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Abstract: - This paper investigates for the first time in Burkina Faso, the potential of using an artificial neural 
network (ANN) for reference evapotranspiration (ETo) estimation. The ANN algorithm generalized regression 
neural network (GRNN) was selected for its ability to model the ETo from minimum climatic data. The irrigation 
management in Burkina Faso still faced to climatic data unavailability for estimating the ETo with the 
recommended Penman-Monteith (PM) equation. Recently, to overcome the climatic data unavailability difficulty, 
a reference model for Burkina Faso (RMBF) using only temperature as input has been developed for irrigation 
management purpose in two production sites, Banfora and Ouagadougou. In this study, four alternative methods to 
PM, including GRNN, RMBF, Hargreaves (HRG) and Blaney-Criddle (BCR) were employed to study their 
performances in three production sites, Dori, Bogande and Fada N’gourma. The minimum climatic data were set 
to the maximum and minimum air temperature as input variables collected from 1996 to 2006. The results 
revealed that, RMBF, HRG and BCR overestimated the ETo and showed poor performance. In addition, GRNN 
performance was higher than RMBF, HRG and BCR. Finally, wind has been determined as a sensitive parameter 
in the ETo estimation for the areas studied. Obviously, using GRNN with minimum climatic variables for ETo 
estimation is more reliable than the other alternative methods. It is possible to estimate ETo by using ANN in 
semiarid zone of Africa. 

 
Key-Words: - Evapotranspiration, estimating, GRNN, minimum climatic data, semiarid zone, irrigation 

management. 
 
1     Introduction 
Evapotranspiration determination is a key factor for 
water balance analysis and irrigation scheduling [1, 2]. 
In general, the reference evapotranspiration (ETo) 
estimation in the developing countries has been stated 
as a major constraint for irrigation development [3]. 
Accurate estimation of ETo, especially in semiarid 
regions such as Burkina Faso, has a great importance 
for irrigation water management. Penman–Monteith 
combination method is one of the most accurate 
methods to evaluate ETo at different time steps. 
However, it requires numerous weather variables such 
as air temperature, relative humidity, wind speed and 
solar radiation, which are not always available in 
many production sites particularly in developing 
countries. Accordingly, ETo is still estimated by the 
alternative empirical methods such as Hargreaves 
(HRG) and Blaney-Criddle (BCR) despite their 
inaccuracy in many areas [4]. 

     The ETo importance is evident in many water 
resources management technologies such computer 
based simulation models developed during the last 
past decade. The application of a number of computer 
technologies [5, 6] in Burkina Faso for water 
management is limited by the wide range of climatic 
data required for ETo estimation with the sole 
recommended Penman-Monteith (PM) equation. 
However, using computer based simulation models 
can revolutionize the irrigation water management 
practice in Burkina Faso. In recents studies, it has 
been reported that the difficulty for applying such 
technology in Burkina Faso is the unavailability of 
complete climatic data in many production sites for 
computing ETo [7, 8]. 
     Moreover, [9, 10] suggest the temperature methods 
of Hargreaves (1985) and Blaney-Criddle (1990) as 
suitable to the study area where the complete data 
required for PM ETo estimation is not available. The 
performance of different alternative equations has 
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been evaluated under different climate conditions [11, 
12]. But, there is no universal consensus on the 
suitability of any given model for a given climate. 
According to [4], the empirical formula are limited by 
their inherent characteristics. However, a very few 
studies reported on the evapotranspiration estimation 
in Burkina Faso. Efficient water management based 
on simple and accurate ETo estimation method is 
urgently necessary for the different production sites in 
Burkina Faso. Hence, to overcome the climatic data 
limitation, a previous study done by [1] developed a 
reference model (RMBF) for ETo estimation in two 
production sites, Ouagadougou and Banfora. 
     In last few years, another alternative method is the 
application of the artificial neural networks (ANNs) 
for estimating the ETo. ANN is a mathematical model 
based on the biological neural networks, able to model 
any arbitrarily complex nonlinear process that relates 
climatic variables to ETo. According to [13], the ANN 
modeling technique has been rapidly gaining attention 
in many scientific and engineering fields in recent 
years. ANNs have recently been applied in several 
areas of hydrological research, including rainfall 
estimation [14], flow forecasting [15], rainfall–runoff 
processes [16], river sediment flux modeling [17] and 
evapotranspiration process modeling [18]. Indeed, 
ANN ability to estimate ETo has been widely 
investigated and outstanding results have been 
reported by several studies [19, 20]. According to 
[21], the main advantage of ANNs in comparison to 
the conventional methods is that ANNs do not require 
detailed information on the physical processes of the 
system to be modeled, as this one is explicitly 
described under the mathematical form (input-output 
model).  
     In addition, the ANNs can also model the ETo 
process by using only minimum climatic variables. 
Studies reported by [21] and [22] showed the ability of 
the ANNs to estimate the ETo by using air 
temperature, solar radiation and daily light hours. [23] 
used similar simplified climatic data, but by removing 
the daily light hours variable. So, there is no doubt 
about the computational ability of the ANN to 
estimate the ETo where only few climatic variables 
are available. However, not work has been reported 
yet on the ANNs application in Burkina Faso where 
there is a real need for ETo estimation. Therefore, this 
present study aims to explore for the first time in 
Burkina Faso, the potential of using the ANN for ETo 
estimation based on limited climatic variables in Dori, 
Bogande and Fada N’gourma. The ANN algorithm 

generalized regression neural network (GRNN) type 
was selected for ETo estimation as a function of the 
minimum and maximum air temperature, and 
extraterrestrial radiation collected from 1996 to 2006. 
Four alternative methods to PM, including GRNN, 
RMBF, Hargreaves (HRG) and Blaney-Criddle (BCR) 
are employed to study their performances. 

 
 

2     Material and Methods 
2.1   Study Area 
     Meteorological data required for the estimation of 
the ETo using the different selected models were 
collected from 1996 to 2006 in three meteorological 
stations. The three regions studied are located in two 
agro-climatic zones. Dori meteorological station 
located in the Sahelian zone, Fada N’gourma in the 
Soudano Sahelian zone, and Bogande in between 
(Figure 1). The Sahel where Dori is located, is the 
driest zone of Burkina Faso, with its lowest annual 
rainfall (483.56 mm). The weather data composed of 
precipitation (mm), relative humidity (%), wind speed 
(km/day), maximum and minimum temperature (oC), 
and sunshine (hour) were collected in the study areas. 

 
Figure 1. Sketch of the investigation areas. 

 
2.2    Evapotranspiration Estimation Models 
The reference evapotranspiration (ETo) was computed 
for the decade time step using different models 
selected in this study. 
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     The Penman-Monteith equation for calculation of 
the reference evapotranspiration is given by [11] as 
following: 
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Where  is the reference evapotranspiration [mm 
day

ETo
-1]; Rn the net radiation at the crop surface [MJ m-2 

day-1]; G the soil heat flux density [MJ m-2 day-1]; T 
the mean daily air temperature at 2 m height [°C]; u2 
the wind speed at 2 m height [m s-1]; es the saturation 
vapour pressure [kPa]; ea the actual vapour pressure 
[kPa]; es - ea the saturation vapour pressure deficit 
[kPa]; Δ the slope vapour pressure curve [kPa °C-1]; 
and γ the psychrometric constant [kPa °C-1]. 
 
     For agriculture water management purpose, the 
reference model (RMBF) for ETo estimation has been 
developed to solve the difficulty of climatic data 
unavailability in Burkina Faso. This reference model 
determined by [1] can be written as the following: 
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     Hargreaves (HRG) method is used for ETo 
estimation when solar radiation data, relative humidity 
data and wind speed data are missing. This method 
estimates ETo using only the maximum and minimum 
air temperature with the following equation [11]: 
 

amean
0.5
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     Blaney-Criddle (BCR) method referred to the 
temperature mean values can be expressed as : 
 

8.13)(0.46TETo mean += p                                              (4) 
 
where  is the reference evapotranspiration (mm 
day

ETo
-1); p is the mean daily percentage of annual 

daytime hours according to the latitude; T  and T  
are the maximum and minimum temperature (

max min
oC); 

is the mean temperature (meanT oC);  is the 
extraterrestrial radiation (mm day

aR
-1); and C  is the 

conversion coefficient (
o

oC) ( =0.0023). oC
 

2.3   Artificial Neural Network 
GRNN was preferred instead of the multilayer 
networks for the reasons that, it does not require an 
iterative training procedure as the multilayer 
percepton neural networks model, and then the local 
minimum problem was not faced in the GRNN 
modeling and its performances have been reported by 
[20]. The GRNN consists four layers: input layer, 
pattern layer, summation layer and output layer. 
Figure 2 shows a schematic diagram of generalized 
regression neural network architecture. The number of 
input units in the first layer is equal to the total 
number of parameters. The first layer is fully 
connected to the second, pattern layer, where each unit 
represents a training pattern and its output is a 
measure of the distance of the input from the stored 
patterns. Each pattern layer unit is connected to the 
two neurons in the summation layer. 
     The GRNN can be treated as a normalized radial 
basis function network in which the hidden unit is 
centered at every training case. These radial basis 
function units are usually probability of density 
functions such as the Gaussian. GRNN is a method for 
estimating the joint probability density function of 
input and output, given only a training set. Since the 
probability density function is derived from the data 
with no preconceptions about its form, the system is 
perfectly general. By definition, the regression of a 
dependent variable (output) on an independent (input) 
estimates the most probable value for output, given 
input and a training set. This study considers the 
minimum and maximum air temperature and 
extraterrestrial radiation as the inputs and ETo values 
are the output of the network. 
 

 
    Figure 2. Schematic diagram of GRNN architecture. 
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Suppose that  represents the joint probability 
density function of a vector random variable 

),( yxf
x (input), 

and a scalar random variable y  (output). The most 
probable predicted value of y  which is also 
conditional mean of given y x  (regression of ony x ) 
is expressed by: 
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The density function can be estimated from the 
training set using the Parzen’s nonparametric 
estimator [24]: 
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Where  and 

 the number of training 
patterns and the number of independent variables are 
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 is therefore estimated by a weighted sum of 

the “Kernel function” [25]. The parameter 
),( yxf

σ  
represents the smoothing parameter the width of the 
“Kernel function”. 
 
The estimator  is asymptotically unbiased and 
consistent [26]. An interpretation of the probability 
estimate is that it assigns sample probability 
of width 
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The predictor (3) is a weighted sum over all the 
training patterns. It is directly applicable to problems 
involving numerical data. Each training pattern is 
weighted exponentially according to its Euclidean 
distance to the unknown pattern x and also according 
to the smoothing factors. This predicator was mapped 

into a neural network, which includes the four layers 
that are the input layer, pattern layer, summation layer 
and output layer. 
 
 
2.4   Data Preparation 
     The neural network was fed with few data 
including of minimum and maximum air temperature, 
and extraterrestrial radiation fixed as input set. The 
decade values were used in order to obtain a network 
that has a high estimation capacity in the investigation 
areas. According to [22], by grouping the daily values 
into averages, the ETo may be estimated due to their 
highest stabilization. The decade data set collected 
from 1996 to 2006 in Dori, Bogande and Fada 
N’gourma had a total of 396 patterns divided in two 
parts for the purpose of training and testing. The 
training data (from January 1996 to December 2005) 
is used to train the network by minimizing the error 
data and the testing data (from January 2006 to 
December 2006) used for checking the overall 
performance of trained network. Generally, the 
agriculture activities in Burkina Faso are yearly 
planned. Hence, in this study, the one year data 
equivalent to 10% of the total data set was used for 
testing the models. To overcome the problem 
associated with the extreme values, the input and 
output data set were scaled in the range of [0 1] using 
the following equation [27]: 

 

minmax
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where,  is the normalized dimensionless 
variable;  is the observed value of variable; then 

 and  are the minimum and the maximum 
value of the observed variable. 

normy

iy

miny maxy

 
 
2.5   Models Evaluation 
The model performances were assessed by the root 
mean square error (RMSE), the mean absolute error 
(MAE) and the coefficient of correlation. RMSE and 
MAE indicate the predictive ability of the models. The 
square value of coefficient of correlation (  is used 
to measure the accuracy of the neural network models 
in order to select the best architecture during the 

)r
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3     Results and Discussion training period. These statistical evaluations are 
defined as the following: 3.1   Reference Evapotranspiration Estimation 
 The inputs for the generalized regression neural 

network (GRNN) were set to the minimum and 
maximum air temperature, and extraterrestrial 
radiation. GRNN performance analysis was carried 
out by trying different smoothing parameters in order 
to obtain the best architecture. The networks were 
tested using different input and output values that 
were not given for training previously. The network 
structure which provided the best training results was 
selected based on the coefficient of correlation, and 
then applied to the testing data. The network structure 
GRNN (3, 0.1, 1) with 3 inputs, smoothing parameter 
=0.1 and 1 output gave for the training stage, the 
highest coefficient of correlation. Its performances 
were evaluated during the testing period and compared 
to the other methods. 
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     Table 1 showed the estimation accuracy obtained 
by the GRNN, HRG, RMBF and BCR in Dori, 
Bogande, and Fada N’gourma. The statistical 
performances in these three regions were ranged 
between 0.367 to 0.907, 0.356 to 1.845 and 0.291 to 
1.668 for the r2, RMSE and MAE, respectively. From 
Table 1, GRNN provided the highest r2, (0.907) and 
lowest RMSE (0.356) and MAE (0.291). The 
performances of GRNN were higher in Dori 
(r2=0.799, RMSE=0.356 mm day-1, MAE=0.291 mm 
day-1), Bogande (r2=0.836, RMSE=0.393 mm day-1, 
MAE=0.313 mm day-1) and Fada N’gourma (r2=0.907, 
RMSE=0.378 mm day-1, MAE=0.321 mm day-1).  

 
 
where  represent the PM observed ETo, iy iy′  is the 
alternative methods estimated ETo for the ith values; 

iy and iy′  represent the average values of the 
corresponding variable; and N  represents the number 
of data considered. Additionally, a single linear 
regression =by 0+b1x is applied for evaluating the 
models’ performance statistically, where y  is the 
dependent variable (PM); x the independent variable 
(alternative methods); b0 the intercept; and b1 the 
slope. 
 
 

Table 1. Statistical performances for the different models. 
 

Location Model b0 b1 r2 RMSE 
(mm/day) 

MAE 
(mm/day) 

Dori GRNN (3-0.1-1) 1.059 0.777 0.799 0.356 0.291 
 HRG 1.856 0.835 0.598 1.185 1.046 
 RMBF 2.419 0.784 0.486 1.509 1.357 
 BCR 2.981 0.733 0.367 1.845 1.668 
Bogande GRNN (3-0.1-1) 1.863 0.652 0.836 0.393 0.313 
 HRG 1.115 0.811 0.781 0.420 0.341 
 RMBF 0.989 0.878 0.734 0.579 0.446 
 BCR 0.863 0.946 0.649 0.832 0.655 
Fada N'gourma GRNN (3-0.1-1) 2.325 0.511 0.907 0.378 0.321 
 HRG 0.548 1.037 0.791 0.824 0.726 
 RMBF 0.291 1.142 0.706 1.116 0.971 
  BCR 0.033 1.248 0.613 1.428 1.218 
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Based on these highest performances, the difference in 
ranking number from the statistical evaluation placed 
GRNN at the top followed by HRG, RMBF and BCR. 
    In general, it was found a poor agreement between 
PM and the HRG, RMBF and BCR methods for ETo 
estimation in Dori, Bogande and Fada N’gourma 
(Table 1). Despite this poor agreement, HRG 
method’s performs better in Dori (r2=0.598, 
RMSE=1.185 mm day-1, MAE=1.046 mm day-1), 
Bogande (r2=0.781, RMSE=0.420 mm day-1, 
MAE=0.341 mm day-1) and Fada N’gourma (r2=0.791, 
RMSE=0.824 mm day-1, MAE=0.726 mm day-1) than 
RMBF and BCR. BCR gave a very poor performance 
in Dori (r2=0.367, RMSE=1.845 mm day-1, 
MAE=1.668 mm day-1) and Bogande (r2=0.649, 
RMSE=0.832 mm day-1, MAE=0.655 mm day-1) and 
Fada N’gourma (r2=0.613, RMSE=1.428 mm day-1, 
MAE=1.218 mm day-1). Figure 3 shows the decade 
ETo estimated from selected methods. GRNN 
produced the closest ETo values to PM in the regions 
studied when compared to the other alternatives 
methods. The deviation between GRNN and PM 
estimates ETo values is less than 1.00 mm day-1. More 
recently, [28] have obtained better results by using the 
GRNN model for ETo estimation. Precision of ANN 
model was higher than some temperature-based 
methods and could be used to predict ETo when only 
temperature was available [29]. From the results of 
this study, it could be concluded that by using the 
GRNN model, it is possible to estimate the ETo based 
on minimum climatic data in the semiarid zone of 
Africa. 
     Further analysis using the ETo estimation rate 
between PM and the HRG, RMBF and BCR showed 
an overall estimation. The minimum overestimation 
was obtained by HRG in Dori (21.27%), Bogande 
(1.88%) and Fada N’gourma (15.17%). The maximum 
overestimation was produced by BCR in Dori 
(33.92%), Bogande (10.63%) and Fada N’gourma 
(25.45%). The RMBF less overestimated the ETo 
values when compared to BCR in Dori (27.60%), 
Bogande (6.26%) and Fada N’gourma (20.31%). [30] 
and [31] found an overestimation with BCR model in 
semiarid zones. [32] stated that, the low performance 
of BCR in semiarid climates is obviously due to the 
lowest degrees of correlation between temperature 
variables and ETo. As mentioned above, in general, 
this present study shows an overestimation with 
RMBF, BCR and HRG. However, it has been reported 
by [23, 33, 34] that, HRG under-predicted ETo in the  
semiarid regions. This overestimation of HRG could 
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Figure 3. Plot of decade ETo estimated from the 
limited input data set for Dori (a), Bogande (b) and 
Fada N’gourma (c) in Burkina Faso. 
 
be probably due to the influence of the specific 
weather condition of Dori, Bogande and Fada 
N’gourma particularly, the high temperature variation 
and high wind velocity. According to [35] also 
reported that, HRG method mostly underestimated or 
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overestimated ETo obtained from PM. This present 
study found an overestimation with HRG, as well as 
RMBF and BCR methods. Similar conclusion was 
reported by [36] that HRG method overestimated 
23.1% of evapotranspiration by PM method in semi-
arid region of Karnal, India. [37] found that HRG 
overestimated the ETo in the semiarid regions of north 
China. This implies that the climatic conditions impact 
the level of agreement between ETo methods. The 
results obtained with RMBF do not suggest the 
application of this method for an accurate decade ETo 
estimation by considering only a yearly climatic data 
in Dori, Bogande and Fada N’gourma. 
     The factor such as wind velocity documented by 
[38] occurred an important variation of ETo computed 
from the temperature-based methods. Further analysis 
done by [39] indicated that wind in the atmosphere 
decreases the temperature during the daytime and 
increases it during the nighttime, this could explain at 
some extent the different behavior of the HRG 
equation at the non-windy and windy regions. 
Therefore, for these semiarid regions investigated in 
this study high wind speed might affect the 
performance of the ETo estimated from the 
alternatives methods. It has been reported by [40, 41] 
that the alternatives methods are very dependent on 
local climate condition. However, no study examined 
yet the sensitivity analysis of the specific weather 
condition on the ETo estimation in Burkina Faso. 
 
 
3.2   Sensitivity Analysis 
The wind velocity has been determined by [42] has a 
serious source of error on the ETo estimation. 
According to [43], high wind speed could affect the 
ETo value in arid regions. The impact of wind speed 
on the ETo results is relatively smaller except for arid 
windy areas [44]. Under these considerations, the ETo 

process has been modeled by considering the wind 
velocity as a new input variable added to the minimum 
and maximum air temperature, and extraterrestrial 
radiation. The results from Table 2 showed a very 
good agreement between GRNN and PM in Dori 
(r2=0.990, RMSE=0.083 mm day-1, MAE=0.069 mm 
day-1) and Bogande (r2=0.971, RMSE=0.161 mmday-1, 
MAE=0.120 mm day-1) and Fada N’gourma (r2=0.982, 
RMSE=0.116 mm day-1, MAE=0.089 mm day-1). 
Therefore, when wind velocity is introduced to the 
network input, the performances of the GRNN in the 
three regions improved significantly. Figure 4 shows 
the comparison between GRNN and PM estimates 
ETo when wind velocity is added into the network 
input. The deviation between GRNN and PM 
estimates ETo values is less than 0.50 mm day-1. In 
the East Arid Zone of Nigeria in West Africa, [45] 
observed a positive correlation between ETo and wind 
speed. ETo is sensitive to wind [46] and its 
performance may be also influenced [47]. The 
influence of wind speed on the ETo could explain 
probably the poor performance of HRG, RMBF and 
BCR models found in the above results in Dori, 
Bogande and Fada N’gourma. It has been documented 
at least by [11, 39] that, the climate parameters such as 
wind velocity simultaneously results by deteriorating 
ETo from temperature-based methods. The sensitivity 
analysis of ETo to wind showed that, in the specific 
weather condition of Burkina Faso, the wind speed has 
to be regarded as a necessary climatic variable for 
these semiarid zones. Therefore, it was possible to 
improve significantly the accuracy of ANN prediction 
by adding the wind speed parameter to the network 
input data previously defined. As ETo is relatively 
important for the crop water requirement accurate 
estimation, it is urgent to ensure reliable and accurate 
data of wind velocity. 
 

 
Table 2. Statistical performances during the testing period when the wind velocity is added into  
              the network input. 
 

Location Model b0 b1 r2 RMSE 
(mm/day) 

MAE 
(mm/day) 

Dori GRNN (4-0.1-1) 0.197 0.959 0.990 0.083 0.069 
Bogande GRNN (4-0.1-1) 0.536 0.902 0.971 0.161 0.120 
Fada N'gourma GRNN (4-0.1-1) 0.483 0.899 0.982 0.116 0.089 
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Figure 4. Plot of decade estimated ETo (January to 
December 2006) from the limited input data set 
including wind velocity for Dori (a), Bogande (b) and 
Fada N’gourma (c) in Burkina Faso. 
 
 
4     Conclusions 
The present work focused on the ability of the 
generalized neural network to estimate reference 
evapotranspiration using limited climatic data at 
decade time steps. An accurate determination of the 
reference evapotranspiration from minimum climatic 
data could help for efficient irrigation management 
through computer-based water balance simulation 
techniques. The results of this study showed in general 

an overestimation of ETo estimated with RMBF, BCR 
and HRG. The results obtained with RMBF do not 
suggest the application of this method for an accurate 
decade ETo estimation with only one year climatic 
data in Dori, Bogande and Fada N’gourma. GRNN 
produced the closest ETo values to PM in these 
regions studied when compared to the other 
alternatives methods. Based on the highest 
performances, the difference in ranking number from 
the statistical evaluation placed GRNN at the top 
followed by HRG, RMBF and BCR. From the results 
of this study, it could be concluded that by using the 
GRNN model, it is possible to estimate the ETo based 
on minimum climatic data in Afican semiarid zones. 
By introducing the wind velocity to the network input, 
the performances of the GRNN in these three regions 
improved significantly. ETo is sensitive to wind 
velocity, therefore this parameter has to be regarded as 
a necessary climatic variable for the semiarid zones of 
Africa. 
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