
A Protocol For Self-Organizing Peer-to-Peer Network
Supporting Content-Based Search

IGOR MEKTEROVIĆ, MIRTA BARANOVIĆ, KREŠIMIR KRIŽANOVIĆ

Department of Applied Computing
Faculty of Electrical Engineering and Computing, University Of Zagreb

Unska 3, 10000 Zagreb
CROATIA

igor.mekterovic@fer.hr http://www.zpr.fer.hr/zpr/people/igor/

Abstract: - For a peer-to-peer(P2P) content sharing network holding large amount of data, an efficient semantic based
search mechanism is a key requisite. Semantic based search should generate as little traffic (messages) possible while
achieving precision and recall rates comparable to those of correspondent centralized system. In this paper protocols
for self-organizing P2P networks that arranges links between peers according to peer's content are developed and
tested. Peers organize themselves into "semantic communities" without losing links to other semantic communities.
Proposed network requires no prior knowledge of the semantics of documents that are to be shared in the system.
Through simulations, it is shown that proposed network is resilient to membership changes and achieves high recall
rates.

Key-Words: - Peer-to-peer, Content-based search, Information retrieval, Algorithm, Semantic

1 Introduction
With the advent of Napster we have witnessed
extraordinary expansion of interest in peer-to-peer
content sharing systems both in general population and
in scientific community. With time, better and more
efficient protocols (networks) for content sharing have
been developed (e.g. Gnutella, eDonkey, BitTorrent).
However, widely adopted peer-to-peer protocols for
content sharing only allow for metadata searches (file
name, size, type, etc.). Peer-to-peer networks that enable
content-based searches are still a subject of active
research. The ones that have been developed so far are
usually divided into structured and unstructured. In
unstructured networks peers are unaware of content in
neighboring peers which coerces them into less-effective
query routing (e.g. Gnutella flooding) resulting with
poor network scalability. Structured P2P networks
overcome scalability issues but incur complex protocols
that are not suitable for highly transient peers typical for
P2P systems [13]. Also, structured P2P networks usually
have to maintain high-dimensional DHTs (Distributed
Hash Tables) that reflect semantic space of documents
stored in the system. Such DHTs may be inappropriate
for the newly arrived documents whose semantics
significantly differ from those of documents that were
taken into account during construction of DHT. Along
those lines, if we wanted to construct an initially empty
network and offer it to the general public to share
arbitrary documents we'd have no documents to sample
and construct the semantic space.

 That was the motivation for construction of P2P
network that allows for semantic-based queries without
prior knowledge of documents that will be stored
throughout the network. Self-organizing P2P network
that arranges links between peers according to their
content is proposed. In such a network peers organize
themselves into "semantic communities". Every peer
represents its content with a set of vectors and content
likeness is determined as vector likeness. It is assumed
that peers (i.e. users) sharing documents of certain topic
will most likely search for similar documents (e.g.
someone who is sharing papers in the field of computer
science is more likely to search for similar papers than
e.g. biology papers). Of course, it is entirely possible for
user to search for something semantically completely
different – therefore it is important not to lose links to
other semantic communities.

2 Problem Formulation
Textual documents can be represented and stored as data
objects in P2P system. More precisely, a document is
represented as an n-dimensional vector, namely
Semantic Vector or Feature Vector. Each element in the
vector represents the importance of a term in the
document, usually computed using TF*IDF (term
frequency * inverse document frequency) scheme [1]. A
term is considered more important within the document
if it is used often in that document (TF) and used seldom
in other documents in the collection (IDF). Such term is
important because it differentiates one document from

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Igor Mekterović, Mirta Baranović, Krešimir Križanović

ISSN: 1790-0832 674 Issue 5, Volume 5, 2008

the others. During the search process, documents are
retrieved according to the similarity between the query
vector (which can also be a full-blown document) and
document vector. Prevailing measure of similarity is the
cosine of the angle between the vectors. If the vectors
are normalized, cosine of the angle can be computed as
the inner of product of two vectors:

 ∑
=

⋅=
⋅

=
n

i
ii dq

DQ

DQ
DQ

1

),cos(
�

 (1)

This model, in which documents are represented as
vectors, is referred to as Vector Space Model (VSM).
VSM suffers from synonymy, polysemy and noise in the
documents. LSI (Latent Semantic Indexing) [2]
technique has been proposed to overcome these issues.
LSI uses SVD (singular value decomposition) [1] to
transform a high-dimensional VSM vector to a lower-
dimensional semantic vector by projecting it into a
smaller, semantic, subspace. In summary, both VSM and
LSI represent documents as vectors and use cosine of the
angle between the vectors to represent their similarity.
 Searching for a document in a P2P environment could
be done in Gnutella fashion by flooding the
neighborhood with query vector, however that approach
has been proven to suffer from scalability issues. Also,
since documents are randomly populated (with respect to
semantics) it is difficult to achieve good retrieval
properties (precision and recall). Efforts to improve the
search efficiency have led to constructing structured
overlay networks (e.g. CAN [3], CHORD[4],
Tapestry[5], Pastry[6]). These systems support hash-
table interface of put(key, value) and get(key) and are
extremely scalable as they resolve lookups in log(n)
routing hops (for a network of n nodes). On the other
hand, they support only exact-match queries. Since then,
more sophisticated structured systems have been
developed (e.g.[7], [8], [9]) that are both scalable and
allow for semantic queries. However, being structured,
they all have to form a semantic space, probably (not all
papers explain it) by sampling documents that are
expected to be shared in the P2P network. Although they
work well under such conditions, we believe that this
presents a problem in the case when there is no prior
knowledge of semantics of documents that will be
shared throughout the network. In this article the
possibility of creating a network that will not require
prior knowledge of content to be shared is explored.

3 Related work
In general, there are two strategies for performing search
in P2P network: (a) blind search where nodes "blindly"
propagate messages to, hopefully, sufficient number of
other nodes and (b) informed search where nodes use
local information about neighboring nodes to route

messages towards (estimated) relevant nodes. Gnutella is
the best-known blind search method. Other blind search
methods include Modified-BFS [14] where peers
randomly choose only a ratio of their neighbors to
forwards query to, Iterative Deepening [16] and Random
Walks [15]. The latter two work well only when it is not
required to find all relevant documents in the network,
but, typically, only one. That makes them unsuitable for
the problem studied here. Informed search methods
include APS [17], LI [16], RI [18] and PlanetP[19]. APS
builds upon an idea of random walks but instead of
walks being random it uses probabilistic forwarding
based upon statistics that is accumulated in time. In LI
every node indexes the content of neighboring nodes
(within some radius r) and answers the queries on their
behalf. This approach is not well suited for dynamic
environments. RI assumes that all documents fall within
a number of thematic categories and each node stores an
approximate number of documents that can be reached
through each of the outgoing links and routes queries in
accordance. This approach works well only for some
applications. In PlanetP nodes use Bloom filters to create
compact representations of their inverted indexes and
then diffuse them throughout the community using
gossiping algorithm. Since it doesn't scale well, PlanetP
is suitable only for small and mid size networks. A
thorough overview and comparison of unstructured P2P
search methods can be found in [20].
Structured networks (e.g. [7], [8], [9]) use a different
approach and try to combine the advantages of
structured systems in order to achieve better search
efficiency and scalability properties. However, they tend
to be significantly more complex which complicates
their deployment in dynamic environments. Also, they
require some prior knowledge of the semantic of the
data to be shared throughout the network.

4 Self-organizing network
Both pure (Fig.1) and hybrid (Fig.6) P2P networks are
presented.
4.1 Pure network
Besides sharing content, every node in the pure
network routes messages through the overlay network
and exchanges overlay network maintenance
messages (Fig.1). That is, there is no hierarchy of
nodes or nodes performing special functions.

 Fig.1 Pure network of 10 nodes

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Igor Mekterović, Mirta Baranović, Krešimir Križanović

ISSN: 1790-0832 675 Issue 5, Volume 5, 2008

Every node represents its content (documents) with
semantic vectors (VSM). Vectors can be computed
using global statistics that, as demonstrated in [10],
doesn't have to be precise. To reduce the number of
vectors similar documents are clustered together and
represented with cluster centroid. Number of clusters
(or documents per cluster) is arbitrary – it can be tuned
over time or even left up to the user to decide (e.g. a
user could mark the spot on the dendrogram) although
it shouldn’t be too high (this will be a topic for future
research). Such set of vectors representing cluster
centroids is called node description. In order for a
node to join the network it has to connect to existing
node(s). Since there is no central authority a node has
to find those nodes on its own. In our research new
nodes were connected to random existing nodes in the
network, and in the real-word applications some
already existing techniques (like GWebCaches in
Gnutella) could be employed. Each node maintains
two sets of links: family links and others links. Family
links are used as a connection to other nodes with
similar description and other links are used as a
connection to communities of dissimilar nodes. Figure
2 shows separately other links, family links and all
links for a network of 50 nodes and 3 semantically
very distant communities.

Fig.2 other links + family links = all links (50 nodes)

 Initially, each node only has other links. Node will
start to populate its family links collection when it
receives answers to its queries.

4.1.1 Query routing
When a node wants to search for a content in the
network it creates a QueryMessage and routes it
through the network according to algorithm in Table 1.
QueryMessage consists of:
• unique message id
• source peer id (node who originated the message)
• previous peer id (node that forwarded this message)
• query vector (describing sought content)
• similarity threshold (for determining the results)
• pair of bloom filters

Two bloom filters are used to reduce the number of
messages that are transmitted through the community of
nodes that match the query (based on the similarity to
the query vector). Fig.3 shows a query routing scenario
without the use of bloom filters in a small community of

interconnected nodes (links are not drawn for clarity).
Since every node maintains a list of processed queries,
all messages carrying already processed queries are
dropped. Dropped messages are drawn with a dotted
line. A scenario is shown in which every node can
forward maximum two messages and node f never gets
the message because nodes d and e are unaware that
nodes c, e and d have already gotten the message. To
improve message routing two bloom filters [12] are
added to the message. Whenever a node forwards the
query it embeds into the message node ids (hashes) of
all nodes that it will be sending the message to.
Accordingly, when a message is forwarded bloom filter
is checked to determine whether a node already received
the message. Fig. 4 shows the worst case query routing
scenario with the use of single bloom filter. Associated
table details information about visited nodes that is
carried in the correspondent message (e.g. bd:bcde
means that message from node b to node d has nodes
b,c,d and e defined as visited nodes). Of course, the
probability of false positives increases as the number of
inserted elements increase. We've split bloom filter into
two bloom filters: they are populated one after another
(with possibility of false positives below 8%) and when
the second bloom filter is full the first one is cleared
assuming that the query has "moved away" from the
area recorded in the first bloom filter (this doesn't have
to be true). When communities with 100-400 nodes, 20
links per node and maximum forward count 10 were
flooded it was found that two 100-bit bloom filters have
reduced the number of messages by more than 50%.

Fig.3. Routing without bloom filter, MAX_FW_CNT=2

Fig.4. Routing with bloom filter, MAX_FW_CNT=2

a

b

c

d

e

f

a

b

c

d

e

f

ab: bc
ac: bc

bd: bcde
be: bcde
cd: bcde
ce: bcde

df: bcdef
ef: bcdef

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Igor Mekterović, Mirta Baranović, Krešimir Križanović

ISSN: 1790-0832 676 Issue 5, Volume 5, 2008

 As shown in Table 1, node forms a descending list of
other nodes based on their similarity to the query vector.
Similarity threshold is embedded in the message and, if
the query returns too few results, could be adjusted by
user (application) to broaden the search..
routeQuery(qMsg)
 FwList = getFwList(qMsg)
 IF qMsg.notDoneHopping()
 qMsg.setNodesVisited(FwList)
 qMsg.setPreviousNode(this)
 forward query to every node in the FwList
 END IF

getFwList(qMsg)
 FW = getRankedNodesDesc(qMsg, qMsg.sim)
 IF FW.size > MAX_FW_CNT
 FwList = pick random MAX_FW_CNT
 peers from FW
 ELSE IF FW.size < MIN_FW_CNT
 qMsg.decTTL()
 FW = getRankedNodesDesc(qMsg.query, 0)
 FwList = get first MIN_FW_CNT peers from FW
 ELSE
 FwList = get all peers from FW
 END IF
 RETURN FwList

getRankedNodesDesc(qMsg, simTreshold)
 FO = Family U Others
 FW = Ø
 FOREACH currNode IN FO
 IF currNode≠qMsg.src AND currNode ≠qMsg.prev
 AND qMsg.notVisited(currNode)
 IF curr.emptyDesc
 FW = FW U (curr, 0)
 ELSE IF qMsg.queryVector.getSimilarity(curr)
 ≥ simTreshold
 FW = FW U (curr,
 qMsg.queryVector.getSimilarity(curr))
 END IF
 END IF
 END FOREACH
 FW.sortDescending()
 RETURN FW

Table 1. Routing algorithm for pure network
When a node has finished evaluating similarity to the
query vector, it compares the query vector both to the
family links and other links collection. That way, if a
query has reached targeted semantic community
probably only nodes from the family links collection will
be used to forward the query (depending on the threshold
and the community a query could even be flooded
through the community). On the other hand, if the query
is somewhere outside the targeted community then
probably a most similar node will be found in the other

links collection – hopefully that link will lead to the
desired community. If none of the known nodes satisfies
the threshold requirement then a minimum forwarding
rule is activated: query is forwarded to MIN_FW_CNT
(e.g. MIN_FW_CNT=1) nodes disregarding the
similarity threshold but message's TTL (time to live)
attribute is decreased by one. Thus, a message has only
TTL hops to reach the targeted community (probably
through a series of other links) but once inside the
community TTL value doesn't change. On the other
hand, if a node computes that more than
MAX_FW_CNT links (nodes) meet the threshold
requirement then a maximum forwarding rule is
activated: query message is forwarded to randomly
picked MAX_FW_CNT nodes from the set of nodes that
satisfy the threshold requirement. Initially, message was
forwarded to MAX_FW_CNT most similar nodes but
that strategy has been shown to favor only the most
similar nodes ignoring the less similar nodes that also
meet the threshold requirement thus reducing the recall
Besides routing (forwarding) query message every node
evaluates its collection of documents against query
vector. If any of the documents meets the threshold the
node sends a QueryResponse message to the node that
originated the query. QueryResponse message carries the
following information:
• query message id
• responder peer id (peer who responds to the message)
• responder peer description (cluster centroids)
• response vectors (documents that match the query)

Every time a node receives a QueryResponse message it
updates its family links collection with the responder's
node description: nodes are sorted descending based on
the similarity with its own description. Family links
collection size is limited and if it exceeds the maximum
then a randomly picked node from the bottom N percent
(e.g. 10%) of the list is removed. Node maintains its
other links collection using MeetTheOthers message that
it emitts from time to time. MeetTheOthers message is
randomly forwarded through the network.
MeetTheOthers message has:
• source peer id
• TTL (decreased with every hop)
• visitedNodes[TTL] array

When a MeetTheOthers message is instantiated, a TTL
value is randomly chosen from a predefined interval.
Since this is a small number of hops an array of visited
nodes is carried by the message to avoid reaching a
same node twice. Every node that receives
MeetTheOthers message responds with NodeDescription
message (carrying only its own description) to source
node and then, if TTL is still greater than zero, forwards
received message to only one randomly chosen node
(that hasn't been visited) from the other links collection.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Igor Mekterović, Mirta Baranović, Krešimir Križanović

ISSN: 1790-0832 677 Issue 5, Volume 5, 2008

Upon receiving NodeDescription message a node
updates its other links collection and if it exceeds the
maximum size removes randomly chosen old entry.
Node description is not taken into account (unlike with
family links collection) when a node is removed from
other links collection – node descriptions of other nodes
are only used in the process of query routing.
 In the event of node failure, nodes simply discard the
links with the nodes that don't respond to their messages
and other nodes replace the disconnected ones.

4.1.2. Membership changes
Since P2P networks are inherently transient it is
important for them to handle peer join and peer leave
(or fail) operations gracefully. When a peer joins a
pure network using some bootstrap node (in our
simulations a randomly chosen node is used) it simply
emits a MeetTheOthers message with TTL equal to the
other links collection size. That way, new node gets
"wired" into the network and gradually forms family
links i.e. positions itself within the community. When
a newly arrived node receives an answer to its query it
considers a replier to be family and sends its own
description to the replier (if it doesn't already know it
– replier includes a description version in his reply).
That way existing nodes form their links to the newly
arrived node. Pure network shows resilience to peer
failures. A node detects a "dead" link when it fails to
send a message to another node. In that case the node
simply deletes dead link from the collection and
resends the message to someone else. If, by doing so,
the number of links decreases below a certain
threshold node emits a MeetTheOthers message. Fig. 5
shows network properties when 60% of the nodes
leave the network: between iterations 10 and 20, 3000
nodes leave the network. In one iteration all nodes in
the network query for a content similar to their. Recall
(avg_nodes_recall) is defined as a ratio of retrieved
relevant documents and relevant documents in the
entire network. Average relative message count
(avg_rel_msg_count) is defined as query message
count divided by network size. Average percentage
reached (avg_perc_reached) is the average percentage
of nodes reached during a query. Maintenance
message count (avg_mntnc_msg_count) is absolute
average number of maintenance messages (it is shown
on the same graph to conserve space, e.g.
avg_mntnc_msg_count for 1st iteration is 21 not 21%).
Fig. 5 shows no significant improvement in recall
when peers leave the network (and send messages of
notification to their neighbors) over the case when
peers simply fail. Moreover, nodes that leave incur
slightly more traffic. That is why we've decided that
in pure network protocol nodes do not inform

neighbors of their departure, i.e. all departing nodes
are behaving as if failing.

Fig. 5 Effects of 60% nodes failing/leaving the pure

network

4.2. Hybrid network
In order to reduce the traffic (and increase scalability)
Gnutella designers have switched from the initial pure
(version 0.4) to hybrid (version 0.6) architecture.
Accordingly, we've developed hybrid self-organizing
network that distinguishes two kinds of nodes: leaf and
ultra nodes. The idea is to put more capable (in terms of
bandwidth, availability and processing power) nodes in
charge of routing the query messages and network
maintenance messages. Such nodes are called ultra
nodes. Every ultra node maintains connections to a
certain number of leaf nodes. Leaf nodes send queries to
their ultra node and have no role in query routing
process. However in our protocol leaf nodes do
communicate with other ultra nodes in attempt to cluster
themselves in the semantic communities. Fig. 6 shows a
hybrid network with 4 ultra nodes, each attending to 4
leaf nodes.

Fig. 6 Hybrid network with 4 ultra and 16 leaf nodes

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Igor Mekterović, Mirta Baranović, Krešimir Križanović

ISSN: 1790-0832 678 Issue 5, Volume 5, 2008

4.2.1 Bootstrapping
The network is setup by linking few ultra nodes. Other
ultra nodes attempting to join the network have to find
an existing ultra node(s) to link with. The process is
analogous to the one in the pure network. Leaf nodes
attempt to join the network by sending a
JoinRequestMessage (Fig. 7) carrying node description
to an ultra node. If the ultra node already maintains
maximum leaf connections it replies with a negative
JoinReply message carrying a list of alternative ultra
nodes (e.g. u2) the leaf can then try to join. Upon
receiving a negative reply the leaf node tries to join
another ultra node in the list. If the ultra node hasn't
reached maximum number of leaf connections it replies
with a positive JoinReply message and adds the leaf
(node description) to its leaf links collection.

Fig. 7 Leaf node joining the network

4.2.2 Query routing
In hybrid architecture only ultra nodes are responsible
for query routing thus shielding the leaf nodes. A leaf
node creates a query message and sends it to its ultra
node. From that moment on ultra nodes subnet functions
analogous to the pure network and routes the query
according to the similarity of the known (family and
other) ultra nodes. Besides forwarding the query to other
ultra nodes ultra node may forward the query to its leaf.
Every ultra node has node descriptions of its leaf nodes
and if it finds that a leaf node description is similar
enough to the query vector, it forwards the message to
that leaf node. Leaf node further examines the query
message and if the query matches any of its documents it
replies directly to leaf that originated the query. In
addition to response vectors QueryResponse message
carries node description of the responder's ultra node
(ultra node description consists of leaf nodes
description). This information will be used to cluster
similar leafs together.

4.2.3 Leaf migration
Every leaf keeps track of ultra nodes and number of
results it received from their leaves. If a leaf is in the
right community (after a significant number of queries)

the number of results it received from the best other ultra
node should be comparable to the number of results it
received from its own ultra node. That would mean that
neighboring (having the same ultra node) leaf nodes are
replying to some of its queries. Otherwise, if node is in a
wrong community, it will receive most of its replies
from leaves that are not neighboring. In that case, after
the leaf node has concluded that there is a better ultra
node available (semantically more fitting), leaf node
sends a TransferRequest message (message 1 on Fig. 8)
to the ultra node whose leaves are responsible for most
results providing that it cannot be found in the negative
transfer attempts cache. Every leaf nodes maintains this
cache of ultra node ids that returned negative
TransferReply messages so that it wouldn't subsequently
send the same TransferRequest messages to same ultra
nodes (this cache is periodically cleared).

 Fig. 8 Leaf transfer with replacement leaf

Ultra node will approve the transfer if:
(a) it hasn't reached its maximum leaf collection size
(b) it has reached its maximum leaf collection size but
there is a leaf in the collection that is semantically less
befitting to that community than the requesting leaf (we
call it the replacement node).
In the latter case, ultra node removes the replacement
leaf from its collection and sends a TransferExchange
message (message 2 on Fig.8) to requester's ultra node
(this information is included in the transfer request
message) informing ultra node to remove the requester
leaf from its collection and add replacement leaf instead
(in Fig. 8 – remove l4 and add l3). In the former case (a)
TransferExchange message doesn't include the
replacement node. In both cases, after receiving
TransferExchange message, ultra node responds to
requester leaf node with a positive TransferReply
message and adds the requester leaf to its leaf collection.
Requester leaf updates its ultra node link to the new
node. If the requester's old ultra node received
TransferExchange that included replacement node, it
sends a JoinMe message to the replacement node
(message 4 in Fig. 8) ordering the replacement node to
update its ultra node (in Fig. 8 replacement node sets u2
as the new ultra node). When a leaf node changes its
ultra node it resets query response count statistics.
 If none of the two conditions are met (a and b) ultra
node responds to the requester leaf with a negative
TransferReply message. In that case, only messages

u1 u2

l4 l1 l2 l3 l5

 2

 3 4
 1

u1 u2

l3 l2 l4 l5 l1

l1

u1 u2

1:JoinReq

2:JoinReply
 (neg, u2)

 3:JoinReq

 4:JoinReply
 (positive)

l5 l2
l3

l4

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Igor Mekterović, Mirta Baranović, Krešimir Križanović

ISSN: 1790-0832 679 Issue 5, Volume 5, 2008

marked 1 and 2 in the Fig.8 are exchanged. Leaf node
that receives negative TransferReply message sets the
response count of that ultra node to zero and stores its id
in the negative transfer attempts cache.

4.2.4 Load balancing
This leaf migration strategy leads to clustering of similar
nodes and the more similar nodes there are at some ultra
node, the more it becomes attractive for other similar
leaf nodes to transfer there. This way, some ultra nodes
begin to accumulate more and more leaves (until they
are full) and other ultra nodes lose leaves as they migrate
to other ultra nodes (stage B in Fig.9).

Fig.9 Leaf migration and load balancing

To that purpose a set of messages that will allow ultra
nodes to balance the load (leaf connections) is defined.
Following variables are defined:
• M – maximum number of leaves
• Lf – number of leaves at balance source node
• Lb – number of leaves at balance destination node
• p – percentage of leaves that balance source node

gives away (we use p = 50%)
• T – threshold (if an ultra node has more or equal to

M*T leaves then it may be considered as balance
source node). We've set threshold at 70%.

When an ultra node has too few leaves (less than Lb) it
sends a BalanceRequest message to a neighboring ultra
node. Lb is determined from the equation (which states
that balance destination node should not have more than
T*Lf leaves after the balancing process):
 Lf*p + Lb <= T*M (2)
which, if Lf is set to M as the worst case, evaluates to:
 Lb <= M*(T-p) (3)
Therefore, when an ultra node falls down to less than
M*(T-p) leaves (i.e. in our simulations less than 20% of
M) it starts to send BalanceRequest messages. Related to
this is the estimation of the similarity factor that a leaf
node uses to determine whether to apply for transfer: if a
leaf node finds that another ultra node's leaves provide
more results than similarity factor times number of
results its current ultra node provided, it then applies for
transfer. To prevent leaves that have just been balanced
to reapply for the old ultra node (or another, more
populated one) similarity factor (Sf) is estimated as:
 Sf *(Lf*p -1) > M (4)
stating that a leaf that has just been balanced should be
satisfied with a number of results it recieved from its

new ultra node (Lf*p-1) even though some other full
ultra node is providing more results (M). From equation
(4) we get:
 Sf > 1 / (T*p - 1/M) (5)
On the other hand, setting Sf too high would slow up the
process rendering network inert. That's why we define
[Sfmin, Sfmax] interval and every node starts with a
minimum value of Sf (making it more mobile) that is
incremented on every transfer until it reached Sfmax
(leaf nodes become less mobile as they "grow old"). We
use interval [1,7]. Setting low starting factor produces
more initial traffic but also facilitates faster node
clustering.
 Balance initiating node will first use family links to
send a message and, if all of them fail, start to use other
links collection. Messages are sent one by one and
targeted ultra node id is stored in the cache that is being
emptied once all links have been exhausted. If an ultra
node that received BalanceRequest message (marked
with 1 on Fig. 10) doesn't have enough leaves, it
forwards the request (message 2 on Fig. 10) using
random family link (bloom filter is used). If a message
finally reached ultra node that qualifies as balancing
source, a BalanceReply message is sent (massage 3 on
Fig. 10) to the requester with a list of nodes that can be
reassigned. Balancing source doesn't remove leaves from
its collection yet, because it is not certain how will
requester node proceed (it is possible that, due to
latency, requester node has more than one balance
request active and will not be in position to reassign all
of the leaves offered, or requester may have
disconnected in the meanwhile, etc.).

Fig. 10 Ultra node load balancing process

When the requester node receives the balance reply
message it sends JoinMe messages to proposed leaves
(messages 4 and 5 on Fig. 10). Upon receiving JoinMe
messages leaf nodes update their ultra node link and
send LeafLeft message (messages 6 and 7 on Fig. 10) to
the old ultra node. When an ultra node receives LeafLeft
message, it deletes the respective link from its leaf links
collection.

4.2.5 Voting process – forming family links
Ultra node forms its family links based on the votes it
receives from its leaves. Leaves keep track of number of
results they've received from other ultra nodes' leaves.
Leafs periodically compile a list of N ultra nodes that

u

 1

 2

 3
 4 5

 6 7

u

u

u

u

u

u

u

A B C

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Igor Mekterović, Mirta Baranović, Krešimir Križanović

ISSN: 1790-0832 680 Issue 5, Volume 5, 2008

have been responsible for the majority of results and, if
the number of results is bigger than defined minimum
size (to reduce the traffic), send their votes via
VoteMessage to their ultra node. Upon receiving their
leaves' votes ultra nodes are updating their routing tables
according to the algorithm in Table 2.

updateRoutingTable(voteMsg)
 update new swap list with votes from voteMsg
 sumSwap = sum of all votes from new swap list
 sumFmly = sum of all votes from current (family) list
 IF (voteCounter>VOTE_CNT_THRESHOLD)
 AND (sumSwap>=MERGE_TRSHLD*sumFmly)
 IF (family list is not empty)
 IF (old family list is not empty)
 subtract the old family list from the family
 END IF
 old family list = family
 END IF
 add new swap list into family list
 clear new swap list
 END IF

Table 2 Routing table update algorithm
Since family list is a finite sorted list (of ultra node ids
and numbers of results) it would be wrong to add to that
list every time a vote arrives – that would make it
impossible for a new ultra node to enter the list because
their votes couldn't compare to the votes other nodes
have gathered throughout the entire "voting history". To
ensure fairness we keep track of three lists: current
family list, old family list (a snapshot of previous family
list) and new swap list that is accumulated until it is
ready to merge into the curent family list. This way, old
votes gradually leave the list and new ones have a
chance of entering. When ultra nodes update their family
list they take into account one extra rule: every leaf has
to have at least one "representative" in the family list.
That is, all ultra nodes that are on top of leaves's list are
included in the family list. Remaining positions in the list
are populated by sorting ultra nodes (result counts) in
descending order. This extra rule is introduced to
improve search efficiency in those nodes that are,
hopefully temporarily, outside their communities. This
way, their ultra node has a direct link to one of the ultra
nodes of the desired community. In opposition, if this
rule wasn't employed, such leaf nodes would get
outvoted and lose short path route to their communities.
 Aside from the voting process, hybrid network's ultra
nodes subnet behaves analogous to the pure network in a
sense that it maintains family links collection and other
links collection and routes queries according to the same
principle. Fig. 11 shows a hybrid network consisting of 3
semantically very distant communities with 2 family
links, 3 other links and 10 leafs per ultra node after 100
iterations (100 queries by each node).

Fig.11 family links + other links = all links (100 nodes)

 If a leaf node fails (disconnects) in hybrid network,
its ultra node simply discards the corresponding link. If
an ultra node disconnects its leaves repeat the
bootstrapping process and (since ultra nodes from their
semantic community are probably on top of their list)
hopefully find their new ultra nodes within the same
community.

4.2.6 Membership changes
When a node joins hybrid network it performs the same
steps as when bootstrapping. The only prerequisite is
that the joining node "knows" some existing node (we
use randomly selected node in our simulations).
Departure of leaf nodes doesn't present a problem for
other nodes – if they leave they inform their ultra node
of their departure and if they fail ultra node detects it
eventually (when it tries to send a message to the leaf
node) and removes the link from the collection. The
same can't be said for the ultra nodes. When an ultra
node leaves the network all its leaf nodes have to find
another ultra node. Leaves attempt to join ultra nodes in
the order of response counts they've provided in the past
which improves their chances to remain within the right
community. It is better when ultra nodes leave and
inform their leaf nodes because then leaf nodes will
immediately try to join other ultra peer. Otherwise, a leaf
node will detect that it's ultra node is dead when it tries
to send a query message to it. In that case, that query
will be recorded as failed query and user will have to
wait until it reconnects to some other ultra node. Fig. 12
shows the network properties when approximately 60%
of nodes fail or leave in a short period. Failing (leaving)
nodes are picked at random - therefore both ultra and
leaf nodes are failing at random. Top chart in Fig. 12
shows net size with separately marked ultra node count
and leaf node count (and their sum – net size). It is
evident that, unlike pure network, failing ultra nodes are
degrading recall considerably more than leaving ultra
nodes. That is why, within hybrid protocol, we
differentiate these two events and retain
UltraNodeMessage in the protocol. In both cases, recall
improves after node departures stop and returns to its
original level.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Igor Mekterović, Mirta Baranović, Krešimir Križanović

ISSN: 1790-0832 681 Issue 5, Volume 5, 2008

Figure 12. Effects of 60% nodes failing/leaving the

hybrid network

5 Experimental results
The experiments were conducted using PlanetSim – an
overlay network simulation framework [11]. Within the
framework we've implemented Gnutella, Pure and
Hybrid protocol. Data set consists of 982 articles from
six categories: cooking recipes, Greek mythology,
basketball players' biographies, musicians' biographies
and programming code (SQL and C code gathered
through an application for testing students). Retrieval
results are compared to the results that would be
retrieved for the same query in a centralized
environment, i.e. for a given query we compute the
recall as:

. 2 .
:

. .
= no of docs retreived in P P env

recall
no of docs retreived in centralized env

 (6)

meaning that, every time a new query is created during a
simulation, all active peers are polled in iterative fashion
and the number of documents that match the query is
stored so that it can be compared to result set retrieved
using P2P search. Our simulations are currently
restrained to maximum 104 nodes due to our hardware
limitations. Fig. 13 shows average recall comparison in
static conditions when net size varies from 102 to 104
nodes. Gnutella 7/17 means that each node maintains 17
links and forwards the query to 7 randomly chosen

nodes. Pure 5/5/5 means that each node in Pure network
maintains 5 family and 5 others connections and
forwards the query to maximum 5 nodes. Hybrid 5/5/5
1:15 means that every ultra node in hybrid network
maintains 5 family and 5 others connections and
forwards the query to maximum 5 ultra nodes and that
every node has maximum 15 leaves while every leaf is
connected to (maximum) 1 ultra node.

Fig 13. Average recall comparison

As shown, both Pure and Hybrid protocol outperform
Gnutella protocol as the size of the network increases
while producing significantly less messages (Fig. 14 –
note the log scale). Pure network's moderate results can
be explained with small number of known nodes (5+5,
see Fig. 16).

Fig 14. Average query message count

Fig. 15 shows the average message count in more detail,
when queries are broken down into categories according
to the number of documents that match the query.

Fig.15 average message count by relevant documents

count categories
Notice that query message count is practically constant,
especially for the hybrid protocol.
Fig. 16 shows influence of family and others collection
sizes on the recall in both networks. Collection size

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Igor Mekterović, Mirta Baranović, Krešimir Križanović

ISSN: 1790-0832 682 Issue 5, Volume 5, 2008

shows influence only on pure network at these network
sizes (below 104). This is logical because ratio of query
routing nodes between these two networks is 1:15.

Fig. 16 Influence of family and others collection sizes on

the recall

Fig. 17 Hybrid network 15/15/5 1:15 in a very dynamic

environment
Finally, Fig. 17 shows hybrid (15/15/5 1:15) network
properties in a very dynamic environment: node
connections for 5000 nodes are formed during first ten
iterations and then, between iterations 10 and 40,
approximately 3000 new nodes join, 1500 leave and
1500 fail. For instance, at iteration 31, there are already
more new nodes (both ultra and leaf nodes) than original
nodes – the ones used to setup the network. It is apparent
that, during such rapid membership changes, recall drops

(to approximately 80%) and maintenance messages
count increases (as the new nodes position themselves
within the network). Lower recall rate is caused by the
new, unsettled nodes. This is apparent because, as soon
as the membership changes stop, recall and precision
increase since new nodes have positioned themselves
and there are no additional new ones to diminish the
recall. Precision is here defined as:

.
:

.
= no of nodesthat should havebeenreached

nodes precision
no of nodesreached

 (7)

5 Conclusion
Content-based search is a challenging problem in P2P
environments. Many researches have proposed
structured P2P networks that organize routing structures
according to the underlying semantic space and use
some kind of distributed hash table functionality to
achieve fast (and scalable) retrieval. We focus our
attention on situations when there is no prior knowledge
of the semantics of data. To that purpose, a set of
messages and algorithms for pure and hybrid self-
organizing P2P network has been proposed. In the
proposed network, nodes organize themselves according
to the semantics of data they share: similar nodes are
clustered into semantic communities. This way most
queries will not have to travel outside their communities.
We find pure network simpler, more robust and less
susceptible to obstruction while hybrid network reduces
query network traffic and therefore scales better.
Experiments show that pure network handles node
failures slightly better than hybrid network, but we find
hybrid superior in other aspects. Most notably, hybrid
network achieves better recall than pure network with
roughly 2 or 3 times less messages. Both networks are
simple and robust which is important in highly transient
P2P environments. Proposed networks cannot guarantee
logarithmic scaling of query resolving messages typical
for the structured P2P systems. Instead, they generate
traffic that depends on sought community size (and
query similarity threshold) and are actually independent
of other communities' sizes. For instance, in our
experiments hybrid network consisting of 5000 nodes
achieves 94% recall with average 16,24 messages that
reach approximately 0,33% of the network. When
analyzing in detail, we find that recall is mainly
diminished by nodes that are searching for rare content
(e.g. there are only 1 or 2 matching documents in the
whole network). Such queries often fail because there
are not enough nodes in the network to form a
community. We expect that nodes with such distinct
semantics will always present a problem due to the very
nature of P2P systems where "strength lies in numbers".

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Igor Mekterović, Mirta Baranović, Krešimir Križanović

ISSN: 1790-0832 683 Issue 5, Volume 5, 2008

Future work includes tuning of the system's performance
as well as dealing with some real world aspects of the
protocol like malicious peer activities and network
obstruction. Ultimately, we hope to make network
available to general population.

References:

[1] Berry M., Drmac Z., Jessup E., Matrices, vector

spaces, and information retrieval. SIAM Review,
Vol. 41 No. 2, 1999, pp. 335–362.

[2] Deerwester S., Dumas S., Furnas G., Landauer T.,
Harsman R., Indexing by latent semantic analysis, J.
American Society for Information Science, Vol. 41,
1990, pp. 391-407.

[3] Ratnasamy S., Francis P., Handley M., Karp R.,
Shenker S., A scalable content-addressable network,
In Proceedings of the ACM SIGCOMM, 2001, pp.
161-172.

[4] Stoica, I., Morris, R., Karger, D., Kaashoek, M. F.,
Balakrishnan, H., Chord: A scalable peer-to-peer
lookup service for internet applications, In
Proceedings of the ACM SIGCOMM, 2001

[5] Zhao B. Y., Kubiatowicz J., Joseph A., Tapestry: An
infrastructure for fault-tolerant wide-area location
and routing, Technical Report UCB/CSD-01-1141,
2001.

[6] Rowstron A., Druschel P., Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer systems. In Proceedings: IFIP/ACM
International Conference on Distributed Systems
Platforms (Middleware), 2001, pp. 329-350.

[7] Tang C., Xu Z., Dwarkadas S., Peer-to-peer
information retrieval using self-organizing semantic
overlay networks, In Proceedings of ACM
SIGCOMM, 2003, pp. 175–186.

[8] Li M., Lee W., Sivasubramaniam A., Semantic small
world: An overlay network for peer-to-peer search,
In Proceedings of the 12th IEEE International
Conference on Network Protocols, 2004, pp. 228-
238.

[9] Tang C., Dwarkadas S., Xu Z., On scaling latent
semantic indexing for large peer-to-peer systems, In
Proceedings of the 27th annual international ACM
SIGIR conference on Research and development in
information retrieval, 2004, pp. 112-121.

 [10] Gravano L., Molina H.G., Tomasic A., GlOSS:
text-source discovery over the Internet. ACM
Transactions on Database Systems, Vol. 24, No. 2,
1999, pp. 229-264.

[11] García P., Pairot C., Mondéjar R., Pujol J., Tejedor
H., Rallo R., PlanetSim: A New Overlay Network
Simulation Framework, Software Engineering and
Middleware, 2005, pp. 123-136.

[12] Bloom B., Space/Time Trade-offs in Hash Coding
with Allowable Errors, Communications of the
ACM, Vol.13, No.7, 1970, pp. 422-426

[13] Chawathe Y., Ratnasamy S., Breslau L., Lanham
N., Shenker S., Making Gnutella-like P2P Systems
Scalable. In Proceedings of ACM SIGCOMM, 2003,
pp. 407-418.

[14] Kalogeraki V., Gunopulos D., Zeinalipour-Yazti
D., A Local Search Mechanism for Peer-to-Peer
Networks, In Proceedings of the eleventh
international conference on Information and
knowledge management. ACM Press, 2002, pp. 300-
307.

[15] Lv C., Cao P., Cohen E., Li K., Shenker S., Search
and Replication in Unstructured Peer-to-Peer
Networks, In Proceedings of ICS 2002, ACM Press,
2002, pp. 84-95.

[16] Yang B., Garcia-Molina H., Improving Search in
Peer-to-Peer Networks, In ICDCS, 2002., pp. 5-14.

[17] Tsoumakos D., Roussopoulos N., Adaptive
Probabilistic Search for Peer-to-Peer Networks, In
3rd IEEE Intl Conference on P2P Computing, 2003.,
pp. 102-109.

[18] Crespo A., Garcia-Molina H., Routing Indices for
Peer-to-Peer Systems. In ICDCS, 2002.

[19] Cuenca-Acuna F.M., Peery C., Martin R.P.,
Nguyen T.D., PlanetP: using gossiping to build
content addressable peer-to-peer information sharing
communities, In Proceeding of the 12th International
IEEE Symposium on HPDC, 2003., pp. 236-246.

[20] Tsoumakos D., Roussopoulos N., Analysis and
comparison of P2P search methods, In Proceedings
of the 1st International Conference on Scalable
Information Systems. vol. 152 of ACM International
Conference Proceeding Series, ACM Press, 2006.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Igor Mekterović, Mirta Baranović, Krešimir Križanović

ISSN: 1790-0832 684 Issue 5, Volume 5, 2008

