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Abstract: - In this paper we present some qualitative and quantitative results for a particular type of k-order exchange 
rate models. These results concern the existence of attractors: the fixed point, its stability and its attraction domain, 
period-p cycles, limit cycles and chaotic attractors. Given the nonlinear nature, the dynamics of these systems cannot 
be detected using only analytical tools. For this reason, in the last section, we make numerical simulations and we 
present some examples. The algorithms implementation is made using VBA (Visual Basic for Applications) program 
in Excel, and the images of the figures in this paper are made using Mathematica. 
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1   Introduction 
According to [4] a general equation modeling the 
exchange rate evolution is given by: 
(1)    ( )btttt SEXS 1+=  
In the above equation, tS  is the exchange rate at the 
moment t; tX  describes the exogenous variables that 
drive the exchange rate at the moment t; ( )1+tt SE is the 
expectation held at the moment t in the market about 
the exchange rate at the moment t+1; b is the discount 
factor that speculators use to discount the future 
expected exchange rate (0<b<1). 
 
This model allows us to take into account two 
components for forecasting: a forecast made by the 
chartists ( )1+tct SE  and a forecast made by the 
fundamentalists ( )1+tft SE : 

(2) ( ) ( )( ) ( )( ) tt m
ttft

m
ttctttt SSESSESSE −

−+−+−+ = 1
111111 ///  

where tm  is the weight given by the chartists and 

tm−1  is the weight given by the fundamentalists at 
the moment t. 
 
The fundamentalists assume the existence of an 
equilibrium exchange rate *S . If at the moment t-1  the 
exchange rate 1−tS  is above, respectively below, the 
equilibrium rate *S , the fundamentalists expect the 
future exchange rate 1+tS  to go down, respectively 
increase, with the speed α . More precisely, if they 
observe a deviation today, then their forecasts is the 
following: 
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The chartists use the past values  of the exchange rate to 
detect patterns that they extrapolate in the future. An 
equation which gives a general description of the 
different models used by chartists is the following:  

(4)    ( ) ( ).,...,1
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According to [4] it is possible to specify such a rule, in 
general terms, as follows:  
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The exact nature of this rule is determined by the 
coefficients ic . These can be positive, negative, or zero.  
The weight tm , in equation (2), given by chartists is  

(6)    
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t
 

The parameter β  measures the precision degree of the 
fundamentalists' estimation. When the exchange rate is in 
the neighbourhood of the equilibrium rate, chartists' 
behavior dominates. When the exchange rate differs from 
the fundamental rate, then the expectation will be 
dominated by the fundamentalists.  
 
In this paper we consider the case 1=tX  (which means 
that 1* =S ) and for chartists we consider the expectation: 
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In equation (2) we will use the expectations given by 
equations (3) and (7). In equation (1) we will use the 
expectations given by equation (2). In this way, we obtain 
the following difference equation: 
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If we denote tt Ss ln= , then equation (8) can be written 
in the form:  
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with Rst ∈ and Zt∈ . We can rewrite equation (9) in the 
following vectorial form: 
(10)   ( ) ( )ktttktt sssFss +++++ = ,,,..., 112  
where 

kk RRF →: ,  ( ) ( ) ( )( )kkkk xxFxxFxxF ,...,,...,,...,,..., 1111 = ,  
is defined in the following way: 
( ) 1,1,,..., 11 −== + kixxxF iki  and  
( ) ( ) ( ) 11,..., xxxxxxF kkkkk ψϕ += , with 

( ) ( )
( )

( )βα
β

αϕ −+
−+

+
= 1

11

2
2xe

bx  and ( )
( )211

2

−+

−
=

xe

bx
β

ψ . 

In Sections 2 and 3 we will present some analytical 
results for system (10) and in Section 4 we will present 
some numerical simulations. 
 
2 Fixed point. Existence, unicity, stability 
and attraction domain  
 
2.1. Steady-state existence, unicity and stability  
A fixed point for system (10) is a point ( ) kRxx ∈** ,...,  
for which ( ) ( )**** ,...,,..., xxFxx = . 
We recall that a fixed point ( )** ,..., xx  is stable if, for any 
sufficiently small neighbourhood ( )** ,..., xxU ∋  there is a 
neighbourhood ( ) ( )** ,...,,,, xxcbVU ∋βα  so that 

( ) UxxF k
t ∈''

1 ,...,  for every point ( ) ( )βα ,,,..., ''
1 bVxx Uk ∈  

and all t > 0, where 43421 oo
timest

t FFF
−

= ... . 

If there is a neighborhood ( ) ( )** ,...,,,, xxcbVU ∋βα  so 
that ( ) ( )**''

1 ,...,,..., xxxxF k
t → , when ∞→t ,  for every 

point ( ) ( )βα ,,,..., ''
1 bVxx Uk ∈ , then the fixed point is 

asymptotically stable (attracting fixed point). 
 
Proposition 1.  In the case in which c>1, ( )1,0∈b , 0>α  
and 0>β   system (10) has a unique fixed point and  this 
point is ( ) kR∈0,...,0 . 
 
Observation 1. The Jacobian matrix of function F 
(defined in relation (10)) for ( ) kR∈0,...,0 , is the matrix 
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 and it has the determinant 

( ) ( ) ( ) ( ) bcbc kkkkk 1111 11 −++−+− −− λλ . Calculating 
the eigenvalues of the Jacobian matrix, we can establish 
when the fixed point is stable or unstable. 
We do not give a mathematical solution for this problem, 
but we can use the computer, like in the examples from 
Table 1, where we make c=2: 
 
System
order 

The fixed point is 
stable for 

The fixed point is 
unstable for 

k=2 ( )5.0,0∈b  ( )1,5.0∈b  
k=3 ( )3165.0,0∈b  ( )1,3165.0∈b  
k=4 ( )2654.0,0∈b  ( )1,2654.0∈b  
k=5 ( )2428.0,0∈b  ( )2428.0,0∈b  
k=6 ( )2306.0,0∈b  ( )1,2306.0∈b  
k=10 ( )2119.0,0∈b  ( )1,2119.0∈b  

Table 1: Fixed point stability 
 
2.2. Attraction domain for the fixed point 
In the case in which the fixed point is stable, it is 
important to study its attraction domain. In order to make 
such a study, now, we give the following result: 
 
Proposition 2. Under the assumption: 

c>1, ⎥⎦
⎤

⎜
⎝
⎛

+
∈

12
1,0

c
b , ( )1,0∈α , 0>β , Rst ∈ , Zt∈ , the 

following relations are verified: 
 
c.1. For 0,1 <++ ktt ss : 
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1
111 βα  then 
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( ) ⎟
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⎜
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then ktkt ss +++ >> 10 , 110 +++ >> tkt ss  

c.1.4.  if ( ) ( ) ( )
( ) kts

s

t s
ecb

ebbcs
kt

kt

++
−++

−−++
=

+

+

2

2

1
11

111
β
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kttkt sss ++++ >=> 110  
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c.1.5.  if ( ) ( ) ( )
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c.2.  For 0,1 >++ ktt ss  : 
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c.2.4.  if ( ) ( ) ( )
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s

t s
c
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++
−−++

=
+

2

1
111 βα  then   

011 =>> ++++ ktktt sss  

c.2.5.  if ( ) ( ) ( )
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c.3.  For  0,01 >< ++ ktt ss  : 

c.3.1.  if  ( ) ( )[ ] ( )
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c.4.  For  0,01 <> ++ ktt ss  : 
c.4.1.  if  

( ) ( )[ ] ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−−+−+
∈ ++

+

kt

s

t s
cb

ebbcs
kt

2

1
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c.4.3.  if  ( ) ( )[ ] ( )
⎟
⎟
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⎞
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,11111
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1 kt
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t s
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then 111 0 +++++ −>>>> tktktt ssss   
c.5. if  01 <+ts  şi 0=+kts  then 110 +++ −<< tkt ss  
c.6.  if  01 >+ts  şi   then 011 <<− +++ ktt ss  
c.7. if  01 =+ts  şi 0<+kts  then 01 << +++ ktkt ss  
c.8.  if  01 =+ts  şi 0>+kts  then ktkt ss +++ << 10  
 

Remark 1. For ( ) 0,1,0,1 >∈> βαc  and ⎥⎦
⎤

⎜
⎝
⎛

+
∈

12
1,0

c
b  

we find that { } ZtRssss tkttkt ∈∈∀≤ ++++ ,,,max 11 . 
This relation implies that  

( ){ } ( ){ } ZjZtssss jktkjtkjtjkt ∈∈∀≤ ++−+++++ ,,,...,max,...,max 1111
. If 

we define: ( ) ikjtjkt ss +−++ = 1
*  for 

( ) ( ){ }jktkjtikjt sss ++−++−+ = ,...,max 111 , where 

kiZj ,1, =∈ , then the sequence { }
Ztjkts

∈+
* is 

monotonously decreasing and positive. This means that 
the sequence { }

Ztjkts
∈+

*  is convergent. If *lim jktt
sp +∞→

=  , 

then: 
 1) ps jktt

=+→∞

*lim  or 

2) ps jktt
−=+∞→

*lim  or  

3) ps jktt
=+→∞

*lim  for Tjkt ∈+ ,  ps jktt
−=+∞→

*lim  for 
'Tjkt ∈+ , where  ZTT ⊂',  with  

ZTTTT =∪∅=∩ '' , and ', TT  are infinite. 
 
Using Proposition 2 and Remark 1, we provide the 
following result:  
 
Proposition 3. For ( ) 0,1,0,1 >∈> βαc  and 

⎥⎦
⎤

⎜
⎝
⎛

+
∈

12
1,0

c
b  and any initial condition of system (10), 

the limit p is 0. This implies that the fixed point 
( ) kR∈0,...,0  is globally attractive. 
 
Proposition 4.  The fixed point is stable for 

( )( )kcyb ,,0∈ , where ( ) 1,
12

1
<≤

+
kcy

c
. 

 
3 Period-two cycles for system (10) 
 
A period-2 point of system (10) is a solution of the 
equation ( ) ( )kk ssFss ,...,,..., 1

2
1 =  where 

( ) ( )kk ssFss ,...,,..., 11 ≠ . The relations 
( ) ( )kk ssFss ,...,,..., 112 =+ , ( ) ( )1223 ,...,,..., ++ = kk ssFss  and 
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( ) ( )kk ssss ,...,,..., 123 =+  imply that 
1) for k, an odd number, a period – two cycle has the 
form: ( ) ( ){ }12212112 ,,...,,,,,...,, ssssssss , where the vectors 

are from kR , ( ) ( )12212112 ,,...,,,,...,, ssssFssss =  and 
( ) ( )21121221 ,,...,,,,...,, ssssFssss = . 
2) for k, an even number, a period – two cycle has the 
form: ( ) ( ){ }21211212 ,,...,,,,,...,, ssssssss , where the 
vectors are from kR , ( ) ( )21211212 ,,...,,,,...,, ssssFssss =  
and ( ) ( )12122121 ,,...,,,,...,, ssssFssss = . 
 
3.1. The case when k is an even number 
Now, we consider that k is an even number and we get 
the following poposition: 
 
Proposition 5. For 1>c  and ( )1,0∈b , if 
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cycles of period two. 
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then system (10) has an unique cycle of period two. 
This cycle is ( ) ( ){ }12122121 ,,...,,,,,...,, ssssssss  where 1s  
and 2s  are solutions of the equation: 
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which means that 1s  and 2s  are solutions of equation: 
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The numbers 1s  and 2s  verify the relation 021 <ss . Let 

01 >s  be the positive number. 
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From Propositions 4 and 5 we get the following result: 
 

Proposition 6. If 1>c , ⎟
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c
b , ⎟
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⎞
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⎜⎜
⎝

⎛
∞

−−
++−+

∈ ,
11
111

22

2

b
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α
αβ , then the fixed point 

( ) kR∈0,...,0  of the system is locally attractive. 
 
3.2. The case when k is an odd number  
Now, we consider that k is an odd number and we get the 
following poposition: 
 
Proposition 7. For 1>c  and ( )1,0∈b , if 

⎥⎦
⎤

⎜
⎝
⎛ +∈

b
11,0α or ⎟

⎠
⎞

⎜
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period two. 
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⎠
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⎜
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⎛ ∞+∈ ,11

b
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⎛
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22
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b
b
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system (10) has an unique period-2 cycle. 
This cycle is ( ) ( ){ }21121221 ,,...,,,,,...,, ssssssss  where 1s  and 

2s  are solutions of the equation: 
( ) ( )( )( ) ( ) ( )( )( )( ) ( ) ( )( ) 1=++++ xxxxxxxx ψϕψϕψψϕϕ  

which means that 1s  and 2s  are solutions of equation: 
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⎝

⎛
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−+

b
e
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e

b
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e
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x
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β

αα

β

α

α
β
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Numbers 1s  and 2s  verify the relation 021 <ss . Let 
01 >s  be the positive number. 

If ( )
( )[ ] ( )[ ]⎟

⎟
⎠

⎞
⎜⎜
⎝

⎛

−−
+

−−
+−

∈
11

1,
11
11

22
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b
b

b
b

αα
αβ  then  
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( )[ ] ⎟
⎟
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αβ
 and 
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⎟
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111ln2 b
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+

∈ ,
11

1
b

b
α

β  then  
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⎜
⎝

⎛
⎟⎟
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From Propositions 4 and 7 we get the following result: 
Proposition 8. If 1>c , ⎟

⎠
⎞

⎜
⎝
⎛

+
∈

12
1,0

c
b , ⎟

⎠
⎞

⎜
⎝
⎛ ∞+∈ ,11

b
α  and 

( )
( )[ ] ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∞

−−
+−

∈ ,
11
11

22

2

b
b
α

αβ , then the fixed point  

( ) kR∈0,...,0  of the system is locally attractive. 
 
4 Numerical simulations 
4.1. Attractors 
We now recall some notions which will be used in this 
section. We say that a set A is an attracting set with the 
fundamental neighbourhood U, if it verifies the following 
properties (see  [14]):  
1) attractivity: for every open set AV ⊃ , VUF t ⊂   for 

all sufficiently large t.  
2)  invariance:  ( ) AAF t = , for all t.  
3) A is minimal: there is no proper subset of A that 

satisfies conditions 1 and 2.  
The basin of attraction is the set of initial points x so that 

( )xF t  is close to A when  ∞→t .  
It is possible to classify the different attractors: attracting 
fixed point, attracting p-cycle, quasiperiodic attractor and 
strange attractor. An attractor, as an experimental object, 
gives a global description of the asymptotic behavior of a 
dynamical system.  
When a deterministic mechanism presents complex 
behavior with intermittence, we can conclude  that the 
series evinces chaos under certain conditions. 
The sensitive dependence on initial conditions is one of 
the most essential aspects in identifying the chaos. We 
recall that the sensitive dependence on initial conditions 
means that two trajectories starting very close together 
will rapidly diverge from each other. 
The strange attractor is associated with a chaotic state of 
time evolution and is characterized by the sensitive 
dependence on initial conditions.  
 
A measure of the average rate of exponential divergence 
exhibited by a chaotic system is given by the Lyapunov 
exponents of the system; the positivity of  one from these 

exponents can suggest the presence of chaos.  
 
The Lyapunov exponents 1λ , 2λ … kλ are given by  
(11)

{ } ( )( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∏

−

=
++∞→

nn

t
ktttn

sssFJofseigenvalueeee k

1
1

0
1,...,,lim,...,, 21 λλλ  

where ( )( )kttt sssFJ ++ ,...,, 1  represents the Jacobian 
matrix of the function F. For a period-p point the 
Lyapunov exponents 1λ , 2λ  …. kλ are given by  
  

(12){ } ( )( )
⎪⎭

⎪
⎬

⎫

⎪⎩

⎪
⎨

⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∏

−

=
++

pp

t
kttt sssFJofseigenvalueeee k

1
1

0
1,...,,,...,, 21 λλλ

 

We recall now that for an attracting period-p cycle the 
Lyapunov exponents are negative; in case of a 
bifurcation point, at least one Lyapunov exponent is 
zero; for a limit cycle one Lyapunov exponent is zero 
and the others are negative and for a chaotic behavior 
the highest Lyapunov exponent is positive while the sum 
of all Lyapunov exponents is negative. 
In order to compute the Lyapunov exponents, when 
system (10) displays a chaotic behavior, we use the 
method proposed in [2], based on the Householder QR 
factorization and the implementation method proposed 
in [19].  

 
We have made many numerical simulations and we have 
found many situations in which the system displays this 
types of attractors. In order to illustrate these, now, we 
give some examples. The implementation of the 
algorithms is made using VBA (Visual Basic for 
Applications) program in Excel, and the images from the 
figures are made using Mathematica. 
 
Example of chaotic attractors: 
In the case k=2, c=2, b=0.95, 2=α , 600=β  and 
( ) ( )02.0,02.0, 21 −=ss , the trajectory tends towards the 
chaotic attractor presented in Figure 1. The Lyapunov 
exponents are: ( ) ( )2158.1,4029.0, 21 −=λλ . 
 

 
Figure 1: Chaotic behavior for k=2, the space ( )1, +tt ss  

 
In the case k=3, c=2, b=0.95, 2=α , 600=β  and 
( ) ( )0794.0,02.0,02.0,, 321 −−=sss , the trajectory tends 
towards the chaotic attractor presented in Figure 2. The 
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Lyapunov exponents are: 
( ) ( )4297.0,2468.0,2328.0,, 321 −−=λλλ . 
 

 
Figure 2: Chaotic behavior for k=3, the space ( )1, +tt ss  

 
Example of limit cycle (quasiperiodic attractor) 
 
In the case k=2, c=2, b=0.95, 3.0=α , 600=β  and 
( ) ( )02.0,02.0, 21 −=ss , the trajectory tends towards the 
limit cycle presented in Figure 3. The Lyapunov 
exponents are: ( ) ( )3449.0,0, 21 −=λλ . 
 

 
Figure 3: Limit cycle for k=2, the space ( )1, +tt ss  

 
Attracting period- p cycles 
 

β  *
1s  *

2s  period 1λ  2λ  
40.5528 0.22816 -0.10586 1024 -0.0012 -0.6448

40.5513 -0.49251 0.23373 512 -0.0063 -0.6387

40.52 -0.49253 0.2336 128 -0.0177 -0.6272

40.51 -0.48868 0.228887 128 -0.0486 -0.5963

40.38 -0.49377 0.24238 64 -0.0568 -0.5882

40.3 -0.49496 0.23532 32 -0.0242 -0.6208

39 -0.50179 0.23606 16 -0.0062 -0.6398

36 -0.52696 0.24804 8 -0.0920 -0.5538

32 -0.5617 0.26258 4 -0.2447 -0.4125

28.3853 -0.58727 0.26821 4 -0.0002 -0.6963
Table 2: A sequence of period-doubling bifurcations 

(the first period is 4) 
 

In Table 2, for the case k=2, c=2, b=0.95, 2=α  and 
( ) ( )02.0,02.0, 21 −=ss , we present some situations in 
which the trajectory tends towards the period-p 
attracting cycles. In this case, we have found a sequence 
of period-doubling bifurcations. 
 Here ( )*

2
*
1 , ss  is a point from the period-p cycle towards 

which tends the trajectory starting from point (0.02, -
0.02).  
 

4.2. Coexistence of attractors and weak chaotic 
attractors 
In the cases presented in Section 4.1., the fixed point of 
the system (10) is unstable. 
We can find a complex behavior (period-p cycles, 
limit cycles, chaotic attractors) even in the case in 
which the fixed point is stable, like in the following 
examples: 
Now, we consider the case k=2,  c=2 b = 0.44, β  = 10, 

1s = 0.4602, 2s = -0.1533 and we make α  variable, 
with [ ]8.4,83286.2∈α . We find a sequence of 
period-doubling bifurcations with the first period is 4 
(see Table 3). In Table 4 we present the Lyapunov 
exponents for each case from Table 3. 
 

α  *
1s  *

2s  period 
2.83286 0.46022 -0.155345 4 
3.975 0.394045 -0.2284 8 
4.49 0.39225 -0.28636 16 
4.6 0.32111 -0.156965 32 
4.615 -0.35799 0.10207 64 

4.62 0.32661 -0.169586 128 
4.6206 0.30506 -0.12812 256 
4.620852 0.38884 -0.2976 512 
4.620857 0.32868 -0.17382 1024 

Table 3: A sequence of period-doubling bifurcations 
(the first period is 4) 

 
α  

1λ  2λ  

 2.83286   -0.00050254   -0.77408597  

 3.975   -0.0060483   -0.623160892  

 4.49   -0.39225   -0.28636   

  4.6   -0.0424086   -0.57590344   

 4.615   -0.00371722   -0.61293307   

 4.62   -0.018376058   -0.597758746  

 4.6206   -0.000931098   -0.57529   

4.620852  -0.000359043   -0.574733605   

4.620857  -0.000209248   -0.574584033   
Table 4: The Lyapunov exponents for the periodic-p 

points from the sequence of period-doubling 
bifurcations from Table 3 

 
For 8.4=α  we find a chaotic attractor, which is 
presented in Figure 4.  
In Figure 4, we can observe different parts which form 
the attractor, but the values of the Lyapunov exponents - 

1λ =0.08907 and 2λ =-0.69458 confirm the 
existence a chaotic behaivor.    
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Figure 4: A weak chaotic attractor 

 
 
4.3. Chaotic attractors and sequence of period-
doubling bifurcation 
In the case in which the fixed point is unstable, the 
behavior system (10) is more complex.  
 
For the particular case where k=2, c=2, α=2, b=0.95 
and the initial condition ( ) ( )02.0,02.0, 21 −=ss , we 
investigate the ranges of parameter β for which system 
(10) presents a chaotic or a non  chaotic behavior. 
We observe different intervals of values for β  for which 
system (10), in general, displays a chaotic behavior. 
These intervals are [46, ∞ ), [16,28], [6.2,12], [4,4.6], 
[2.9,3.8], [1.7,1.8]. Every two intervals presented here 
are separated by an interval of values of β which 
characterizes a sequence of period-doubling bifurcations 
for system (10). We present in Figure 5 the strange 
attractors which characterize different types of intervals 
of values for β for which the system displays a chaotic 
behavior. 
 

β λ1 λ2 
6*1012 0.3728   -1.2735 
600 0.4029  -1.2158 
46 0.2685  -1.1734   
12 0.3299  -1.341   
6.2 0.2636  -1.9012 
4.6 0.2244  -1.4617 
2.2 0.2033  -1.5614 
1 0.09489  -1.424 
0.8 0.143  -1.5599 
0.4 0.1054  -3.3219 
0.2 0.0787  -2.5733   
0.13 0.0132  -4.1387 

Table 5: Lyapunov exponents in the case k=2, c=2 , 
( ) ( )02.0,02.0, 21 −=ss ,  b =0.95, α =2 

 
In Table 5 we give the values of Lyapunov exponents in 
the case of the strange attractors present in Figure 5. 
The images from Figure 5 seem to represent the same 
attractor which increases and is deformed, but probably 

that is not so clear. The transformation image cannot be 
obtained statically. In order to obtain an animation we 
can use different applications (e.g., in Flash) Our 
animation is presented on the page:  
http://www.catrinelvoicu.home.ro/chaos.html. 

 

  
1210*6=β  600=β  

 
46=β  12=β  

 
2.6=β  6.4=β  

 
2.2=β  1=β  

  
8.0=β  4.0=β  

  
2.0=β  13.0=β  

Figure 5: Chaotic attractors in the case k=2, c=2 , 
( ) ( )02.0,02.0, 21 −=ss ,  b =0.95, α =2, space ( )1, +tt ss  

 
In Table 2, we have presented an example of a sequence 
of period-doubling bifurcations, displayed by system 
(10). We use the same initial conditions (0.02, -0.02). 
Here ( )*

2
*
1 , ss  means a periodical point from the periodical 

cycle towards which tends the trajectory starting from 
point (0.02, -0.02). 
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In the case 12.794 < β < 16 we find a sequence of 
period-doubling bifurcations, where the first period is 3 
(see Table 6). 

 
β  *

1s *
2s Period 1λ 2λ

15.33 -0.1777 -1.12504 192 -0.0007 -0.93342
15.324 -0.09388 -1.17613 96 -0.03141 -0.90265
15.32 -1.10702 0.562637 48 -0.01272 -0.9213
15.2 -0.18904 -1.11325 24 -0.09209 -0.84057

15 -0.11191 -1.1906 12 -0.02246 -0.90799
14.9 -1.13816 0.57627 6 -0.07288 -0.85699

13 0.61569 -0.12797 3 -0.43928 -0.43928
12.7941 -0.10965 -1.2832 3 -0.0068 -0.84512

12.79403 0.61151 -0.10934 3 -0.00099 -0.85053
Table 6: A sequence of period-doubling bifurcations 
(the first period is 3), k=2, c=2 , ( ) ( )02.0,02.0, 21 −=ss ,  

b=0.95, α =2 
 
For β  =12.794, the system (10) has a chaotic 
behavior. 
For 4.8 < β < 16 we find a sequence of period-
doubling bifurcations, where the first period is 3 (see 
Table 7). 

 
β  *

1s  *
2s  Period 1λ  2λ  

5.813097 2.9566 -2.80345 768 -0.00138 -3.68963
5.81309 5.1735 -4.9147 384 -0.00348 -3.68755
5.81305 -5.1226 0.46087 192 -0.01194 -3.6792

5.8128 -3.4724 0.17945 96 -0.01854 -3.63072
5.811 -3.21658 0.119 48 -0.00123 -3.6957
5.81 0.520483 2.9082 24 -0.01238 -3.68744

5.8 -2.82577 0.01044 12 -0.01699 -3.71189
5.7 0.133997 6.28767 6 -0.85609 -3.23492

4.82 10.91966 -10.373 3 -0.31398 -7.61383
4.80707 10.38804 -9.86864 3 -0.30781 -7.62973

4.807069 -0.48226 10.388 3 -0.30781 -7.26295
Table 7: A sequence of period-doubling bifurcations 
(the first period is 3), k=2, c=2 , ( ) ( )02.0,02.0, 21 −=ss ,  

b=0.95, α =2 
 

For β =4.807069 and the initial condition  
( ) ( )02.0,02.0, 21 −=ss , the trajectory tends towards a 
period-3 cycle. One point from this cycle is (-0.48226, 
10.388).  
For β =4.8 and the initial condition  
( ) ( )02.0,02.0, 21 −=ss , the trajectory tends towards a 
chaotic attractor. 
For β  = 4.8 and the initial condition (-0.48226, 
10.388) , the trajectory tends towards a period-3 cycle, 
and the Lyapunov exponents are =1λ –0.304 and 

=2λ –7.08329. In this case we find a coexistence of 
attractors. One attractor is chaotic and another is 
period-3 cycle. 
From Table 7 we can observe that the highest 
Lyapunov exponent do not tends towards 0.  
In the interval (4.8, 4.807069), it exists a bifurcation 
(between a period-3 cycle and a chaotic attractor). In 
this case we remark that the highest Lyapunov 
exponent is not continuous function of β .  From [14] 
it is known that, generally, the Lyapunov exponents 
are not continuous function of parameter. This fact 
has been in our numerical simulations the signal for 
coexistence of attractors. This implies that calculating 
the Lyapunos exponents we can detect that dynamic 
nature, but also we can observe the coexistence of 
attractors. 
 

β  *
1s  *

2s  Period 1λ  2λ  
3.954019 3.8413 -3.6475 2560 -0.00028 -1.67832
3.954018 -1.427 0.15598 1280 -0.00022 -1.67838
3.95401 -1.0675 0.87782 640 -0.00817 -1.67044
3.95395 -3.51987 -0.9793 320 -0.00024 -1.6784

3.9537 0.15576 3.70335 160 -0.00061 -1.67812
3.953 -1.94548 0.15465 80 -0.02232 -1.65673
3.949 2.10343 -1.95024 40 -0.0318 -1.64874
3.93 -1.0076 2.13413 20 -0.04899 -1.64159

3.899 0.91512 -0.30064 10 -0.07767 -1.61627
3.8803 0.07354 3.90653 10 -0.01076 -1.66638

3.880236 3.90424 -3.70742 10 -0.00056 -1.67502
Table 8: A sequence of period-doubling bifurcations 
(the first period is 10), k=2, c=2 , ( ) ( )02.0,02.0, 21 −=ss ,  

b =0.95, α =2 
 

For 3.88< β  < 3.96, we find a sequence of period-
doubling bifurcations, where the first period is 10 (see 
Table 8). For β  =3.88, the system (10) has a chaotic 
behavior. 
 
For 2.27 < β  <2.67 there it exists a sequence of 
period-doubling bifurcations, where the first period is 7 
(see Table 9).  

 
For  β  =2.2758, the system (10) has a chaotic 
behavior. 
For 1.88 < β  < 1.93 there it exists a sequence of 
period-doubling bifurcations, where the first period is 
11 (see Table 10). 
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β  *
1s  *

2s  Period 1λ  2λ  
2.65598 1.71410 -1.42150 896 -0.0006 -1.7829
2.65590 0.27540 3.66750 448 -0.0042 -1.7794
2.65550 -0.02927 4.16840 224 -0.0040 -2.7799
2.65320 -1.51025 -2.06020 112 -0.0018 -1.7836
2.65000 1.71571 -1.42270 56 -0.0152 -1.7461
2.60000 -2.10960 0.28619 28 -0.0043 -1.8170
2.58000 -2.22529 0.03830 14 -0.0165 -1.8207
2.50000 1.63129 -1.27678 14 -0.0777 -1.8290
2.46100 -3.17703 1.73945 14 -0.0003 -1.9436
2.46000 -3.18038 1.73989 7 -0.0010 -1.9435
2.28000 1.75116 -1.40029 7 -0.0522 -1.9418
2.27590 -2.44856 0.00776 7 -0.0007 -1.9648
Table 9: A sequence of period-doubling bifurcations 

(the first period is 7), k=2, c=2 , ( ) ( )02.0,02.0, 21 −=ss ,  b 
=0.95, α =2 

 
β  *

1s  *
2s  Period 1λ  2λ  

1.9165 -5.7301 1.5166 352 -0.00023 -2.75946
1.9162 -2.0355 -2.9517 176 -0.00963 -1.75102
1.916 -5.5935 1.4706 88 -0.01803 -1.74318
1.915 0.10727 5.7807 44 -0.04378 -1.71992
1.91 -0.8733 2.31299 22 -0.10864 -2.67673
1.89 5.9389 -0.56419 11 -0.11127 -1.67971

1.8877 1.4837 -0.66759 11 -0.0004 -1.76312
Table 10: A sequence of period-doubling bifurcations 
(the first period is 11), k=2, c=2 , ( ) ( )02.0,02.0, 21 −=ss ,  

b =0.95, α =2 
 
For β  =1.88, we find a chaotic behavior. 

 
β  *

1s  *
2s  Period 1λ  2λ  

1.663575 -0.04218 7.0231 512 -0.000566 -2.92015
1.66357 -0.04104 7.03197 256 -0.005781 -2.91495

1.6635 0.90984 3.46749 128 -0.00505 -2.91687
1.6632 0.98291 2.91895 64 -0.00943 -2.91757
1.662 -2.76382 -3.9077 32 -0.033262 -2.91447
1.66 -3.92869 0.01714 16 -0.031718 -3.8934
1.65 0.94558 3.546296 8 -0.053025 -4.12819

1.455 -131.694 -6.57886 4 -0.00255 -49.1924
Table 11: A sequence of period-doubling bifurcations 
(the first period is 4), k=2, c=2 , ( ) ( )02.0,02.0, 21 −=ss ,  

b=0.95, α =2 
 

For 1.45 < β  < 1.67 we find a sequence of period-
doubling bifurcations, where the first period is 4 (see 
Table 11). 
For { }13.0,2.0,4.0∈β  the system (10) has a chaotic 
evolution. 

 
From these examples we can observe that in the case 
in which the fixed point is unstable we find many 
chaotic attractors. In our numerical study we fix the 
initial condition, value of parameters and we make 
variable only one parameter.   
We consider now the case k=2 , c >1, b=0.95, 
β =6.2,α =2, 0s = 0.02, 1s = -0.02 

For 1 < c <1.053  (which implies that ⎟
⎠
⎞

⎜
⎝
⎛∈

c
b 1,0 , i.e. 

the fixed point is stable)  we observe that the 
trajectory tend towards fixed point (0,0). For 1.053 < c 
< 1.26, generally, the trajectory tends towards a limit 
cycle or towards  period-p cycle. For 1.26 < c <  10, 
the system has a chaotic evolution. 
 

 
c = 1.3 c = 1.45 

 
c = 2 c = 4 

 
c = 8 

 
c = 10 

Figure 6: Chaotic attractors in the case k=2, β =6.2, 
( ) ( )02.0,02.0, 21 −=ss ,  b =0.95, α =2, space ( )1, +tt ss  

 
c 1λ  2λ  
1.3 0.2284  -0.7987 
1.45 0.2575 -1.2057 
2 0.2646  -1.9035 
4 0.1978  -1.701 
8 0.1816 -4.4715 
10 0.1304 -15.624 

Table 12: Lyapunov exponents in the case k=2, 
β =6.2, ( ) ( )02.0,02.0, 21 −=ss ,  b =0.95, α =2 

 
For c >10,  when t increases, ts  increases also. 
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5 Conclusion 
 
The studies from Section 1 and 2 lead to the 
conclusion that there are similarities between the 
dynamics of the studied systems. These results are 
interesting from a mathematical viewpoint and also, 
these results lead to economic interpretations. Given 
the nonlinear nature, the dynamics of these systems 
cannot be detected using only analytical tools. For this 
reason, in the last section, we make numerical 
simulations. The algorithms implementation is made 
using VBA (Visual Basic for Applications) program in 
Excel, and the images of the figures in this paper are 
made using Mathematica. 
Our implementation methods are used for detecting the 
dynamics of a nonlinear system (see other studies [10], 
[11], [5], [7] and [16]) and for the calculation of the 
Lyapunov exponents (see also [6]). These methods 
concern the way in which we can obtain a very large 
number of observations with the computer, in a very 
short time, which, at the same time, is conclusive for 
the obtained results (see [19]). 
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