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Abstract: In this paper, we propose a new method for computer aided detection of pulmonary nodules in X-ray CT
images to reduce false positive rate under high true positive rate conditions. An essential part of the method is to
extract and combine two novel and effective features from the original CT images: One is orientation features of
nodules in a region of interest (ROI) extracted by a Gabor filter, while the other is variation of CT values of the ROI
in the direction along body axis. By using the extracted features, pattern recognition techniques can then be used
to discriminate between nodule and non-nodule images. Simulation results show that discrimination performance
using the proposed features is extremely improved compared to that of the conventional method.

Key–Words: Computer aided diagnosis, Lung cancer, Pulmonary nodules, Feature extraction, Image recognition,
X-ray CT images

1 Introduction

With the increasing mortality rate for lung cancer, X-
ray computed tomography (CT) has been used for de-
tection of lung cancer at early stages [1]. The early
stage detection of lung cancer is extremely important
for survival rate and this is true for any pathological
cells of lung cancer [2]. Using the X-ray CT, pul-
monary nodules that are typical shadows of patholog-
ical changes of lung cancer [3] can be detected more
clearly compared to the chest X-ray examination even
if they are at early stages. This is an advantage of the
X-ray CT diagnosis. In fact, it has been reported that
the survival rate of the later ten years can reach 90%
after the detection at early stages using X-ray CT im-
ages [4].

On the other hand, using the X-ray CT may ex-
haust radiologists because the CT generates a large
number of images (at least over 30 images per pa-
tient) and they must diagnose all of them. The ra-
diologists’ exhaustion and physical tiredness might
cause a wrong diagnosis especially for a group medi-
cal examination where most of CT images are healthy
and only very few images involve the pathological
changes. Therefore, some computer-aided diagnosis
(CAD) systems have been developed to help their di-
agnosis work [5, 6]. Although these CAD systems
can automatically detect pulmonary nodules with a
high true positive rate (TP), the false positive rate (FP)

is also high. To reduce the FP, several advanced meth-
ods such as neural network approaches have been pro-
posed [7, 8]. However, there are still some funda-
mental problems such as a low discrimination rate for
variations of size and positional shift of nodule im-
ages. This is because they are still so-called low level
or simple image recognition methods with pixel based
features compared to the radiologist’s complex diag-
nosis process.

In this paper, to further reduce the FP, we pro-
pose new methods to extract and combine novel fea-
tures from the CT images of pulmonary nodules. The
extraction and combination of new features are moti-
vated by the radiologist’s higher level cognitive pro-
cess in which several features are combined and in-
tegrated to conduct precise diagnosis. Simulation re-
sults demonstrate the effectiveness of the new features
and the combination method for discriminating nod-
ule shadows from non-nodule ones.

2 Method
In general, a discrimination method mainly consists
of the feature extraction and pattern recognition tech-
niques. The conventional image features are such as
average, variance, and entropy of pixel values [9].
However, they are not very effective and don’t di-
rectly reflect target shapes in CT images that are
one of the most important pieces of information used
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to discriminate between nodules and non-nodules.
Therefore, the proposed method in this paper first
pays attention to extracting a new shape feature that
is more effective than conventional ones.

2.1 Detection of Regions of Interest (ROI)
First, we use the variable N-quoit filter [5], based on a
mathematical morphological technique [10], to detect
regions of interest (ROI) from the original CT images.
Let us consider an original image I(x, y) of the pixel
values at position (x, y). To apply the N-quoit filter
to the image I , we define two elemental functions, D
with a disk domain KD and R with a ring domain
KR, as follows [11].

D(x1, y1) =
{

0 (x1, y1) ∈ KD

−∞ otherwise
(1)

R(x1, y1) =
{

0 (x1, y1) ∈ KR

−∞ otherwise
(2)

where

KD =
{
(x1, y1) | x2

1 + y2
1 ≤ r2

1

}
(3)

KR =
{
(x1, y1) | r2

2 ≤ x2
1 + y2

1 ≤ r2
3

}
(4)

r1, r2, and r3 are radii of the disk, internal, and exter-
nal rings, respectively. Usually, r1 = r3 and r2 < r3.

The output of the N-quoit filter, q, is calculated
as

q(x, y) = hD(x, y) − hR(x, y) (5)

where hD and hR can be defined by using the operator
⊕ of the Minkowsky’s set addition [10]

hD(x, y) = I(x, y) ⊕ D(x1, y1)
= max

(x1,y1)∈KD

{I(x − x1, y − y1)

+ D(x1, y1)} (6)

hD(x, y) = I(x, y) ⊕ R(x1, y1)
= max

(x1,y1)∈KR

{I(x − x1, y − y1)

+ R(x1, y1)} (7)

Using the disk and ring functions, the output q(x, y)
results in large for island shadows in the image I , oth-
erwise q(x, y) becomes small. Since the pulmonary
nodules often look like small islands in the CT slice
images, the filter can effectively detect regions includ-
ing nodule candidates with high q values.

2.2 Orientation features extraction
To extract features for nodules recognition, we bina-
rize the original images I in the ROI as

Iβ(x, y) =
{

1, I(x, y) ≥ mean(I) + β
0, otherwise

(8)

and calculate three conventional features (mean, vari-
ance, and entropy of pixels intensity) of the binarized
image Iβ [12].

Then, we apply a Gabor filter to the binarized im-
age Iβ and extract M orientation outputs. The im-
pulse response of the filter is defined by the harmonic
function multiplied by the Gaussian function

g(x, y, σ, λ, γ, θ) = exp
(
−x′2 + γ2y′2

2σ2

)

× cos
(

2π
x′

λ

)
(9)

where θ is the angle of orientation, σ is the bandwidth,
γ is the aspect ratio, and λ is the wave length, respec-
tively. x′ and y′ are given by

{
x′ = x cos θ + y sin θ
y′ = −x cos θ + y sin θ

(10)

Orientation features are obtained from the convolu-
tion of image Iβ(x, y) and g(x, y, σ, λ, γ, θ) as

O(x, y) = Iβ(x, y) ∗ g(x, y, σ, λ, γ, θ) (11)

Fig. 1 shows examples of filtered images of four
orientations. Using the new orientation features, the
circle-like shadows can be discriminated from the
other shapes. This is a promising result because nod-
ule shadows often look like circles. The orientation
features involving such circle-shape information can
thus be appropriate for the discrimination.

For each orientation, we calculate the three fea-
tures of mean, variance, and entropy of intensity.
Consequently, we extract a total 3× (M +1) features
from the binarized image. Then we define a vector X
of 3×(M +1) features, X = [x1, x2, . . . , x3(M+1)]T ,
for the image in ROI. To eliminate the dimensional
redundancy of the vector, we finally define a feature
vector X ′ from the vector X by using the principal
component analysis technique.

o0 o135o90o45

Binarizing                   Filtering 0
ô

4

ô

2

3ô

4

Figure 1: Examples of four orientation filtered outputs.
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Figure 2: Distances from the test image to centers of P
nodule and Q non-nodule clusters.

2.3 Pattern classification in principal com-
ponent space

We make, respectively, P and Q clusters of nodules
and non-nodules images of training data on the prin-
cipal component feature space by K-means method.
The numbers of nodule and non-nodule clusters, P
and Q, can be determined automatically on the basis
of variance equalization between clusters [13]. Then,
we project test data X ′ into the feature space and cal-
culate Euclidean distances between test data and all
the cluster centers (Fig. 2). Here any other distances
such as the inner product and Maharanobis distance
can be used as the similarity measure, but if the vari-
ances are almost the same among clusters, then Maha-
ranobis distance are equivalent to Euclidean distance.

Let us consider the (P + Q) distances dA
p , p =

1, 2, . . . , P , from the P nodule clusters and dN
q , q =

1, 2, . . . , Q, from the Q non-nodule ones. The dis-
crimination is conducted by comparing the minimum
distances dA

p∗, p∗ ∈ {1, 2, . . . , P}, from the nearest
nodule cluster and dN

q∗, q∗ ∈ {1, 2, . . . , Q}, from the
non-nodule one. That is, if the ratio

d =
dA

p∗
dN

q∗
(12)

is less than a threshold α, then the test image can be a
nodule candidate; otherwise it is a non-nodule candi-
date.

2.4 Effect of orientation feature
To evaluate the effect of the orientation feature on the
discrimination between nodule and non-nodule im-
ages, we have tested the proposed method by using
a data set from the Web database of CT images [14].

We used a set of 297 nodule data images (208
training and 89 test images) and 1929 non-nodule data
images (1351 training and 578 test images). The ROI
size was 33×33 pixels and the binarizing threshold β
was 40. The number of orientations M was 4 and the

Gabor filter’s parameters λ, σ, and γ were 1.5, 2.6,
and 1, respectively. The number of principal compo-
nents C was 5, defined as the minimum number that
satisfies

∑C
j=1 uj > 0.95 where uj is the contribu-

tion ratio of principal component j. The number of
clusters was 35 (25 nodules and 10 non-nodules).

2.4.1 Clustering results

Figs. 3 - 7 show sample images of feature vectors be-
longing to clusters made from training nodule images.
The results demonstrate that each cluster consists of
similar circle-like shapes of nodules. This suggests

Figure 3: Nodule images in cluster A. Images includ-
ing relatively light and fuzzy boundary shadows are
involved in this cluster.

Figure 4: Nodule images in cluster B. Images includ-
ing relatively bright, smooth boundary and large cir-
cle shadows are involved in this cluster.

Figure 5: Nodule images in cluster C. Images includ-
ing smooth boundary and small circle shadows are in-
volved in this cluster.

Figure 6: Nodule images in cluster D. Images includ-
ing small circle with spiculated boundary shadows are
involved in this cluster.
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Figure 7: Nodule images in cluster E. Images includ-
ing ellipse shadows are involved in this cluster.

that the orientation features extracted from the nod-
ule images can be useful for clustering them, and thus
the proposed feature is effective for nodule discrimi-
nation.

On the other hand, Figs. 8 - 13 show sample im-
ages of feature vectors belonging to non-nodule clus-
ters. The results demonstrate that some clusters are
composed of similar shapes of non-nodules, but some
are not. For example, in cluster nA, most of images
look like small circles, but there are a few images not
involving such small circle shapes. Also, there are

Figure 8: Non-nodule images in cluster nA. Images
including relatively small circle shadows are involved
in this cluster.

Figure 9: Non-nodule images in cluster nB. Images
including vertical line segments are involved in this
cluster.

no similar shapes with each other in cluster nF. This
implies that non-nodule clusters are composed of var-
ious images with relatively high variance of feature
vectors, compared to similar images with low vari-
ance of feature vectors in nodule clusters. Indeed,
variances of feature vectors in non-nodule clusters are

Figure 10: Non-nodule images in cluster nC. Images
including line segments with angle −π/4 [rad] are in-
volved in this cluster.

Figure 11: Non-nodule images in cluster nD. Images
including relatively large circle shadows are involved
in this cluster.

Figure 12: Non-nodule images in cluster nE. Images
including horizontal line segments are involved in this
cluster.
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Figure 13: Non-nodule images in cluster nF. Various
shapes are involved in this cluster.

relatively high, while variances in nodule clusters are
relatively low. The averages of the variances in non-
nodule and nodule clusters were 0.003 and 0.001, re-
spectively.

This suggests that further improvement for non-
nodule clustering can be done by extracting more ef-
fective features from the original images. Such im-
provement will be discussed in section 3.1.

2.4.2 ROC analysis

Fig. 14 shows the 3 receiver operating characteris-
tic (ROC) curves. Without 12 features of 4 orienta-
tions extracted by the Gabor filter, FP was about 80%
when TP was 80%, while FP was about 35% by using
the orientation features. The improvement of the dis-
crimination rate (FP was improved from 80% to 35%)
clearly demonstrates the effectiveness of the proposed
feature on the diagnosis of pulmonary nodules.

Without orientation features

With orientation features

MTANN

0.5
FP

0.6 0.7 0.8 0.9 10.40.30.20.100

0.5TP

0.4

0.1

0.2

0.3

0.6

0.7

0.8

0.9

1

Figure 14: ROC curves.

On the other hand, FP was about 30% under the
same condition by using a massive training artificial
neural network (MTANN) [7]. Although these rate
can be improved if we could choose more suitable
settings for both the proposed and MTANN methods,
we may claim that the discrimination performances of
both methods are almost equivalent.

2.5 Variation feature along body axis
To further improve the discrimination rate for clini-
cal use, we will now try to extract another effective
feature. To begin with, let us consider why the dis-
crimination performance using the orientation feature
is not enough and what kind of images can be mis-
judged. For example, Fig. 15 shows a CT slice image
of a patient. As mentioned in section 2.2, nodules
often have circle-like shadows and thus we want to
extract such shape information by using the Gabor fil-
ter. It seems, however, hard to discriminate between
nodule and non-nodule images, for example nodule
images in cluster C (Fig. 5) and non-nodule images
in cluster nA (Fig. 8), by using only such shape fea-
ture although the proposed one can be more effective
than some conventional ones as demonstrated in the
preceding section.

Different from the shape information within a CT
slice, a novel feature can be extracted from shadow
shapes across CT slices in the direction along the
body axis. For example, Figs. 16 and 17 are CT slices
above and below Fig. 15. Note that, according to a
common opinion of several radiologists, circle-like
shapes of non-nodules are almost shadows of blood

Figure 15: ROI images detected by the variable N-quoit
filter. Blue frames indicate images including nodules,
whereas the red frame indicates a non-nodule image.
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Figure 16: CT slice image above the slice of Fig. 15. The
red frame shows continuity between Figs. 15 and 16, in
which a circle-like shadow remains at the same position in
both figures. On the other hand, the blue frames show dis-
continuity that sizes and CT values of circle-like shadows
in both figures are different from each other.

vessels in the direction along the body axis. In this
case, as seen in these figures, the blood vessels are
cylinder-like shapes and thus the circle-like shadows
remain at the same position if we look at slices above
and below the target slice. On the other hand, nod-
ules are often ball shapes. In this case, if we look
at a slice above or below the target slice, the circle-
like shadows often disappear. Thus, as a new feature,
we employ the variation of CT values in the direction
along body axis.

To extract the variation feature, we first calculate
the average pixel value of the shadow image in the
ROI. If a shadow is of a non-nodule and a part of
the cylinder-shape blood vessels along the body axis,
continuity of the average values can be observed. On
the other hand, if the shadow is of a nodule, then dis-
continuity of the average can be observed. In other
words, for the non-nodule case, the average value is
almost the same in above and below slices, while the
average changes depended on the slices for the nodule
case.

Let us denote the average values of the shadows
Vm, Vu, and Vl for the target slice, and slices above
and below the target, respectively. Using the aver-
ages, we define a new feature of shadow variation in
the direction along the body axis T by

T = max(Tu, Tl) (13)

Figure 17: CT slice image below the slice of Fig. 15. As
same in Fig. 16, we can see continuity of a non-nodule
shadow and discontinuity of nodule shadows.

Figure 18: Extraction of the shadow variation feature T .

where

Tu =| 1 − Vm/Vu | (14)

Tl =| 1 − Vm/Vl | (15)

The concept of calculation of the feature extraction is
illustrated in Fig. 18.

The new feature T tends to be small for non-
nodule shadows of the continuity case while it is large
for nodule shadows of the discontinuity case. In fact,
for the data used in section 2.4, the average value
of the variation T for non-nodule images was 0.182,
while the average of T was 0.479 for nodules.

3 Results and discussions
Here the shadow variation feature T was first ap-
plied to the ROI images and then more careful dis-
crimination using the orientation features was con-
ducted. That is, if the variation feature T of a can-
didate shadow in a ROI is less than a threshold Th,
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the proposed method regards the shadow as a non-
nodule. Otherwise, if T ≥ Th, the candidate shadow
in the ROI is discriminated by using the orientation
features as described in section 2.3. It might be worth
mentioning an interesting fact that radiologists first
detect ROIs of candidate shadows from the original
CT slices by using such variation information along
the body axis, and then diagnose the detected ROIs by
using more detailed information such as shape, size,
and CT values of shadows. This is the reason why
we use the variation feature T before the orientation
ones.

We have evaluated the effect of the new features
on the discrimination rate by using the ROC analy-
sis. Fig. 19 shows ROC curves by the conventional
method and proposed methods without and with the
variation feature T . By using the variation feature,
FP was about 20% when TP was 90% in the case of
the threshold Th = 0.206. On the other hand, FP was
beyond 50% without the feature T . In other words,
the discrimination rate FP was improved from about
50% to 20% under the condition TP=90%. Note that
the condition TP=90% is good enough for clinical ap-
plications of pulmonary nodules diagnosis. Thus, the
improvement clearly demonstrates usefulness of the
variation feature.

The fact that TP does not reach 100% in Fig. 19
might be a disadvantage of the proposed method with
the variation T . This is because a few nodule shad-
ows were regarded as non-nodule shadows by the
variation threshold. As a second opinion for clini-
cal use, however, robustness of the performance for
various conditions is more important than TP=100%
(TP≥90% is often good enough). Indeed, the perfor-
mance is robust for various threshold values and thus
it can be another advantage for clinical use.

In addition to this, as shown in Fig. 14, perfor-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FP

TP

With orientation features

With orientation features and
variation feature along body axis
(Th = 0.206)

Without orientation features

Figure 19: ROC curves.

mance of MTANN[7] was almost the same as that
of the proposed method without the variation feature.
Consequently, performance of the proposed method
with the variation feature can be superior to that of
the MTANN.

Finally, similar information to the variation T can
be obtained by 3-dimensional images reconstructed
from helical CT data [11]. However, calculation of
the variation T is very simple and thus less computa-
tionally expensive.

3.1 Toward further improvement
3.1.1 A new feature of circle-like shapes

Fig. 20 shows examples of the true positive and false
positive images under the condition TP=90% and
FP=20%. It seems that the TP and FP images can fur-
ther be distinguished by their shapes: TP images are
circle-like shapes while FP images are tree branch-
like shapes of blood vessels or more complex shapes.
The proposed orientation features do not work well
for these images, although they are very effective for
the greater part of images as described above.

As discussed in section 2.4.1, nodule images are
clustered well compared to non-nodule images clus-
tering. A wide non-nodule cluster region with high
variances can affect the FP results because the dis-
tance to the FP image may be overestimated even if a
image involved in a non-nodule cluster is close to the
FP image in the feature vector space.

Another reason for this may be that the features
are calculated for each orientation independently, but
their relation among the orientations is not considered
at least explicitly. For example, as illustrated in Fig.

(a) True positive images.

(b) False positive images

Figure 20: Examples of the true positive and false positive
images. True positive means that the discrimination result
of the CAD system is nodule and the it is really nodule
whereas the false positive means that the system’s result is
nodule, but it is non-nodule.
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Figure 21: Expected relation between different angles for
circle-like and tree branch-like shapes.

21, we can expect that average pixel values extracted
by the Gabor filter for all orientations are almost the
same for circle-like shapes, while the averages are dif-
ferent from each other for line segments or tree branch
shapes.

To extract such differences between orientations,
higher angle resolution may be necessary. However,
as shown in Fig. 22, the discrete Gabor filter function
is depended on the angle because of the small size of
ROI. In such case, the sums of pixel values extracted
the Gabor filter are different from each other even for
the circle-like shapes.
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Figure 22: Angle dependency of the Gabor filter outputs:
Extracted values of inner and edge pixels are different from
each other for various angles.
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(a) Improved Gabor filter output for a circle-like
shape.
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(b) Improved Gabor filter output for a tree branch-
like shape.

Figure 23: Extracted values of inner and edge pixels are
(a) almost the same for a circle-like shape, but (b) different
from each other for a tree branch-like shape.
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To overcome this problem, we conducted an edge
detection technique as preprocessing the original im-
ages, and then the output images of the Gabor filter
were binarized to eliminate the error caused by the
spacial resolution. By this improvement, as shown in
Fig. 23, average values of M = 8 orientations can be
almost the same for all orientations for the circle-like
shape, while for the branch-like shapes, the 8 average
values are different from each other depending on the
orientation of the branches.

3.1.2 Improved results

Fig. 24 shows the standard deviation s of 8 aver-
age values for the TP and FP images. The number
of TP and FP images were 72 and 76, respectively.
Note that the standard deviations s for TP images
are relatively small as expected for circle-like shapes,
whereas the deviations for FP images are relatively
large or widely distributed from large to small. Thus,
after the discrimination by the variation along body
axis and orientation features proposed in section 2,
the TP and FP images can further be distinguished by
the new feature s. In fact, FP=8% under the condi-
tion TP=90% when the algorithm classifies the im-
ages with s > 0.01 into non-nodules. In other words,
FP decreased from 20% to 8% under the condition
TP=90%.

Although the improvement achieved by the new
feature is a good result, what we would like to stress
here is that the combination of several effective fea-
tures and classification techniques might be the most
important for developing clinically useful CAD sys-
tems. The methods and the promising results pre-
sented in this paper may support the importance of
the combination.

Figure 24: The standard deviation s of M average values
for TP and FP images. s for TP images are relatively small
as expected for circle-like shapes.

4 Conclusions
In this paper, we have proposed a new method to de-
tect pulmonary nodules in X-ray CT images. From re-
sults in this study, we may claim that the proposed ori-
entation and variation features of nodules can be use-
ful for the pulmonary nodule diagnosis. The proposed
method is based on the radiologist’s diagnosis pro-
cess. That is, by using the variation feature of shad-
ows in the direction along the body axis, the method
first selects nodule candidates and then only for the
candidates, instead of all the images, the method fur-
ther discriminates nodules from non-nodules by using
the orientation feature details of shadow shapes. The
selection can thus contribute to less computational ex-
pense.
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