
UML Data Models From An
ORM (Object-Role Modeling) Perspective.

Data Modeling at Conceptual Level

Lecturer Ph. D. Candidate DANIEL IOAN HUNYADI,
Lecturer Ph. D. Candidate MIRCEA ADRIAN MUSAN

Department of Computer Science and Economic Informatics
University “Lucian Blaga” of Sibiu

Sibiu, Bd. Calea Dumbravii 3-5
ROMANIA

daniel.hunyadi@ulbsibiu.ro, mircea.musan@ulbsibiu.ro

Abstract: - This paper provides an overview of Object-Role Modeling (ORM), a fact-oriented method for
performing information analysis at the conceptual level. It provides both a graphical and textual languages and
a procedure which guides the use of the languages.
The article is structured in two main parts. The first part presents an overview of ORM along a real example,
while the second part of the article makes a comparison between ORM and UML from the conceptual data
modeling perspective.
This paper examining data modeling in the Unified Modeling Language (UML) from the perspective of Object
Role Modeling (ORM). It provided some historical background on both approaches, identified design criteria
for modeling languages, and discussed how object reference and single-valued attributes are modeled in both.
It compared UML multi-valued attributes with ORM relationship types, and discussed basic constraints on
both, as well as instantiation using UML object diagrams or ORM fact tables. This third issue compares UML
associations and related multiplicity constraints with ORM relationship types and related uniqueness,
mandatory role and frequency constraints. It also contrasts instantiation of associations using UML object
diagrams and ORM fact tables.

Key-Words: - Object-Role Modeling (ORM), FORML (Formal Object-Role Modeling Language), ER
diagrams, CSDP, abstraction mechanism, semantic stability, semantic relevance, formal foundation.

1 Introduction
It is well recognized that the quality of a database
application depends critically on its design. To help
ensure correctness, clarity, adaptability and
productivity, information systems are best specified
first at the conceptual level, using concepts and
language that people can readily understand. The
conceptual design may include data, process and
behavioral perspectives, and the actual DBMS used
to implement the design might be based on one of
many logical data models (relational, hierarchic,
network, object-oriented etc.).
This overview focuses on the data perspective, and
assumes the design is to be implemented in a
relational database system.
Designing a database involves building a formal
model of the application area or universe of
discourse (UoD). To do this properly requires a
good understanding of the UoD and a means of
specifying this understanding in a clear,
unambiguous way.

Object Role Modeling (ORM) is a powerful method
for designing and querying database models at the
conceptual level, where the application is described
in terms easily understood by non-technical users. In
practice, ORM data models often capture more
business rules, and are easier to validate and evolve
than data models in other approaches.
Object-Role Modeling (ORM) simplifies the design
process by using natural language, as well as
intuitive diagrams which can be populated with
examples, and by examining the information in
terms of simple or elementary facts. By expressing
the model in terms of natural concepts, like objects
and roles, it provides a conceptual approach to
modeling.
Early versions of object-role modeling were
developed in Europe in the mid-1970s (e.g. binary
relationship modeling and NIAM). The version
discussed here is based on the author's formalization
of the method, and incorporates extensions and
refinements arising from research conducted in
Australia and the USA. The associated language

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Daniel Ioan Hunyadi, Mircea Adrian Musan

ISSN: 1790-0832 796 Issue 5, Volume 5, 2008

FORML (Formal Object-Role Modeling Language)
is supported in Microsoft Visio for Enterprise
Architects (VEA), part of Visual Studio .NET
Enterprise Architect.
Another conceptual approach is provided by Entity-
Relationship (ER) modeling. Although ER models
can be of use once the design process is finished,
they are less suitable for formulating, transforming
or evolving a design. ER diagrams are further
removed from natural language, cannot be populated
with fact instances, require complex design choices
about attributes, lack the expressibility and
simplicity of a role-based notation for constraints,
hide information about the semantic domains which
glue the model together, and lack adequate support
for formal transformations. Many different ER
notations exist that differ in the concepts they can
express and the symbols used to express these
concepts. For such reasons we prefer ORM for
conceptual modeling. In addition to ORM, VEA
supports IDEF1X (a hybrid of ER and relational
modeling) as a view of ORM.
Although the detailed picture provided by ORM
diagrams is often desirable, for summary purposes it
is useful to hide or compress the display of much of
this detail. Though not discussed here, various
abstraction mechanisms exist for doing this. If
desired, ER diagrams can also be used for providing
compact summaries, and are best developed as
views of ORM diagrams. This overview conveys the
main ideas in ORM by discussing a case study. First
we explain the stepsused to develop a conceptual
design. To help communicate the ideas, we
deliberately make some mistakes, and later show
how the design method helps to correct these errors.
We also include a simple example to show how the
conceptual design may be “optimized” for relational
systems by applying a transformation.
An algorithm for mapping this design to a
normalized, relational database schema is then
outlined.
With VEA, the conceptual design can be entered in
either graphical or textual form, and automatically
mapped to a relational schema for use in a variety of
relational DBMSs. Finally, a brief sketch is given of
how ORM may be used as a sound basis for
conceptual queries. For a detailed discussion of
ORM, see [1].

2 The Conceptual Schema Design

Procedure
The information systems life cycle typically
involves several stages: feasibility study;
requirements analysis; conceptual design of data and

operations; logical design; external design;
prototyping; internal design and implementation;
testing and validation; and maintenance. ORM's
conceptual schema design procedure (CSDP)
focuses on the analysis and design of data. The
conceptual schema specifies the information
structure of the application: the types of fact that
are of interest; constraints on these; and perhaps
derivation rules for deriving some facts from others.
With large-scale applications, the UoD is divided
into convenient modules, the CSDP is applied to
each, and the resulting subschemas are integrated
into the global conceptual schema. The CSDP itself
has seven steps. The rest of this section illustrates
the basic working of this design procedure by means
of a simple example.
The conceptual schema design procedure (CSDP) in
step and description:
1. Transform familiar information examples into
elementary facts, and apply quality checks
2. Draw the fact types, and apply a population check
3. Check for entity types that should be combined,
and note any arithmetic derivations
4. Add uniqueness constraints, and check arity of
fact types
5. Add mandatory role constraints, and check for
logical derivations
6. Add value, set comparison and subtyping
constraints
7. Add other constraints and perform final checks

Step 1 is the most important stage of the CSDP.
Examples of the kinds of information required from
the system are verbalized in natural language. Such
examples are often available in the form of output
reports or input forms, perhaps from a current
manual version of the required system. If not, the
modeler can work with the client to produce
examples of output reports expected from the
system. To avoid misinterpretation, it is usually
necessary to have a UoD expert (a person familiar
with the application) perform or at least check the
verbalization. As an aid to this process, the speaker
imagines he/she has to convey the information
contained in the examples to a friend over the
telephone. For our case study, we consider a
fragment of an information system used by a
university to maintain details about its academic
staff and academic departments. One function of the
system is to print an academic staff directory, as
exemplified by the report extract shown in Table 2.
Part of the modeling task is to clarify the meaning of
terms used in such reports. The descriptive narrative
provided here would thus normally be derived from
a discussion with the UoD expert. The terms

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Daniel Ioan Hunyadi, Mircea Adrian Musan

ISSN: 1790-0832 797 Issue 5, Volume 5, 2008

“empNr” and “extNr” abbrevi-ate “employee
number” and “extension number”.

Step 2 of the CSDP is to draw a draft diagram of
the fact types and apply a population check (see
Figure 1). Entity types are depicted as named
ellipses. Predicates are shown as named sequences
of one or more role boxes. Predicate names are read
left-to-right and top-to-bottom, unless prepended by
“<<” (which reverses the reading direction). An n-
ary predicate has n role boxes. The inverse predicate
names have been omitted in this figure. Value types
are displayed as named, broken ellipses. Lines
connect object types to the roles they play.
Reference modes are written in parenthesis: this is
an abbreviation for the explicit portrayal of
reference types. For example, the notation
“Academic (empNr)” indicates an injection (1:1-into
mapping) from the entity type Academic to the
value type EmpNr. In this example there are seven
fact types. As a check, each has been populated with
at least one fact, shown as a row of entries in the
associated fact table, using the data from rows 1 and
3 of Table 2. The English sentences listed before as
facts f1-f7, as well as other facts from row 3, may be
read directly off this figure. Though useful for
validating the model with the client and for
understanding constraints, the sample population is
not part of the conceptual schema diagram itself.

 Fig. 1 Draft diagram of fact types for Table 2 with
sample population

This leads us to Step 3 of the CSDP: check for
entity types that should be combined, and note any
arithmetic derivations. The first part of this step
prompts us to look carefully at the fact types for f11,
f15 and f17. Currently these are handled as three
ternary fact types: Professor obtained Degree from
University;SeniorLecturer obtained Degree from
University; Lecturer obtained Degree from
University. The common predicate suggests that the
entity types Professor, SeniorLecturer and Lecturer

should be collapsed to the single entity type
Academic, with this predicate now shown only once,
as shown in Figure 2.

Fig.2 Extra fact types needed to capture the additional
information

The second aspect of Step 3 is to see if some fact
types can be derived from others by arithmetic.
Since we now record the rank of academics as well
as their departments, we can compute the number in
each rank in each department simply by counting.
So facts like f9' are derivable. If desired, derived
fact types may be included on a schema diagram if
they are marked with an asterisk “*” to indicate their
derivability. To simplify the picture, it is usually
better to omit derived predicates from the diagram.
However in all cases a derivation rule must be
supplied. This may be written below the diagram
(see Figure 2). Here “iff” abbreviates “if and only
if”.

Step 4 of the CSDP is to add uniqueness constraints
and check the arity of the fact types. Uniqueness
constraints are used to assert that entries in one or
more roles occur there at most once. A bar across n
roles of a fact type (n > 0) indicates that each
corresponding n-tuple in the associated fact table is
unique (no duplicates are allowed for that column
combination). Arrow tips at the ends of the bar are
needed if the roles are non-contiguous (otherwise
arrow tips are optional). A uniqueness constraint
spanning roles of
different predicates is indicated by a circled “u”: this
specifies that in the natural join of the predicates, the
combination of connected roles is unique. For
example, a fragment of the conceptual schema under
consideration is displayed in Figure 3. While these
constraints are suggested by the original population,
the domain expert should normally be consulted to
verify them. It is sometimes helpful to construct a
test population for each fact type in this regard,
though simple questions are usually more efficient.
The internal uniqueness constraints on the binary
fact types assert that each academic has at most one

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Daniel Ioan Hunyadi, Mircea Adrian Musan

ISSN: 1790-0832 798 Issue 5, Volume 5, 2008

rank, holds at most one chair (and vice versa), works
for at most one department, and has at most one
employee name.

Fig. 3 Some of the fact types, with uniqueness constraints
added

If a fact type is elementary all its functional
dependencies (FDs) are implied by uniqueness
constraints. For example, each academic has only
one rank (hence in the fact table for Academic has
Rank, entries in the rank column are a function of
entries in the academic column). If in doubt, one
checks for FDs not so implied; if such an FD is
found, the fact type is split on the source of the FD.

Step 5 of the CSDP is to add mandatory role
constraints, and check for logical derivations. A role
is mandatory (or total) for an object type if and only
if every object of that type which is referenced in the
database must be known to play that role. This is
explicitly shown by means of a mandatory role dot
where the role connects with its object type. If two
or more roles are connected to a circled mandatory
role dot, this means the disjunction of the roles is
mandatory (i.e. each object in the population of the
object type must play at least one of these roles) – an
inclusive-or constraint.

Fig.4 Some of the fact types, with mandatory role
constraints added

For example, Figure 4 adds mandatory role
constraints to some of the fact types already
discussed.
These dots indicate that each academic has a rank
and works for a department; moreover each
academic either is tenured or is contracted till some

date. Roles that are not mandatory are optional. The
role of having a chair is optional. The roles of being
contracted or being tenured are optional too, but
their disjunction is mandatory. If an object type
plays only one fact role in the global schema, then
by default this is mandatory, but a dot is not shown
(e.g. the role played by Rank is mandatory by
implication).
Now that uniqueness and mandatory role constraints
have been discussed, reference schemes can be
better understood. Simple reference schemes involve
a mandatory 1:1 mapping from entity type to value
type. For example, the notation “Rank (code)”
abbreviates the binary reference type: Rank has
Rankcode. If shown explicitly, both roles of this
binary have a simple uniqueness constraint, and the
reference role played by Rank has a mandatory role
dot. With composite reference, a combination of two
or more values can be used to refer to an entity. For
example, while EmpNr provides a simple primary
identifier for Academic, the combination of Dept
and EmpName provides a secondary identification
scheme. Sometimes composite schemes are used for
primary reference. The second stage of Step 5 is to
check for logical derivations (i.e. can some fact type
be derived from others without the use of
arithmetic?). One strategy here is to ask whether
there are any relationships (especially functional
relationships) which are of interest but which have
been omitted so far. Another strategy is to look for
transitive patterns of functional dependencies. For
example, if an academic has only one phone
extension and an extension is in only one room, we
could use these to determine the room of the
academic. However, for our application the same
extension may be used in many rooms, so we
discard this idea.

In Step 6 of the CSDP we add any value, set
comparison and subtyping constraints. Value
constraints specify a list of possible values for a
value type. These usually take the form of an
enumeration or range, and are displayed in braces
besides the value type or its associated entity type.
For example, Rankcode is restricted to
{‘P’,‘SL’,‘L’} and AccessLevelcode to
{‘INT’,‘NAT’,‘LOC’}. These are displayed in the
global conceptual schema (Figure 5). Set
comparison constraints specify subset, equality or
exclusion constraints between compatible roles or
sequences of compatible roles. A subset constraint
from one role sequence to another indicates that the
population of the first must always be a subset of the
second, and is denoted by a circled with a dotted
arrow from source to target In Figure 5, a pair-

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Daniel Ioan Hunyadi, Mircea Adrian Musan

ISSN: 1790-0832 799 Issue 5, Volume 5, 2008

subset constraint runs from the heads predicate to
the works for predicate, indicating that a person who
heads a department must work for the same
department.

Fig. 5 The final conceptual schema

Step 7 of the CSDP adds other constraints and
performs final checks. We briefly illustrate two
other constraints. The audits fact type has both its
roles played by the same object type (this is called a
ring fact type). Theoir notation beside it indicates
the predicate is irreflexive (no teacher audits
himself/herself).Suppose we also need to record the
teaching and research budgets of the departments.
We might schematize this as in Figure 6. Here the
“2” beside the role played by Dept is a frequency
constraint indicating that each department that is
included in the population of that role must appear
there twice. In conjunction with the other
constraints, this ensures that each department has
both its teaching and research budgets recorded.

Fig. 6 Each department has two budgets

The CSDP ends with some final checks that the
schema is consistent with the original examples,

avoids redundancy, and is complete. No changes are
needed for our example. There is a minor derived
redundancy, since if someone heads a department,
we know from the subset constraint that this person
works for that department; but this is innocuous.
Other schematizations are possible (e.g. we can
define works in and heads to be pair-exclusive, or
use a unary is head instead of the binary heads) but
we ignore these alternatives here.
Once the global schema is drafted, and the target
DBMS decided, various optimizations can usually
be performed to improve the efficiency of the
logical schema that results from the mapping.
Assuming the conceptual schema is to be mapped to
a relational database schema, the fact type in Figure
6 will map to a separate table all by itself (because
of its composite uniqueness constraint). Since some
other information about departments is mapped to
another table, if we want to retrieve all the details
about departments in a single query we will have to
perform a table join. Joins tends to slow things
down.
Moreover, we probably want to compute the total
budget of a department, and with the current schema
this will involve a self-join of the table since the
details of the two budgets are on separate rows. We
can avoid all these problems by transforming the
ternary fact type in Figure 6 into the following two
binaries before we map: Dept has teaching budget of
MoneyAmt; Dept has research budget of
MoneyAmt. These binaries have simple keys, and
will map to the “main” department table. Another
optimization may be performed which moves the
home phone information to Dept instead of
Professor, but the steps underlying this are a little
advanced, so we ignore a detailed discussion of this
move here. Figure 6 includes both these revisions to
the conceptual schema.

3 Study Case
To give you a real example of applying ORM in
data modeling we will shortly present a fragment of
a project in which we were involved.
It’s about a web portal by which a company presents
online the projects it developed over the time for
different customers. We used the ORM
methodology to create the structure of the relational
database used by the portal to store projects
information.
Applying the steps of the conceptual schema design
procedure the following ORM diagram is presented
in next page.
Next, we will shortly present the steps of CSDP. As
the first step, the knowledge about the application

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Daniel Ioan Hunyadi, Mircea Adrian Musan

ISSN: 1790-0832 800 Issue 5, Volume 5, 2008

domain (the universe of discourse) was transformed
in elementary facts that further were represented
graphically on the diagram.
Here are some examples of elementary facts:
1. Project has Title.
2. Company has Address.
3. Project was developed by Company.
Next step was to apply the data constraints over the
elementary facts and represent them on the diagram.
1. Each Project has exactly one Title.
2. Each Company has at most one Address.
3. Is it possible that a Company has no Address.
4. Each Project was developed by exactly one
Company.
After the ORM diagram was finalized, we applied
the algorithm of mapping the diagram to the
relational database structures. The algorithm ensures

that the resulting database structure conforms to the
conditions of the 5th database normalization form
(5NF).
Once the conceptual schema has been specified, a
simple algorithm is used to group these fact types
into normalized tables. If the conceptual fact types
are elementary (as they should be), then the mapping
is guaranteed to be free of redundancy, since each
fact type is grouped into only one table, and fact
types which map to the same table all have
uniqueness constraints based on the same
attribute(s).

Applying the steps of the conceptual schema design
procedure the following ORM diagram resulted:

In this study of case we present an ORM diagram
witch results from this project.

The diagram models in graphical mode the domain
of application representing all the types of
information which knows about that application and

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Daniel Ioan Hunyadi, Mircea Adrian Musan

ISSN: 1790-0832 801 Issue 5, Volume 5, 2008

the coercion which applies those information. This
application represents an on-line typecast with the
projects which are developed by a firm. The
application contains information about the projects
developed by the firms and the customers of the
respective projects. The purpose of this application
is that to admit of any navigator of Internet to access
the on-line portofolio of developed projects of the
company. Also, the application admits of its user to
create his account and creates his own own
portofolio of projects developed with the company
which has the site.
After the finalization of the ORM’s diagram it
administer of this algorithm of mapping of the
diagram at the relation structure of database.
Like conclusion we can say that after we used
another methods of modeling of data at the
conceptual level like UML or ER, consider the the
diagrams ORM are more expressive.

4 UML Data Models From An ORM

Perspective
Although the Unified Modeling Language (UML)
facilitates software modeling, its object-oriented
approach is arguably less than ideal for developing
and validating conceptual data models with domain
experts. Object Role Modeling (ORM) is a fact-
oriented approach specifically designed to facilitate
conceptual analysis and to minimize the impact on
change. Since ORM models can be used to derive
UML class diagrams, ORM offers benefits even to
UML data modelers. This multi-part article provides
a comparative overview of both approaches.
In our competitive and dynamic world, businesses
require quality software systems that meet current
needs and are easily adapted. These requirements
are best met by modeling business rules at a very
high level, where they can be easily validated with
clients, and then automatically transformed to the
implementation level. The Unified Modeling
Language (UML) is becoming widely used for both
database and software modeling, and version 1.1
was adopted in November 1997 by the Object
Management Group (OMG) as a standard language
for object-oriented analysis and design [8, 9].
Initially based on a combination of the Booch,
OMT (Object Modeling Technique) and OOSE
(Object-Oriented Software Engineering) methods,
UML was refined and extended by a consortium of
several companies, and is undergoing minor
revisions by the OMG Revision Task Force [7]. A
simple introduction to UML is contained in [6], and
a thorough discussion of OMT for database
applications is given in [5], although its notation for

multiplicity constraints differs from the UML
standard.
UML includes diagrams for use cases, static
structures (class and object diagrams), behavior
(state-chart, activity, sequence and collaboration
diagrams) and implementation (component and
deployment diagrams). For data modeling purposes
UML uses class diagrams, to which constraints in a
textual language may be added. Although class
diagrams may include implementation detail (e.g.
navigation and visibility indicators), it is possible to
use them for analysis by omitting such detail. When
used in this way, class diagrams essentially provide
an extended Entity Relationship (ER) notation.
UML's object-oriented approach facilitates the
transition to object-oriented code, but can make it
awkward to capture and validate business rules with
domain experts. This problem can be remedied by
using a fact-oriented approach where
communication takes place in simple sentences, and
each sentence type can easily be populated with
multiple instances. Object Role Modeling
 (ORM) is a fact-oriented approach that harmonizes
well with UML, since both approaches provide
direct support for roles, n-ary associations and
objectified associations. ORM pictures the world
simply in terms of objects (entities or values) that
play roles (parts in relationships).
ORM originated in the mid-1970s as a semantic
modeling method, one of the early versions being
NIAM (Natural language Information Analysis
Method), and has since been extensively revised by
many researchers. Overviews of ORM may be
found in [6, 7] and a detailed treatment in [5].
Although all versions of ORM are based on the
same framework, minor variations do exist. This
article focuses on the most popular version of ORM
as supported in modeling and query tools such as
Visio’s InfoModeler and ActiveQuery. Since
business requirements are subject to ongoing
change, it is critical that the underlying data model
be crafted in a way that minimizes the impact of
these changes. The ORM framework is more stable
under business changes than either OO or ER
models, and facilitates the remaining changes that
need to be made. This stability applies not only to
the model itself, but also to conceptual queries based
on the model.
Although ORM can be used independently of other
methods, it may also be used in conjunction with
them. To better exploit the benefits of UML, or ER
for that matter, ORM can be used for the conceptual
analysis of business rules, and the resulting ORM
model can be easily transformed into a UML class
diagram or ER diagram.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Daniel Ioan Hunyadi, Mircea Adrian Musan

ISSN: 1790-0832 802 Issue 5, Volume 5, 2008

This article summarizes the main data modeling
constructs in both ORM and UML, and discusses
how they relate to one another. It aims to provide a
basic understanding of both approaches and to
illustrate translation between their notations. Along
the way, some comparative advantages of ORM are
noted.
However this is not to disparage UML, which does
have some nice features. Overall, UML provides a
useful suite of notations for behavior and software
modeling, and its class diagram notation is better
than most other ER notations for data modeling.
Visio Professional already provides basic support
for several data and process modeling notations, and
the integration of InfoModeler technology will
enable very powerful support for both ORM and
UML. So it will be possible to work in one or more
of your preferred notations (ORM, UML, ER) with
automatic mapping to an implementation in a variety
of DBMSs. You could even do part of the model in
ORM and part in UML, and have these merged to a
single model.
Some information modeling approaches allow
instances of relationships or associations to be
treated as entities in their own right. In the Unified
Modeling Language (UML), this modeling
technique is called “reification”, and is mediated by
means of association classes. In Object-Role
Modeling (ORM), this process is called
“objectification” or “nesting”. While this modeling
option is rarely supported by industrial versions of
Entity-Relationship Modeling (ER), it is allowed in
several academic versions of ER. Objectification is
related to the linguistic activity of nominalization, of
which two flavors may be distinguished:
circumstantial; and propositional. In practice,
objectification needs to be used judiciously, as its
misuse can lead to implementation anomalies, and
those modeling approaches that permit
objectification often provide incomplete or flawed
support for it.
To provide an evaluation framework, some design
criteria for modeling languages are first identified.
We then discuss simple cases of how objects are
referenced, and how single-valued “attributes” and
can be captured in ORM and UML. From an ORM
perspective, we confine our discussion of constraints
to simple uniqueness and mandatory role
constraints. From a UML perspective, we consider
only attribute multiplicity and related textual
constraints.
Later parts will discuss UML associations and more
advanced features such as other constraint types,
aggregation, subtyping, derivation rules and queries.

4.1 Conceptual modeling language criteria
A modeling method comprises a language and also a
procedure for using the language to construct
models. Written languages may be graphical
(diagrams) and/or textual. Conceptual models
portray applications at a fundamental level, using
terms and concepts familiar to the application users.
In contrast, logical and physical models specify
underlying database structures to be used for
implementation, and external models specify user
interaction details (e.g. design of screen forms and
reports). The following criteria provide a useful
basis for evaluating conceptual modeling methods:
• Expressibility
• Clarity
• Semantic stability
• Semantic relevance
• Validation mechanisms
• Abstraction mechanisms
• Formal foundation

The expressibility of a language is a measure of what
it can be used to say. Ideally, a conceptual language
should be able to model all conceptually relevant
details about the application domain. This is called
the 100% Principle [9]. Object Role Modeling is
primarily a method for modeling and querying an
information system at the conceptual level, and for
mapping between conceptual and logical levels.
Although various ORM extensions have been
proposed for object-orientation and dynamic
modeling, the focus of ORM is on data modeling,
since the data perspective is more stable and it
provides a formal foundation on which operations
can be defined. In this sense, UML is generally more
expressive than standard ORM, since its use case,
behavior and implementation diagrams model
aspects beyond static structures. Such additional
modeling capabilities of UML and ORM extensions
are beyond the scope of this article, which focuses
on the conceptual data perspective. For this
perspective, ORM diagrams are graphically more
expressive than UML class diagrams.
Moreover, ORM diagrams may be used in
conjunction with the other UML diagrams, and may
even be transformed into UML class diagrams.

The clarity of a language is a measure of how easy it
is to understand and use. To begin with, the
language should be unambiguous. Ideally, the
meaning of diagrams or textual expressions in the
language should be intuitively obvious. At a
minimum, the language concepts and notations
should be easily learnt and remembered.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Daniel Ioan Hunyadi, Mircea Adrian Musan

ISSN: 1790-0832 803 Issue 5, Volume 5, 2008

Semantic stability is a measure of how well models
or queries expressed in the language retain their
original intent in the face of changes to the
application. The more changes one is forced to make
to a model or query to cope with an application
change, the less stable it is.

Semantic relevance requires that only conceptually
relevant details need be modeled. Any aspect
irrelevant to the meaning (e.g. implementation
choices, machine efficiency) should be avoided.
This is called the conceptualization principle [9].
Validation mechanisms are ways in which domain
experts can check whether the model matches the
application. For example, static features may be
checked by verbalization and multiple instantiation,
and dynamic features may be checked by
simulation.
 Abstraction mechanisms are ways in which
unwanted details may be removed from immediate
consideration. This is especially important with
large models. ORM diagrams tend to be more
detailed and take up more space than corresponding
UML models, so abstraction mechanisms are often
used. Various mechanisms such as modularization,
refinement levels, feature toggles, layering, and
object zoom can be used to hide and show just that
part of the model relevant to a user’s immediate
needs. With minor variations, these techniques can
be applied to both ORM and UML. ORM also
includes an attribute abstraction procedure that can
be adapted to generate a UML or ER diagram as a
view.

A formal foundation ensures models are
unambiguous and executable (e.g. to automate the
storage, verification, transformation and simulation
of models). One particular benefit is to allow formal
proofs of equivalence and implication between
alternative models for the same application [8].
Although ORM’s richer graphic constraint notation
provides a more complete diagrammatic treatment
of schema transformations, use of textual constraint
languages can partly offset this advantage.
With respect to their data modeling constructs, both
UML and ORM have an adequate formal
foundation.
Since the ORM and UML languages are roughly
comparable with regard to abstraction mechanisms
and formal foundations, our comparison focuses on
the criteria of expressibility, clarity, stability,
relevance and validation.

4.2 Multi-valued attributes
Suppose that we are interested in recording the
names of employees, as well as the sports they play
(if any). In ORM, we might model this situation as
shown in Figure 7a. The mandatory role dot
indicates that each employee has a name. The
absence of mandatory role dot on the first role of the
Plays fact type indicates that this role is optional (it
is possible that some employee plays no sport). The
lack of a mandatory role dot on the roles of
EmpName and Sport does not imply that these roles
are optional. If in the global schema an object type
has only one fact role, this is implied to be
mandatory unless the object type has been declared
independent. So if EmpName and Sport have no
other roles in the complete application, their roles
shown here are implicitly mandatory.
This is of little importance, since implied constraints
are automatically enforced with no additional
overhead.

Fig.7 Plays depicted as an ORM m:n fact type (a) and a
UML multi-valued attribute (b)

Since an employee may play many sports, and a
sport may be played by many employees, Plays is a
many-to-many (m:n) relationship type. This is
shown in ORM by making the uniqueness constraint
span both roles. Visually, this indicates that for each
population of the fact type, only the combination of
values for the two roles needs to be unique. In other
words, each employee-sport pair can occur on at
most one row of the associated fact table. Since it is
understood that the population of any fact type is a
set of rows (not a bag of rows), such a spanning
uniqueness constraint always applies. We only show
this constraint if no stronger one exists. For
example, the uniqueness constraint on the empname
fact type is stronger, since it spans just one role; so
we don’t bother adding the weaker, 2-role
uniqueness constraint. Read from left to right, the
empname relationship type is many-to-one (n:1),
since employees have at most one name, but the
same name may refer to many employees.

5 Conclusions
As we used other methodologies for modeling data
at the conceptual level, such as UML or ER, over
the time in different projects, we consider that the

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Daniel Ioan Hunyadi, Mircea Adrian Musan

ISSN: 1790-0832 804 Issue 5, Volume 5, 2008

ORM diagram are more graphically expressive than
ER or UML class diagrams.
We’ve barely scratched the surface of UML or
ORM, but many of the fundamentals have been
introduced. In later issues, we’ll compare UML
associations with ORM predicates, fact tables with
object diagrams, UML multiplicity constraints with
ORM mandatory and frequency (including
uniqueness) constraints, UML association classes
with ORM nesting, and UML qualified associations
with ORM co-referencing.
We’ll also discuss more advanced constraints,
aggregation, subtyping, derivation rules and queries.
To finalize this article, to give you a real example of
applying ORM in data modeling we made an
application which contains this facility. It’s about a
web portal by which a company presents online the
projects it developed over the time for different
customers. We used the ORM methodology to
create the structure of the relational database used
by the portal to store projects information.

References:
[1] Bloesch, A.C. & Halpin, T.A. 1996, ‘ConQuer:

a conceptual query language’, Proc. ER’96: 15th
Int. Conf. on conceptual modeling, Springer
LNCS, no. 1157, pp. 121-33.

[2] Bloesch, A.C. & Halpin, T.A. 1997, ‘Conceptual
queries using ConQuer-II’, Proc. ER’97: 16th
Int. Conf. on conceptual modeling, Springer
LNCS, no. 1331, pp. 113-26 (online at
www.orm.net).

[3] Halpin, T.A. 1998, ‘Conceptual Queries’,
Database Newsletter, vol. 26, no. 2, ed. R.G.
Ross, Database Research Group, Inc., Boston
MA (March/April 1998) (online at
www.orm.net).

[4] Halpin, T.A. 2001a, Information Modeling and
relational Databases, Morgan Kaufmann
Publishers, San Francisco
(www.mkp.com/books_catalog/catalog.asp?ISB
N=1-55860-672-6).

[5] Blaha, M. & Premerlani, W. 1998, Object-
Oriented Modeling and Design for Database
Applications, Prentice Hall, New Jersey.

[6] Fowler, M. with Scott, K. 1997, UML Distilled,
Addison-Wesley.

[7] OMG UML Revision Task Force website,
http://uml.systemhouse.mci.com/.

[8] UML Partners 1997, UML Semantics, version
1.1, OMG document ad/97-08-04,www.omg.org.

[9] UML Partners 1997, UML Notation Guide,
version 1.1, OMG document ad/97-08-05,
www.omg.org.

[10] Kyounghwan An, Juwan Kim, Processing
Location Stream in Moving Object Database,
WSEAS TRANSACTIONS on
INFORMATION SCIENCE and
APPLICATION, Issue 1, Volume 3, January
2006, pg 147-153, ISSN: 1790-0832

[11] Sorapak Pukdesree, Anon Sukstrienwong,
Vitalwonhyo Lacharoj, Evaluating of Distributed
Database on PC Cluster Computers, WSEAS
TRANSACTIONS on INFORMATION
SCIENCE and APPLICATION, Issue 10,
Volume 3, October 2006, pg. 1863-1868, ISSN:
1709-0832

[12] Tassawar Iqbal, Nadeem Daudpota, XML
based Framework for ETL Processes for
Relational Databases, WSEAS
TRANSACTIONS on INFORMATION
SCIENCE and APPLICATION, Issue 7, Volume
3, July 2006, pg.1402-1406, ISSN: 1709-0832

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Daniel Ioan Hunyadi, Mircea Adrian Musan

ISSN: 1790-0832 805 Issue 5, Volume 5, 2008

