripting code and in stages replacing

script code with Groovy code that can be
compiled to Java class code or with pure Java
code.
This design permits to obtain both speed
efficiency and flexibility while at the same time
allows the utilization of the vast amounts of
scientific software that is implemented in the Java
language.

Acknowledgment
The authors wish to thank the Research committee
of the Technology Education Institute of Kavalas,
Greece, for the partial financial support of this
research.

References:
[1] David A. Watt and Deryck F Brown,

Programming Language Processorsin Java,
2000, Pearson Education.

[2] Steven John Metsker, Building Parsers with
Java, Addison-Wesley,2001.

[3] Stephen L. Campbell, Jean-Philippe
Chancelier, Ramine Nikoukhah, Modeling
and Simulation in Scilab/Scicos, Springer,
2006.

[4] Cay Horstmann, Gary Cornell, Core Java 2,
Vol I Fundamentals, Vol II - Advanced
Techniques. Sun Microsystems Press, 7th
edition, 2005.

[5] Norman Chonacky, David Winch, 3Ms for
Instruction: Reviews of Maple, Mathematica
and Matlab, Computing in Science and
Engineering, May/June 2005, Part I, pp. 7-13

[6] Norman Chonacky, David Winch, 3Ms for
Instruction: Reviews of Maple, Mathematica
and Matlab, Computing in Science and
Engineering, July/August 2005, Part II, pp.
14-23.

[7] Michael Trott, The Mathematica Guidebook:
Programming, Springer, 2004.

[8] Erwin Kreyszig, Maple Computer Guide for
Advanced Engineering Mathematics (8th
Ed.), Wiley, 2000.

[9] John W. Eaton, "GNU Octave Manual,
Network Theory Ltd, 2002.

[10] Desmond J. Higham, Nicholas J. Higham,
Matlab Guide, Second Edition, SIAM
Computational Mathematics, 2005.

[11] Budi Kumiawan, A Tutorial: Java 6 New
Features, BrainySoftware, 2006.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Stergios Papadimitriou, Konstantinos Terzidis

ISSN: 1790-0832 1519 Issue 11, Volume 5, November 2008

[12] S. Papadimitriou, Scientific programming
with Java classes supported with a scripting
interpreter, IET Software, 1, (2), pp. 48 - 56,
2007.

[13] Papadimitriou S, Terzidis K., jLab:
Integrating a scripting interpreter with Java
technology for flexible and efficient scientific
computation, Computer Languages, Systems
& Structures (2008), Elsevier, in print.

[14] Dierk Konig, Andrew Glover, Paul King,
Guillaume Laforge, Jon Skeet, Groovy In
Action, Manning Publications, 2007.

[15] Ian H. Witten, Eibe Frank, Data Mining:
Practical Machine Learning Tools and
Techniques, Second Edition, Morgan
Kaufmann Series, 2005.

[16] Hang T. Lau, A Numerical Library in Java
for Scientists and Engineers, Chapman &
Hall/CRC, 2003.

[17] William H. Press, Saul A. Teukolsky,
William T. Vetterling, Brian P. Flannery,
Numerical Recipes in C++, The Art of
Scientific Computing, Second Edition,
Cambridge University Press, 2002.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE and APPLICATIONS Stergios Papadimitriou, Konstantinos Terzidis

ISSN: 1790-0832 1520 Issue 11, Volume 5, November 2008

