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Abstract: Implicit modelling is a powerful technique to design geometric shapes, where a geometric object is de-
scribed by a real function. In general, the real functions used in implicit modelling are unbounded and can take any
values in space R. In general, the shapes described by different level sets of an unbounded implicit function can
be varied significantly and are very unpredictable. In addition, allowing the underlying implicit function to take
negative values also makes the construction of shape blending operations a difficult task. In this paper, we propose
an implicit shape modelling technique, where each implicit shape is represented as the membership function of a
fuzzy set which is bounded and nonnegative with value taken in [0, 1]. The most obvious benefit of representing
an implicit shape as fuzzy set is that the blending of a set of implicit shapes is simply a problem of aggregating a
set of fuzzy sets, which can be done in various ways by choosing a proper fuzzy set aggregation operator from a
wide variety of fuzzy set operations.

Key–Words: Implicit curves and surfaces, isosurfaces, blending operations, Generalized algebraic operations,
Piecewise algebraic operations, Fuzzy sets, Soft computing

1 Introduction

In computer aided geometric modelling, parametric
surfaces and polygonal meshes have long been used as
the major representation forms of geometric shapes,
due to their advantages in tessellation and rendering.
However, parametric surfaces and polygonal meshes
are not convenient forms of shape representation in
terms of shape composition, shape matching[3] and
recognition [10], collision detection, and ray tracing.
In many practical applications, implicitly represent-
ing geometric shapes as real functions are preferred.
With the dramatic increases in computational power
of modern computers in both their CPUs and GPUs,
realtime implicit shape rendering is becoming a real-
ity.

Describing a geometric shape implicitly as a real
function is not something new. In fact, it is a well in-
vestigated research subject within the realm of math-
ematics. However, it is not until the publication of
Ricci’s work [9] in 1973 that it becomes a popular
shape modelling technique in computer graphics re-
lated areas. Compared with parametric shape mod-
elling, many difficult and time consuming computa-
tional tasks, such as collision detection, soft shape
blending and shape matching, can be solved in a much
more efficient and more effective way.

Depending on the view angles, implicit shape

modelling is frequently referred to as functional based
method, isosurface or level set method. Mathemati-
cally, an implicit shape is described by a real function
F : Rn → R, (n = 2, 3), which in general parti-
tions the space Rn into three parts corresponding to
F (P) < 0, F (P) = 0, and F (P) > 0 respectively.
Therefore, a real function F naturally associates with
a geometric shape either by representing its boundary
as the real roots of the equation F (P) = 0 or as a solid
defined by {P : F (P) ≥ 0} or by {P : F (P) ≤ 0}.
By viewing a solid shape as a collection of points, a
complex solid geometric object can be considered to
be the result of performing a sequence of set-theoretic
operations over a set of simple solid geometric primi-
tives.

When each geometric primitive is characterized
by a real function, the key to this technique is to de-
fine blending operations that combine a set of func-
tions representing simple geometric objects into a
single function representing the required geometric
shape[11]. The simplest and the most natural blend-
ing operation is the one corresponding exactly to the
Boolean operations max(x, y) or min(x, y). As-
sume that the two solid objects A and B are repre-
sented implicitly by functions FA(P) and FB(P) re-
spectively as A = {P : FA(P) ≥ 0} and B =
{P : FB(P) ≥ 0}. Then, the union A ∪ B,
the intersection A ∩ B, and the difference A − B
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of set A and B can be represented by functions
max{FA(P), FB(P)}, −max{−FA(P),−FB(P)},
and −max{−FA(P), FB(P)} respectively. Depend-
ing on the problem of application, different kinds of
real functions may require different function compo-
sition operations. For instance, when the underly-
ing real functions of a set of implicit shapes repre-
sent certain density distribution functions, it is reason-
able to blend these implicit shapes by finding the sum
of these functions directly. When the real functions
used to specify implicit shapes represent the drops of
certain fluid, the shape combination operations devel-
oped based on the fluid’s physical properties are more
appropriate. In this paper, we aim to develop a fuzzy
set based implicit modelling technique, where each
implicit function involved in the modelling process is
considered to be a fuzzy set.

There are several reasons why it is desirable to
model a geometric shape as a fuzzy set. Firstly, repre-
senting implicit shapes as fuzzy sets allow us to treat
the underlying implicit functions naturally as a kind of
point set. Depending on the problem of applications,
an ordinary fuzzy set operation can be chosen to blend
implicit shapes from a wide variety of well established
fuzzy set operations. Secondly, as each fuzzy set asso-
ciates with a real function which is bounded and non-
negative with value taking in [0, 1], fuzzy sets repre-
sented implicit shapes can be considered as normal-
ized implicit functions. As a result, implicit shapes
can be blended more fairly and naturally. Thirdly, the
level values used to generate different level sets are
all in [0, 1], which is much more convenient in com-
puting various level sets of a given implicit function.
Moreover, compared with unbounded real functions,
fuzzy set represented implicit functions are in general
much less sensitive to numerical error when extracting
their underlying geometry.

In the rest part of the paper, we first briefly dis-
cuss how to model a geometric shape as a fuzzy
set. We then focus on the development of piecewise
polynomial fuzzy set operations and demonstrate the
strengths of these operations with implicit shape de-
sign examples.

In the following discussion, we will identify a
fuzzy set with its membership function and all the
fuzzy sets discussed in the paper are thought to be in
the space Rn(n = 1, 2, 3).

2 Implicit shapes as fuzzy sets

In this section, we consider how to represent a general
implicit shape as a fuzzy set.

2.1 Converting a general real function into a
fuzzy set

For a given real function f(P ) : Rn → R that rep-
resents a geometric shape, there are several ways to
convert it directly into a fuzzy set. This is a process to
convert a mapping from Rn to R into a mapping from
Rn to [0, 1]. This can be done easily by compounding
function f with a smooth unit step function µ(r) that
satisfies the following conditions:

1. µ(r) is smooth and nondecreasing.

2. limr→−∞ µ(r) = 0, limr→∞ µ(r) = 1.

3. µ(0) = 0.5.

Such a kind of function can be constructed in one
of several ways. One simple function that satisfies
conditions listed above is the function given below:

H∞(x) =
1

1 + e−αx
, (1)

where α > 0 is a parameter specifying the rising gra-
dient of the function around 0.

The drawback of using H∞ to convert a gen-
eral real function into a fuzzy set is that it will lead
to a non-piecewise polynomial representation of the
shape.

A better way is to use a low order piecewise poly-
nomial smooth unit step function introduced in [6].
Piecewise polynomial smooth unit step function can
be construct iteratively from the Heaviside unit step
function H0(x) in the following way:

H0(x) =





0, x < 0;
1
2 , x = 0;
1, x > 0.

Hn(x) =
1
2
( (1 +

x

n
)Hn−1(x + 1)

+(1− x

n
)Hn−1(x− 1) ),

n = 1, 2, 3, · · · . (2)

It can be shown that Hn(x) has the following
properties:

(1) Hn(x) is Cn−1-continuous for n > 1.

(2) Hn(x) is a piecewise-polynomial function.

(3) Hn(x) is monotonically increasing and takes
value 1 when x ≥ n, and 0 when x ≤ −n.

(4) Hn(x)+Hn(−x) = 1, Hn(0) = 1
2 .
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For an arbitrary number R > 0, a smooth unit
step function with supporting range [−R,R] can be
defined as follows:

Hn,R(x) = Hn(nx/R). (3)

Let H = F (P ) be a real function and µ(r) a
smooth unit step function. Then the shape corre-
sponding to F (P ) ≥ 0 is equivalent to the level-set
of fuzzy set membership function µ(F (P )) ≥ 0.5.

Figure 1 shows some 2D and 3D fuzzy sets ob-
tained by converting a real function into a fuzzy set
membership function using a smooth unit step func-
tion.
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Figure 1: Fuzzy shapes obtained by converting a
known geometry using a unit step function. (a) and
(b): 2D fuzzy sets; (c) and (d): 3D fuzzy sets.

2.2 Fuzzy spline functions

Implicit shapes can also be designed directly as fuzzy
sets using implicit splines. With implicit spline tech-
nique, geometric shapes are constructed out from im-
plicit spline basis functions {Bk(P )}, where each
Bk(P ) is a real function on shape space Rn(n =
1, 2, 3) satisfying the following properties:

1. 0 ≤ Bk(P ) ≤ 1.

2. For each variable parameter P ,
∑

k Bk(P ) = 1.

3. Each Bk(P ) is nonnegative and piecewise poly-
nomial.

There are various techniques to construct a set of im-
plicit spline basis functions. Figure 2 shows some ex-
amples of 2D spline basis functions constructed from

an arbitrarily specified 2D polygonal net that parti-
tions the 2D plane using the algorithm described in
[7].

Now consider the implicit shapes defined in the
following way:

F (P ) =
∑

Lk(P )Bk(P ),

where each Lk(P ) is a local implicit shape associated
to Bk(P ). If each Lk(P ) is represented as a fuzzy
set membership function, it can be seen directly that
F (P ) is also a mapping from Rn to [0, 1] and thus
can again be considered as the membership function
of a fuzzy set. The implicit shapes displayed in Figure
3 and 4 is generated in this way. Readers who are
interested in the implicit spline modelling technique
can refer to the work presented in [7].

Figure 3: A 2D fuzzy shape designed using implicit
spline basis functions.

Figure 4: Fuzzy set represented freeform implicit sur-
faces designed using implicit spline basis functions.
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Figure 2: The C2-smooth implicit spline bases functions created from an arbitrarily specified partition net of 2D
plane, with different values of polygon smoothing parameter α.

3 Fuzzy geometric objects blending

When the underline geometric objects are modelled
implicitly as fuzzy sets, they can be blended easily
using fuzzy set operations. In this section, we discuss
the issues relating to the combination of simple fuzzy
geometric objects.

When two geometric objects are represented as
fuzzy sets Ã and B̃, we can find their union, inter-
section and difference as usual. One important issue
needs to be addressed here is the choice of the fuzzy
set operation. One typical feature of the most com-
monly used fuzzy objects is that their membership
functions are smooth to reflect the nature of fuzzi-
ness. However, as can be seen from Table 1, most of
the conventional fuzzy sets operations are not smooth.
The main problem of using non-smooth fuzzy set op-
erations is that they may lead to non-smooth fuzzy
sets. Another significant feature of fuzzy sets is that
they are frequently described by a piecewise polyno-
mial membership function. Thus algebraic or piece-
wise algebraic operations are preferred since the fuzzy

sets produced by these kinds of operations will also be
described by piecewise polynomial membership func-
tions. The requirement that the fuzzy set operations
should be smooth and piecewise polynomial becomes
even more important when the fuzzy sets involved in
the operation are used to represent geometric shapes.
This is because the implicit functions used for geo-
metric design are usually smooth and represented in
piecewise polynomials.

The simplest and the most natural continuous
piecewise polynomial binary operation is the one de-
fined by the minimum function min(x, y) [14] (see
Figure 5 (a)). It is continuous and piecewise lin-
ear algebraic over the domain [0, 1] × [0, 1]. More-
over, when it is used to combine piecewise algebraic
fuzzy sets, not only the output fuzzy sets remain to
be piecewise algebraic, but the degree of polynomi-
als will also be maintained. Although various alter-
natives to min(x, y) have been proposed, it is still the
most frequently used fuzzy set operator in both the-
ory and practical applications. However, min(x, y)
is not smooth enough as it is not differentiable along
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Table 1: Some notable binary operations for defining the intersection operation for fuzzy sets
algebraic g(x, y) = xy

Zadeh g(x, y) = min(x, y)

Lukasiewicz g(x, y) = max(0, x + y − 1)

Dubois-Prade g(x, y) = xy
max(x,y,k) , k ∈ (0, 1]

Einstein g(x, y) = xy
2−(x+y−xy)

Dombi[2] g(x, y) =

{
1

1+((x−1−1)n+(y−1−1)n)
1
n

, x, y > 0, n > 0;

0, x=0, y=0.

Hamacher[4] g(x, y) = xy
a+(1−a)(x+y−xy) , a ∈ [0, 1)

Weber[12] g(x, y) = max(0, x+y+kxy−1
1+k ), k ∈ (−1,∞)

Yager[13] g(x, y) = 1−min(1, ((1− x)k + (1− y)k)
1
k ), k ∈ (1,∞)

the line y = x. The simplest differentiable piecewise
polynomial binary operation for defining the intersec-
tion operation for fuzzy sets is the algebraic operation
f(x, y) = xy (see Figure 5 (b)). Though the algebraic
operation possesses some nice properties and is dif-
ferentiable everywhere, it does not approximates the
function min(x, y) well and is not widely used as an
effective fuzzy set aggregation operator in practice.

3.1 The Bézier algebraic operators

The gap between the binary operation min(x, y) and
the algebraic operation f(x, y) = xy can be filled up
by the Bézier algebraic operators of different degrees.

Consider the degree n Bézier surfaceBn(x, y) de-
fined over [0, 1]× [0, 1] in the following way:

Bn(x, y) =
n∑

k=1

k

n
B

(n)
k (x)B(n)

k (y) (4)

+
n∑

j=1

n∑

i=j+1

j

n
( B

(n)
i (x)B(n)

j (y)

+B
(n)
i (y)B(n)

j (x) ) ,

n = 1, 2, · · ·
where B

(n)
k (t) = Ck

n(1 − t)n−ktk is the kth Bézier
function of degree n.

We call the binary operation Bn(x, y) defined
above over [0, 1]x[0, 1] the degree n Bézier operator.

An interesting thing about Bn(x, y) is that when
n = 1, B1(x, y) = xy, which is just the conven-
tional algebraic operator. Therefore, Bn(x, y) can be
referred to as the generalized algebraic operator of de-
gree n. The first three Bézier operators can be written
out directly as follows:

B1(x, y) = xy, (5)
B2(x, y) = xy(1 + x y), (6)
B3(x, y) = xy(1 + x y(1 + xy + x y)), (7)

where x = 1− x, y = 1− y.
In fact, it can be shown that all the binary oper-

ators Bn(x, y) have similar properties to the conven-
tional algebraic operation. For instance, we can show
immediately that

1. Bn(0, 0) = Bn(x, 0) = Bn(0, y) = 0.

2. Bn(1, 1) = 1,Bn(x, 1) = x,Bn(1, y) = y.

3. Bn(x, y) ≤ min(x, y).

4. Bn(x, y) = Bn(y, x).

To approximate min(x, y) with Bézier operator
precisely, a very big n is required and it can be very
expensive to evaluate Bn(x, y). Thus, the use of high
degree Bézier operator is not recommended in prac-
tice, though they have very good mathematical prop-
erties.
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(a)

(b)

Figure 5: (a). The minimum operation: g(x, y) =
min(x, y); (b). The algebraic operation: g(x, y) =
xy;

Figure 6 shows the shapes of the Bézier operators
of different orders. In theory, it can be shown that

B1(x, y) = xy ≤ B2(x, y) ≤ B3(x, y) ≤
· · · ≤ sup

n
Bn(x, y) = min(x, y).

As is shown in Figure 7, the degree of Bézier op-
erators can be used to specify the blending range of
two fuzzy set defined implicit shapes.

3.2 Piecewise algebraic shape preserving
fuzzy geometric blending

Generalized algebraic operator Bn(x, y) provides us
a good fuzzy shape blending operation. It is sim-
ple to compute and always produces smooth member-
ship functions as long as the fuzzy shapes involved in
the operation are all smooth. The main drawback of
generalized algebraic operation is that it is not shape
preserving in terms of controlling the blending range
when the degree of the algebraic operation is small.
When two shapes are combined using the algebraic
operation, no matter whether it is a union, intersec-
tion, or subtraction, no parts of the newly obtained
shape will be the same as those of the original shapes.

The operations defined using min(x, y) are shape pre-
serving but they are not smooth.

The shape preserving feature of a blending oper-
ation plays a crucial role in implicit modelling when
parts of geometric primitives are reconstructed from
real data or a complex shape is constructed proce-
durally. In these cases, one would hope that those
shapes built previously should be kept unchanged as
much as possible as one could. In addition, the tes-
sellation of blended implicit surfaces obtained from
shape-preserving blending operations can be made
much more effectively and efficiently as many parts
of the blended shapes can be identical with those im-
plicit shapes involved in the blending. Thus, many
polygons in the meshes representing the primitive im-
plicit surfaces can be reused to construct the polyg-
onal mesh corresponding to the blended shapes. In
the past few years, several smooth shape preserving
blending operations have been proposed [5][8][1][6].
However, these binary operations are not fuzzy set
specific operations as they may not always produce a
proper fuzzy set membership function when they are
applied to fuzzy sets.

In this section, we present two constructive meth-
ods to define smooth piecewise algebraic operations
for combining two fuzzy shapes with specified blend-
ing range, namely ∧n,δ(x, y) and ∧̂n,δ(x, y). The
main features of these fuzzy set operations are that
they can be constructed to have whatever degree of
smoothness required and to approximate Zadeh’s min-
imum functions to any required precision. In addi-
tion, the binary operator ∧̂n,δ(x, y) can be specified
to preserve min(x, y) to any required extent. More
precisely, ∧̂n,δ(x, y) can be defined to be identical
to the ordinary binary operation min(x, y) in a sub-
region of [0, 1]2, with the area of the subregion to
be (1 − 3δ)2, δ ∈ (0, 1/2]. These novel operations
are all described by recursively defined functions and
can be implemented cheaply and elegantly. The main
idea used here is the introduction of smooth absolute
functions |x|n and |̂x|n, both of which are general-
ized from the conventional absolute function |x|. With
smooth absolute functions, the conventional minimum
function min(x, y) is extended directly to smooth
ones, namely the degree n smooth minimum functions
minn,δ(x, y) and m̂inn,δ(x, y), where δ > 0 is a pa-
rameter used to control the smooth fusion range along
the line y = x. These two kinds of minimum func-
tions are then modified further respectively to build
the binary operations ∧n,δ(x, y) and ∧̂n,δ(x, y) on
[0, 1] for fuzzy set aggregation. As will be seen later,
∧n,δ(x, y) and ∧̂n,δ(x, y) have the following proper-
ties:

1. Both become the conventional Boolean AND op-
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Figure 6: The shape of Bn(x, y) for n = 3, 5, 10. (a). B3(x, y); (b). B5(x, y); (c). B10(x, y).

eration when confined on {0, 1};

2. ∧n,δ(1, x) = ∧n,δ(x, 1) = x, ∧̂n,δ(1, x) =
∧̂n,δ(x, 1) = x;

3. ∧n,δ(0, x) = ∧n,δ(x, 0) = 0, ∧̂n,δ(0, x) =
∧̂n,δ(x, 0) = 0;

4. ∧n,δ(x, y) is Cn-smooth, and ∧̂n,δ(x, y) is
Cn−1-smooth.

5. ∧n,δ(x, y) and ∧̂n,δ(x, y) can be set to approxi-
mate min(x, y) with any specified precision by
adjusting parameter δ.

The construction of these binary operations will
be outlined below. The detailed discussion on these
operators can be found in [6].

Definition 1 Let |x| : R → R be the conventional
absolute function. That is, |x| = x when x ≥ 0 and
|x| = −x when x < 0. Then we introduce the follow-
ing generalized absolute functions:

|x|0 = |x|;
|x|n =

1
2(n + 1)

( (n− x)|1− x|n−1

+(n + x)|1 + x|n−1 ). (8)
n = 1, 2, 3, · · ·

|x|n is called degree n upper absolute function.

It can be shown that |x|n has the following prop-
erties

Proposition 3.1 (1) |x|n ≥ |x|; and |x|n = |x|
when |x| ≥ n;

(2) |x|n is Cn-continuous;

(3) |x|n is a piecewise polynomial function.

Due to property 3.1, |x|n can be considered as
the generalization to the conventional absolute func-
tion |x|. From figure 8, we can see that all functions
|x|n, n = 1, 2, · · · , take a similar form to function |x|.

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

n=0
n=1
n=2
n=3

Figure 8: Smooth piecewise polynomial upper abso-
lute functions |x|n with n = 0, 1, 2, 3

For smooth absolute function |x|n, the difference
between |x|n and |x| is in the range [−n, n]. In the
following discussion, we will refer this range of dif-
ference as the span of |x|n. Smooth absolute functions
with an arbitrary span [−δ, δ] (δ > 0) can be easily in-
troduced using |x|n.

Definition 2 For δ > 0 and n > 0, we define

|x|n,δ =
δ

n

∣∣∣nx

δ

∣∣∣
n

. (9)

It can be shown immediately that |x|n,δ = |x|
when |x| ≥ δ.

Smooth piecewise polynomial functions that ap-
proximate the conventional absolute function can also
be introduced using the smooth unit step function
Hn(x) introduced in section 2.1.
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Figure 7: Blending two fuzzy set defined implicit shapes using different degrees Bézier operations Bn(x, y).

Definition 3 Consider the sequence of functions de-
fined in the following way using smooth unit step func-
tion Hn(x):

|̂x|n = 2xHn(x)− x, n = 0, 1, 2, · · · .(10)

We call |̂x|n the degree n lower absolute function.

−4 −3 −2 −1 0 1 2 3 4
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3.5

4
|x|
n=2
n=3
n=4

Figure 9: Degree n lower absolute functions |̂x|n.

The shapes of the first a few lower smooth abso-
lute functions are shown in Figure 9. As can be seen

from figure 9, each of this type of function also takes
a similar shape to |x|. Unlike |x|n, the value of |̂x|n
can never be larger than |x|.

Note that Hn(x) = 1 when x > n, and Hn(x) =
0, when x < −n, we can see that

|̂x|n = |x| when |x| > n.

Secondly, since Hn(x) ≥ 1
2 when x ≥ 0, and

Hn(x) < 1
2 when x < 0, we have |̂x|n ≥ 0. Fur-

thermore, |̂x|n is a Cn−1 continuous piecewise poly-
nomial function.

As with |x|n,δ, lower absolute function with an
arbitrary span δ > 0, denoted by |x̂|n,δ, can be intro-
duced similarly in the following way:

Definition 4 For δ > 0 and n > 0, we define

|̂x|n,δ =
δ

n

̂∣∣∣nx

δ

∣∣∣
n
. (11)

It can be shown directly that |̂x|n,δ = |x| when
|x| ≥ δ.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Qingde Li, Jie Tian

ISSN: 1790-0832 1237 Issue 7, Volume 5, July 2008



Note that

inf
n
|x|n,δ = |x|, sup

n
|̂x|n,δ = |x|.

Thus, it is reasonable to call |x|n,δ = |x| the upper

smooth absolute function and |̂x|n,δ the lower smooth
absolute function.

The above two smooth absolute functions can be
used to define what we called the smooth minimum
functions.

Definition 5 For δ > 0, let

minn,δ(x, y) =
1
2
(x + y − |x− y|n,δ); (12)

m̂inn,δ(x, y) =
1
2
(x + y − |x̂− y|n,δ). (13)

We call minn,δ(x, y) the degree n lower smooth min-
imum function and m̂inn,δ(x, y) the degree n upper
smooth minimum function, where δ is a parameter re-
ferred to as the approximation accuracy to the mini-
mum operation min(x, y).

These two functions have first been introduced
in [6] for implicit shape modelling with control-
lable blending range. However, they are not in gen-
eral properly defined fuzzy set operations. For in-
stance, neither of the two function satisfies the Iden-
tity Law and the Dominance Law. In addition, func-
tion minn,δ(x, y) may take values outside the inter-
val [0, 1]. Therefore, they cannot be used to define
fuzzy operations directly. In spite of this, the two bi-
variate functions can be easily modified into fuzzy set
operations[6].

Let us first consider how to modify minn,δ(x, y).
From the definition of minn,δ(x, y), we can see that
its four boundary curves can be described by using
the following two functions:

C0(x) =
1
2
(x− |x|n,δ) (14)

C1(x) =
1
2
(1− x− |1− x|n,δ). (15)

These four curves define a Coon’s surface patch,
which can be expressed in the following form:

S(x, y) = S1(x, y) + S2(x, y)− S3(x, y),(16)

where

S1(x, y) = (1− y)C0(x) + yC1(x), (17)
S2(x, y) = (1− x)C0(y) + xC1(y), (18)
S3(x, y) = α(1− x− y + 2xy), (19)

and α = −|0|n,δ < 0.
The smooth minimum function minn,δ(x, y) can

then be modified by subtracting the Coons patch de-
fined above:

∧n,δ(x, y) = minn,δ(x, y)− S(x, y); (20)

It can be shown immediately that

∧n,δ(0, x) = ∧n,δ(x, 0) = 0,

∧n,δ(1, x) = ∧n,δ(x, 1) = x.

Figure 10 displays the shapes of ∧2,δ(x, y) for
different δ values. As can be seen from the figure,
∧n,δ(x, y) can well approximate min(x, y) as long as
the value of δ is small enough.

Figure 10: The plot of the C2-smooth binary opera-
tion ∧2,δ(x, y) with different values of parameter δ.

As with minn,δ(x, y), m̂inn,δ(x, y) can also be
modified into a fuzzy set operation. Let

Ĉ0(x) = xHn(−nx

δ
) (21)

Ĉ1(x) = (1− x)Hn(−n(1− x)
δ

) (22)

and let

Ŝ1(x, y) = (1− y)Ĉ0(x) + yĈ1(x), (23)

Ŝ2(x, y) = (1− x)Ĉ0(y) + xĈ1(y). (24)
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With Ŝ1(x, y) and Ŝ2(x, y), m̂inn,δ(x, y) can then be
modified in the following way:

∧̂n,δ(x, y) = m̂inn,δ(x, y)− (Ŝ1(x, y) + Ŝ2(x, y)).

It can be shown that ∧̂n,δ(x, y) satisfies the Identity
Law and the Dominance Law.

Figure 11 displays the shapes of ∧̂n,δ(x, y) for
different δ values. As can be seen from the figure,
∧̂n,δ(x, y) can also well approximate min(x, y) as
long as the value of δ is small enough.

Figure 11: The plot of the C2-smooth binary opera-
tion ∧̂3,δ(x, y) with different values of parameter δ.

Both of these two operations can be used for com-
bining two fuzzy shapes, where their initial shape fea-
tures can be partially preserved. This can be done eas-
ily by choosing a proper value for parameter δ. The
differences between the blending operations defined
using ∧n,δ(x, y) and that defined by ∧̂n,δ(x, y) can be
observed by displaying the blended shapes for 2D im-
plicit shapes. As can be seen from Figure 12, for a
relatively small value of the blending range parame-
ter, ∧̂n,δ(x, y) based union operation tends to retain
more of the original shapes of the geometric objects
involved in the blending operation than that defined
using ∧n,δ(x, y).

Figure 13 shows the shapes corresponding to
the unions of two fuzzy set specified spheres
S1(x, y, z) = 0.5 and S2(x, y, z) = 0.5, where the

−2 −1 0 1 2

−1

−0.5

0

0.5

1

−2 −1 0 1 2

−1

−0.5

0

0.5

1

−2 −1 0 1 2

−1

−0.5

0

0.5

1

−2 −1 0 1 2

−1

−0.5

0

0.5

1

−2 −1 0 1 2

−1

−0.5

0

0.5

1

−2 −1 0 1 2

−1

−0.5

0

0.5

1

δ=1.5 δ=1.5 

δ=1.0 δ=1.0 

δ=0.5 δ=0.5 

(a) (b)

Figure 12: The unions of two implicit circles based on
∧n,δ(x, y)(left column) and ∧̂n,δ(x, y) (right column)
with δ = 1.5, 1.0, 0.5 respectively .

unions are defined by the fuzzy set F (x, y, z) = 1 −
∧2,δ(1−S1(x, y, z), 1−S2(x, y, z)) using ∧2,δ(x, y)
with δ=1.5, 1.0, and 0.5 respectively. As can be seen
from the figure, the blending range of two fuzzy set
defined implicit shapes can be well controlled using
parameter δ. Similar blending effect can be obtained
for ∧̂n,δ(x, y) based fuzzy set operations.

4 Conclusion

In this paper, we proposed a fuzzy set based implicit
modelling paradigm. With the proposed method, any
implicit shape can be thought of as a level set of cer-
tain fuzzy solid in the shape space. Under this shape
design paradigm, a complex geometric shape can be
constructed by combining a set of simple geomet-
ric shapes described by fuzzy set membership func-
tions. Compared with implicit modelling based on
general real functions, fuzzy set based implicit mod-
elling is much more intuitive and natural. In addition,
three new fuzzy set operations have been developed to
meet the the basic requirements of fuzzy solid mod-
elling. All these operations are designed to approxi-
mate Zadeh’s min(x, y) operation. They are algebraic
or piecewise algebraic and can be constructed up to
any required degree of smoothness. A few examples
have been given to show that the proposed shape de-
sign scheme is not only theoretically solid, they are
also effective and flexible to use in practice.
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Figure 13: The unions of two implicit sphere based on
fuzzy set operation ∧n,δ(x, y) with δ = 1.5, 1.0, 0.5
respectively.
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