
Structured Data Representation Using Ruby Syntax

KAZUAKI MAEDA
Department of Business Administration and

Information Science, Chubu University
1200 Matsumoto, Kasugai, Aichi

JAPAN
kaz@acm.org

Abstract: This paper describes Ribbon (Ruby Instructions Becoming Basic Object Notation), a new representation
written in a text-based data format using Ruby syntax. The design principle of Ribbon is good readability and
simplicity of structured data representation. An important feature of Ribbon is an executable representation. Once
Ribbon-related definitions are loaded into a Ruby interpreter, the representation can be executed corresponding to
the definitions. Java programs are expected to read/write Java objects to persistent storage-media, or to traverse the
structured data. A program generator was developed to create Ruby and Java programs from Ribbon definitions. In
the author’s experience, productivity was improved in the design and implementation of programs that manipulate
structured data.

Keywords: Data Representation, Structured Data, Domain Specific Languages, Ruby, Java

1 Introduction
Structured data has been widely used in many soft-
ware development projects. In the case of compiler
development, compiler front-ends build abstract syn-
tax trees (ASTs), which represent structured syntactic
information of source code[1]. Initially, “Diana” was
designed as an AST for Ada programs[2], making it
suitable for an intermediate representation of source
code in Ada compilers.

A variety of representations for structured data
have been developed to date. As a practical applica-
tion of Diana, we can use an interface description lan-
guage (IDL)1 compiler in a Scorpion toolkit[4]. IDL
is used to define structured data; the IDL compiler
reads the Diana specification in the IDL and gener-
ates useful functions to manipulate an AST in the C
programming language, including a writer to translate
the AST to an external representation and a reader
to reconstruct the AST from the external representa-
tion. The Scorpion toolkit is very useful in developing
language-oriented software tools; however, the repre-
sentation of structured data for the toolkit is not de-
signed for general purposes. It is only specific to the
toolkit; moreover, it does not support object-oriented
programming languages.

Object serialization is included in standard Java
packages[5], and it supports the translation of objects
(and objects reachable from them) into a byte stream,
as well as supporting the reconstruction of objects

1The IDL in this context is different from OMG IDL[3].

from the byte stream. The object serialization in Java
is useful for saving temporal objects to persistent stor-
age media such as hard disks. The author has devel-
oped a multi-pass compiler composed of front- and
back-end programs. The front-end program explicitly
invokes a method for object serialization, and writes
the resulting AST to a file using this serialization, after
which the back-end program reads the file and recon-
structs the AST. The value of each field in the objects
is saved with its type information so that, if necessary,
the objects can be reconstructed from the saved file.

The object serialization in Java is helpful in writ-
ing out the state of objects; but at least two problems
are evident. First, the serialized objects in Java are
written in a binary format, the detailed information of
which is not open. Second, the serialized objects can-
not be used in other programming languages due to
the lack of libraries for such languages that can read
this type of data.

An attractive alternative for the representation of
structured data is XML. XML is designed as an open,
tag-based, and text-based data format; its specifica-
tions are managed by an open standards organization.
It can be used across different platforms, i.e., different
computers, operating systems, and programming lan-
guages. Many XML standards and technologies exist,
ensuring an advantage over other data formats. How-
ever, the large number of XML standards and tech-
nologies create a barrier to learning XML and devel-
oping XML applications.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Kazuaki Maeda

ISSN: 1790-0832 853 Issue 5, Volume 5, May 2008

This paper describes Ribbon2, a new representa-
tion of structured data in a text-based data format us-
ing Ruby syntax. The author believes that good read-
ability and simplicity of structured data representation
are important for all developers. Ruby is a simple
but powerful programming language, and its syntax
is suitable for representation; therefore, Ribbon was
designed in Ruby syntax.

Ribbon and its related tools support all object-
oriented programming languages. Although Java was
used in our study, Ribbon does not impose any restric-
tions on the programming language. C# or Visual Ba-
sic could also have been used.

An important feature of Ribbon is that the rep-
resentation is executable. An XML parser is needed
for XML application development. However, in the
case of Ribbon, the parser for the representation is
embedded in the Ruby interpreter; we therefore do
not need to parse the representation in Ribbon. If
Ribbon-related definitions are loaded into the Ruby
interpreter, the representation can be executed corre-
sponding to the definitions. This is useful for Java
programs in reconstructing Java objects or for travers-
ing the structured data.

Section 2 describes technologies for structured
data representation. Section 3 explains Ribbon and
its related tools, and Section 4 summarizes this paper.

2 Related Technologies
2.1 XML and DOM
XML is a markup language that controls the format-
ting and presentation of documents. Instead of the
document-centric view, the data-centric view advo-
cates that XML is suitable for applications requiring
data exchange. Data can be exchanged across lan-
guages, processes, computers, and vendors. If source
code is analyzed and the result is written in XML to
represent syntactic information, the development of
software tools is possible using various programming
languages and libraries to manipulate the XML repre-
sentation.

JavaML[6] is a typical XML-based source code
representation for ASTs, providing syntactic and se-
mantic information after parsing Java source code.
Once software tools are implemented using the
JavaML representation, they can easily obtain infor-
mation about Java source code without the need for
analysis. XSDML[8] and srcML[9] are other repre-
sentations in XML that support the representation of
formatting information, including white spaces and

2Ribbon stands for Ruby Instructions Becoming Basic Object
Notation.

comments, in addition to ASTs. Therefore, the orig-
inal source code is restored from the XML represen-
tation using the formatting information in XSDML or
srcML.

The XML representation is parsed to a hierarchi-
cal tree of elements and other XML entities for ma-
nipulation in the main memory. After construction of
the tree, each node can be accessed using tree traver-
sal APIs. The document object model (DOM) was
defined for standard tree access. The DOM-based
approach is useful for programmers in manipulating
the XML representation, according to the hierarchi-
cal tree structure. Programs using DOM traverse the
structure; however, conversion from the document-
oriented DOM to application-specific and problem-
oriented data is necessary. If there are many kinds of
objects to be converted, the work is tedious and error
prone.

An XML representation is just static data, while
the representation in Ribbon is dynamic, executable
code. Once a representation in Ribbon is successfully
loaded into a Ruby interpreter, the parsing of the data
is already done. After being loaded, the representation
can be executed into the Ruby interpreter; therefore,
conversion from document-oriented representation to
problem-oriented representation is unnecessary. It is
useful in reconstructing Java objects from the repre-
sentation.

2.2 DSL and Ruby
Domain specific languages (DSLs) are programming
languages tailored to specific application domains[10]
and designed precisely to describe problems in spe-
cific application fields[11]. They are special-purpose,
and not general-purpose, programming languages.

Fowler has explained the difference between ex-
ternal and internal DSLs[12]. An external DSL (e.g.,
an XML configuration file) is a special-purpose lan-
guage with a syntax that is different from existing pro-
gramming languages. In case of an external DSL, the
DSL developer has to build a parser for the domain-
specific description. On the other hand, an internal
DSL uses the constructs of the existing programming
language (or “host” language) to define the DSL. In
case of an internal DSL, the designer extends the host
language to the domain specific description, which
can improve the development time for building a DSL
processor to execute the description.

Ruby is one of many general-purpose, object-
oriented programming languages, combining script-
ing syntax with Smalltalk-like object-oriented fea-
tures. The official implementation is written in C,
but there are a variety of implementations of Ruby
interpreters including Rubinius[14], JRuby[15], and

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Kazuaki Maeda

ISSN: 1790-0832 854 Issue 5, Volume 5, May 2008

IronRuby[16].
Ruby plays an important role as a host language

for an internal DSL. One of Ruby’s appealing features
is the fact that parentheses for arguments of meth-
ods are optional; therefore, the descriptions are easier
to read and understand than ones in other program-
ming languages. Another feature in Ruby is “block,”
a group of program statements; it can be an argument
of a method in Ruby. The block is powerful in its rep-
resentation of structured data. Ruby’s features are ad-
vantageous to Ribbon in representing structured data.
Ribbon uses these advantages of Ruby to represent
structured data. The next section explains the details
of Ribbon.

3 Representation and Manipulation
of Structured Data

3.1 Ribbon as an Object Notation
The representation of structured data in Ribbon is
composed of several elements. Each element has a
name and a value. For example,

config "my behavior"

which represents the name of the element as config
and the value as “my behavior.” The element config is
not just a data representation, but internally, it is also
an executable method invocation without parentheses
in Ruby. The method name is config and the argument
of the method is “my behavior.”

In Ruby, an element can have child elements us-
ing blocks. For example, Figure 1 shows that the con-
fig element has three child elements: before, buy, and
at. The before element’s value is “programming,” the
buy element’s value is “coffee,” and the at element’s
value is “coffee stand.” Basically, one line can only
have one element, according to Ruby syntax. If we
write a semicolon at the end of an element, we can
use multiple elements in one line. This action is not
recommended, however, since the author believes that
simplicity is very important in representing structured
data in Ribbon.

config "my behavior" do
before "programming"
buy "coffee"
at "coffee stand"

end

Figure 1: An element with three child elements

Ribbon supports four primitive data types: int,
real, bool, and string. For example, Figure 2 shows

config "my behavior" do
pay "today" do

price 340
tax 0.05
togo true
date "April 1, 2008"

end
before "programming"
buy "coffee" do

order "grande"
order "hot"
order "double-shot"

end
at "coffee stand"

end

Figure 2: Elements including primitive data types and
a collection

that the pay element’s value is “today,” and it has four
child elements: price, tax, togo, and date. The price
element has an integer value 340, the tax element has
a real value 0.05, the togo element has a boolean value
true, and the date element has a string value “April 1,
2008.”

An element in Ribbon cannot have more than one
child element with the same name. Recall that a Java
class has no more than one field with the same name.
An element in Ribbon is a similar construct as a Java
class. In comparison, an element to represent a col-
lection can have more than one element with the same
name. In Figure 2, the buy element has three child el-
ements with the name order. The first order element’s
value is “grande,” the second order element’s value is
“hot,” and that of the last is “double-shot.” This rep-
resents a sequence of elements.

If we need to represent an element linked to an-
other element across the structure, a unique iden-
tifier is given to the element, and another element
refers to the element using the identifier. Fig-
ure 3 shows that a uuid element with the identifier
dbe0c2e6 5a63 4159 a76f 6e44 is given to the store
element with “Seattle, Washington.” The identifier in
the figure is calculated using java.util.UUID, which is
represented using a symbol in Ruby; the at element
has a reference to the unique identifier. This means
that Ribbon supports graph-structured data.

3.2 Definition of Structured Data
Structured data is defined using symbols in Ruby and
the four keywords has, is a, is seq of and is type, as
shown in Table 1.

Figure 4 shows the definitions of the representa-

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Kazuaki Maeda

ISSN: 1790-0832 855 Issue 5, Volume 5, May 2008

location "coffee stand" do
store "San Francisco, California"
store "Seattle, Washington" do
uuid :dbe0c2e6_5a63_4159_a76f_6e44

end
end
config "my behavior" do

before "programming"
buy "coffee"
at :dbe0c2e6_5a63_4159_a76f_6e44

end

Figure 3: Elements including a uuid and the reference

Table 1: Keywords to define structured data
keyword meaning of the keyword
has composition of elements
is a specialization of an element
is seq of collection of elements
is type primitive data type

(int, real, bool or string)

tion in Figure 2. The definitions are as follows:
• config element has four child elements: pay, be-

fore, buy, and at
• buy element is a collection of order elements
• pay element has four child elements: price, tax,

togo, and date
• price element has an integer value
• tax element has a real value
• togo element has a boolean value
• date element has a string value

:config.has :pay, :before, :buy, :at
:buy.is_seq_of :order
:pay.has :price, :tax, :togo, :date
:price.is_type :int
:tax.is_type :real
:togo.is_type :bool
:date.is_type :string

Figure 4: An example of Ribbon definitions

3.3 Program Generation for Ruby and Java
The representation in Ribbon becomes executable if
Ribbon-related programs are loaded into a Ruby in-
terpreter. For example, Figure 5 shows a program to
display only the value of config element in Figure 1.

def config(s)
puts s
if block_given? then

yield
end

end

Figure 5: Ruby program to display the value of the
config element

[’before’,’buy’,’at’].each do |m|
Object.module_eval \%{

def #{m}(s)
puts s
if block_given? then
yield

end
end}

end

Figure 6: Ruby program to display three elements

Dynamic features in Ruby are helpful if we need
to display the before, buy, and at elements shown in
Figure 1. Figure 6 shows that a Ruby program to
define three methods at run-time using closures and
the “module eval” method. This style is important in
the design of a program generator (called “ribgen”) to
generate Ruby programs from the Ribbon definitions.

java_package ’test.ribbon’
java_prefix ’Rbn’
generate_java
generate_ribsetup ’setup_file.rb’
generate_diagram ’my_diagram.dot’

Figure 7: Specification to generate Ruby and Java pro-
grams

Ribgen generates a Ruby program, Java pro-
grams, and a class diagram for the generated Java
classes. Figure 7 shows the specification as follows;
java package specifies the path “test.ribbon” for the

Java package
java prefix specifies addition of a prefix “Rbn” at the

beginning of the Java class name
generate java specifies generation of Java classes
generate ribsetup specifies generation of Ribbon-

related programs to the file name “setup file.rb”

generate diagram specifies generation of a class di-
agram for generated Java classes to the file name
“my diagram.dot”

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Kazuaki Maeda

ISSN: 1790-0832 856 Issue 5, Volume 5, May 2008

Ribbon is designed to map the representation to
Java classes. Figure 8 shows a class diagram3for Java
classes generated from Ribbon definitions in Figure 4.
The RbnBase class is a base class for all classes gener-
ated by ribgen; it provides two fields: name and value.
In Figure 8, there are five subclasses of RbnBase (Rb-
nConfig, RbnBefore, RbnBuy, RbnAt, and RbnOrder
), corresponding to the five elements (config, before,
buy, at, and order).

RbnBefore

RbnConfig

-before:RbnBefore
-buy:RbnBuy

-at:RbnAt

RbnBase

name:String
value:String

child:List

RbnBuy

RbnAt

RbnOrder

Figure 8: Class diagram of Java classes generated by
ribgen

If the Ruby programs shown in Figure 6 are cus-
tomized, we can develop a program to construct Java
objects from the representation shown in Figure 1.
Figure 9 shows Java objects corresponding to the Rib-
bon elements. The Ribbon representation and related
programs are executed on a Ruby interpreter. The
Ruby programs trigger instantiation one after another
and instantiate all Java objects. After the construction
of Java objects, the RbnConfig object has links to the
RbnBefore, RbnBuy, and RbnAt objects. Moreover,
the RbnConfig object has a list to access all child ele-
ments. The list is useful in developing programs that
can traverse all child elements.

config
"my behavior"

before
"programming"

buy
"coffee"

at
"coffee stand"

config "my behavior" do

 before "programming"

 buy "coffee"

 at "coffee stand"

end

Figure 9: Relationships between Ribbon elements and
Java objects

The RbnApi class provides some basic methods
for developers in building Java programs using the

3The class diagram is generated by ribgen, and the methods
are intentionally omitted from the diagram.

Ribbon representation. Typical methods are:

RbnApi() is a constructor that initializes Ribbon
APIs

RbnBase readRbnFile(String fileName) reads a
Ribbon representation from the specified file and
executes it on the Ruby interpreter.

void writeRbnFile(RbnBase obj, String fileName)
writes the specified object (and objects reachable
from it) in the specified file

All classes generated by ribgen are subclasses of
RbnBase class. The typical methods of the classes are:

String getName() is an accessor to get the name of
the element.

String getValue() is an accessor to get the value of
the element

void setValue(String value) is an accessor to set the
value of the element

void addChildFront(RbnBase obj) is a method to
add the element to the front of the child elements

void addChildRear(RbnBase obj) is a method to
add the element to the end of the child elements

java.util.List<RbnBase> getChild() is a method to
get the list of child elements

Figure 10 shows a snippet of a Java program us-
ing Ribbon APIs. It reads a representation from a file
“test-in.rb” and instantiates Java objects, after which
the program

gets a RbnBefore object,
displays the RbnBefore object,
sets “A new configuration” to the RbnConfig,
gets a RbnAt object,
displays the RbnAt object, and
writes all objects to another file “test-out.rb.”

RbnBase obj;
RbnConfig c;
RbnBefore b;
RbnAt a;
RbnApi rbnapi = new RbnApi();
obj = rbnapi.readRbnFile("test-in.rb");
c = (RbnConfig) obj;
b = c.getBefore();
System.out.println(b);
c.setValue("A new configuration");
ra = c.getAt();
System.out.println(a);
rbnapi.writeRbnFile(c,"test-out.rb");

Figure 10: An example of usage of Ribbon APIs

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Kazuaki Maeda

ISSN: 1790-0832 857 Issue 5, Volume 5, May 2008

3.4 Current Implementation

The implementation work was performed on an Apple
MacBook Pro with Mac OS X 10.4.11, JRuby 1.0.2,
and Java 1.5.0 13. The program generator ribgen is
written in Ruby. It reads a Ribbon definition file, gen-
erates a Ruby program to set up, and generates Java
classes corresponding to all elements. Moreover, it
generates a class diagram to understand all generated
classes and the inheritance hierarchy. The class dia-
gram in Figure 8 is an example of one generated from
the Ribbon definitions shown in Figure 4 and 7.

The Ribbon representation changes to graph-
structured data using unique identifiers and refer-
ences. When a Java program, using Ribbon APIs,
writes graph-structured objects to a file, the objects
with cyclic paths need only be written once. Rib-
bon APIs correctly serialize them using the algorithm
mentioned in the paper[17].

4 Summary
This paper described Ribbon, a new representation
written in a text-based data format using Ruby syntax.
One of its important features is that the representation
is executable. Ribbon is useful for Java programs to
read/write Java objects to persistent storage media, or
to traverse the structured data.

A program generator was developed to create
Ruby and Java programs from Ribbon definitions. In
the author’s experience, productivity was improved in
the design and implementation of programs that ma-
nipulate structured data.

Ribbon and its related tools are now being used in
applications supporting the development of commer-
cial products, such as a diagram editor and a compiler
front-end. The development and results will be pub-
lished in a future paper.

References:

[1] Alfred V. Aho, Monica S. Lam et al., Compil-
ers : Principles, Techniques, and Tools, 2nd ed.
Pearson Education, 2006.

[2] Gernard Goos, William A. Wulf et al., DIANA:
An Intermediate Language for Ada, Springer-
Verlag, 1983.

[3] Object Management Group, OMG IDL,
http://www.omg.org/gettingstarted/omg idl.htm

[4] Richard Snodgrass, The Interface Description
Language: Definition and Use, Computer Sci-
ence Press, 1989.

[5] Sun Microsystems, Object Serialization,
http://java.sun.com/javase/6/docs/technotes
/guides/serialization/.

[6] Greg Badros, JavaML: A Markup Language for
Java Source Code, In 9th International World
Wide Web Conference,
http://www9.org/w9cdrom/index.html, 2000.

[7] Gregory McArthur, John Mylopoulos and Siu
Kee Keith Ng, An Extensible Tool for Source
Code Representation Using XML, In 9th
Working Conference on Reverse Engineering,
pp.199–209, 2002.

[8] Katsuhisa Maruyama and Shinichiro Yamamoto,
A CASE Tool Platform Using an XML Repre-
sentation of Java Source Code, In 4th IEEE In-
ternational Workshop on Source Code Analysis
and Manipulation, pp.158–167, 2004.

[9] Jonathan I. Maletic, Michael Collard and Huzefa
Kagdi, Leveraging XML Technologies in Devel-
oping Program Analysis Tools, In 4th Interna-
tional Workshop on Adoption-Centric Software
Engineering, pp.80–85, 2004.

[10] Marjan Mernik, Jan Heering and Anthony M.
Sloane, When and How to Develop Domain-
Specific Languages, ACM Computing Surveys,
Vol.37, No.4, pp.316–344, 2005.

[11] Paul Hudak, Building Domain-Specific Em-
bedded Languages, ACM Computing Surveys,
Vol.28, No.4es, p.196, 1996.

[12] Martin Fowler, MF Bloki: Domain Specific
Language, http://martinfowler.com/bliki
/DomainSpecificLanguage.html

[13] Ruby Programming Language,
http://www.ruby-lang.org/en/.

[14] Evan Phoenix, Rubinius : The Ruby Virtual Ma-
chine, http://rubini.us/.

[15] JRuby - Home, http://jruby.codehaus.org/.
[16] IronRuby, http://www.ironruby.net/.
[17] Andrew Birrell, Greg Nelson et al., Network Ob-

jects, In 14th ACM Symposium on Operating
Systems Principles, pp.217-230, 1993.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Kazuaki Maeda

ISSN: 1790-0832 858 Issue 5, Volume 5, May 2008

