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Abstract: - For a peer-to-peer(P2P) content sharing network holding large amount of data, an efficient semantic based 
search mechanism is a key requisite. Semantic based search should generate as little traffic (messages) possible while 
achieving precision and recall rates comparable to those of correspondent centralized system. In this paper protocols 
for self-organizing P2P networks that arranges links between peers according to peer's content are developed and 
tested. Peers organize themselves into "semantic communities" without losing links to other semantic communities. 
Proposed network requires no prior knowledge of the semantics of documents that are to be shared in the system. 
Through simulations, it is shown that proposed network is resilient to membership changes and achieves high recall 
rates. 
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1   Introduction 
With the advent of Napster we have witnessed 
extraordinary expansion of interest in peer-to-peer 
content sharing systems both in general population and 
in scientific community. With time, better and more 
efficient protocols (networks) for content sharing have 
been developed (e.g. Gnutella, eDonkey, BitTorrent). 
However, widely adopted peer-to-peer protocols for 
content sharing only allow for metadata searches (file 
name, size, type, etc.). Peer-to-peer networks that enable 
content-based searches are still a subject of active 
research. The ones that have been developed so far are 
usually divided into structured and unstructured. In 
unstructured networks peers are unaware of content in 
neighboring peers which coerces them into less-effective 
query routing (e.g. Gnutella flooding) resulting with 
poor network scalability. Structured P2P networks 
overcome scalability issues but incur complex protocols 
that are not suitable for highly transient peers typical for 
P2P systems [13]. Also, structured P2P networks usually 
have to maintain high-dimensional DHTs (Distributed 
Hash Tables) that reflect semantic space of documents 
stored in the system. Such DHTs may be inappropriate 
for the newly arrived documents whose semantics 
significantly differ from those of documents that were 
taken into account during construction of DHT. Along 
those lines, if we wanted to construct an initially empty 
network and offer it to the general public to share 
arbitrary documents we'd have no documents to sample 
and construct the semantic space. 

     That was the motivation for construction of P2P 
network that allows for semantic-based queries without 
prior knowledge of documents that will be stored 
throughout the network. Self-organizing P2P network 
that arranges links between peers according to their 
content is proposed. In such a network peers organize 
themselves into "semantic communities". Every peer 
represents its content with a set of vectors and content 
likeness is determined as vector likeness. It is assumed 
that peers (i.e. users) sharing documents of certain topic 
will most likely search for similar documents (e.g. 
someone who is sharing papers in the field of computer 
science is more likely to search for similar papers than 
e.g. biology papers). Of course, it is entirely possible for 
user to search for something semantically completely 
different – therefore it is important not to lose links to 
other semantic communities.  
 
 

2   Problem Formulation 
Textual documents can be represented and stored as data 
objects in P2P system. More precisely, a document is 
represented as an n-dimensional vector, namely 
Semantic Vector or Feature Vector. Each element in the 
vector represents the importance of a term in the 
document, usually computed using TF*IDF (term 
frequency * inverse document frequency) scheme [1]. A 
term is considered more important within the document 
if it is used often in that document (TF) and used seldom 
in other documents in the collection (IDF). Such term is 
important because it differentiates one document from 
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the others. During the search process, documents are 
retrieved according to the similarity between the query 
vector (which can also be a full-blown document) and  
document vector. Prevailing measure of similarity is the 
cosine of the angle between the vectors. If the vectors 
are normalized, cosine of the angle can be computed as 
the inner of product of two vectors: 
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This model, in which documents are represented as 
vectors, is referred to as Vector Space Model (VSM). 
VSM suffers from synonymy, polysemy and noise in the 
documents. LSI (Latent Semantic Indexing) [2] 
technique has been proposed to overcome these issues. 
LSI uses SVD (singular value decomposition) [1] to 
transform a high-dimensional VSM vector to a lower-
dimensional semantic vector by projecting it into a 
smaller, semantic, subspace. In summary, both VSM and 
LSI represent documents as vectors and use cosine of the 
angle between the vectors to represent their similarity. 
     Searching for a document in a P2P environment could 
be done in Gnutella fashion by flooding the 
neighborhood with query vector, however that approach 
has been proven to suffer from scalability issues. Also, 
since documents are randomly populated (with respect to 
semantics) it is difficult to achieve good retrieval 
properties (precision and recall). Efforts to improve the 
search efficiency have led to constructing structured 
overlay networks (e.g. CAN [3], CHORD[4], 
Tapestry[5], Pastry[6]). These systems support hash-
table interface of put(key, value) and get(key) and are 
extremely scalable as they resolve lookups in log(n) 
routing hops (for a network of n nodes). On the other 
hand, they support only exact-match queries. Since then, 
more sophisticated structured systems have been 
developed (e.g.[7], [8], [9]) that are both scalable and 
allow for semantic queries. However, being structured, 
they all have to form a semantic space, probably (not all 
papers explain it) by sampling documents that are 
expected to be shared in the P2P network. Although they 
work well under such conditions, we believe that this 
presents a problem in the case when there is no prior 
knowledge of semantics of documents that will be 
shared throughout the network. In this article the 
possibility of creating a network that will not require 
prior knowledge of content to be shared is explored.   
 
 

3 Related work 
In general, there are two strategies for performing search 
in P2P network: (a) blind search where nodes "blindly" 
propagate messages to, hopefully, sufficient number of 
other nodes and (b) informed search where nodes use 
local information about neighboring nodes to route 

messages towards (estimated) relevant nodes. Gnutella is 
the best-known blind search method. Other blind search 
methods include Modified-BFS [14] where peers 
randomly choose only a ratio of their neighbors to 
forwards query to, Iterative Deepening [16] and Random 
Walks [15]. The latter two work well only when it is not 
required to find all relevant documents in the network, 
but, typically, only one. That makes them unsuitable for 
the problem studied here. Informed search methods 
include APS [17], LI [16], RI [18] and PlanetP[19]. APS 
builds upon an idea of random walks but instead of 
walks being random it uses probabilistic forwarding 
based upon statistics that is accumulated in time. In LI 
every node indexes the content of neighboring nodes 
(within some radius r) and answers the queries on their 
behalf. This approach is not well suited for dynamic 
environments. RI assumes that all documents fall within 
a number of thematic categories and each node stores an 
approximate number of documents that can be reached 
through each of the outgoing links and routes queries in 
accordance. This approach works well only for some 
applications. In PlanetP nodes use Bloom filters to create 
compact representations of their inverted indexes and 
then diffuse them throughout the community using 
gossiping algorithm. Since it doesn't scale well, PlanetP 
is suitable only for small and mid size networks. A 
thorough overview and comparison of unstructured P2P 
search methods can be found in [20]. 
Structured networks (e.g. [7], [8], [9]) use a different 
approach and try to combine the advantages of 
structured systems in order to achieve better search 
efficiency and scalability properties. However, they tend 
to be significantly more complex which complicates 
their deployment in dynamic environments. Also, they 
require some prior knowledge of  the semantic of the 
data to be shared throughout the network. 
 
 

4   Self-organizing network 
Both pure (Fig.1)  and hybrid (Fig.6) P2P networks are 
presented.  
4.1 Pure network 
Besides sharing content, every node in the pure 
network  routes messages through the overlay network 
and exchanges overlay network maintenance 
messages (Fig.1). That is, there is no hierarchy of 
nodes or nodes performing special functions.    

 
                     Fig.1 Pure network of 10 nodes 
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Every node represents its content (documents) with 
semantic vectors (VSM). Vectors can be computed 
using global statistics that, as demonstrated in [10], 
doesn't have to be precise. To reduce the number of 
vectors similar documents are clustered together and 
represented with cluster centroid. Number of clusters 
(or documents per cluster) is arbitrary – it can be tuned 
over time or even left up to the user to decide (e.g. a 
user could mark the spot on the dendrogram) although 
it shouldn’t be too high (this will be a topic for future 
research). Such set of vectors representing cluster 
centroids is called node description. In order for a 
node to join the network it has to connect to existing 
node(s). Since there is no central authority a node has 
to find those nodes on its own. In our research new 
nodes were connected to random existing nodes in the 
network, and in the real-word applications some 
already existing techniques (like GWebCaches in 
Gnutella) could be employed. Each node maintains 
two sets of links: family links and others links. Family 
links are used as a connection to other nodes with 
similar description and other links are used as a 
connection to communities of dissimilar nodes. Figure 
2 shows separately other links, family links and all 
links for a network of 50 nodes and 3 semantically 
very distant communities.  

 
Fig.2 other links + family links = all links (50 nodes) 

 
     Initially, each node only has other links. Node will 
start to populate its family links collection when it 
receives answers to its queries.  
 
4.1.1   Query routing  
When a node wants to search for a content in the 
network it creates a QueryMessage and routes it 
through the network according to algorithm in Table 1. 
QueryMessage consists of: 
• unique message id 
• source peer id (node who originated the message) 
• previous peer id (node that forwarded this message) 
• query vector (describing sought content) 
• similarity threshold (for determining the results) 
• pair of bloom filters   

Two bloom filters are used to reduce the number of 
messages that are transmitted through the community of 
nodes that match the query (based on the similarity to 
the query vector). Fig.3 shows a query routing scenario 
without the use of bloom filters in a small community of 

interconnected nodes (links are not drawn for clarity). 
Since every node maintains a list of processed queries, 
all messages carrying already processed queries are 
dropped. Dropped messages are drawn with a dotted 
line. A scenario is shown in which every node can 
forward maximum two messages and node f never gets 
the message because nodes d and e are unaware that 
nodes c, e and d have already gotten the message. To 
improve message routing two bloom filters [12] are 
added to the message. Whenever a node forwards the 
query it embeds into the message node ids (hashes) of 
all nodes that it will be sending the message to. 
Accordingly, when a message is forwarded bloom filter 
is checked to determine whether a node already received 
the message. Fig. 4 shows the worst case query routing 
scenario with the use of single bloom filter. Associated 
table details information about visited nodes that is 
carried in the correspondent message (e.g. bd:bcde 
means that message from node b to node d has nodes 
b,c,d and e defined as visited nodes).  Of course, the 
probability of false positives increases as the number of 
inserted elements increase. We've split bloom filter into 
two bloom filters: they are populated one after another 
(with possibility of false positives below 8%) and when 
the second bloom filter is full the first one is cleared 
assuming that the query has "moved away" from the 
area recorded in the first bloom filter (this doesn't have 
to be true). When communities with 100-400 nodes, 20 
links per node and maximum forward count 10 were 
flooded it was found that two 100-bit bloom filters have 
reduced the number of messages by more than 50%.  

 
Fig.3. Routing without bloom filter, MAX_FW_CNT=2 

 
Fig.4. Routing with bloom filter, MAX_FW_CNT=2 
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     As shown in Table 1, node forms a descending list of 
other nodes based on their similarity to the query vector. 
Similarity threshold is embedded in the message and, if 
the query returns too few results, could be adjusted by 
user (application) to broaden the search.. 
routeQuery(qMsg) 
  FwList = getFwList(qMsg) 
  IF qMsg.notDoneHopping()  
    qMsg.setNodesVisited(FwList) 
    qMsg.setPreviousNode(this) 
    forward query to every node in the FwList 
  END IF   
 
getFwList(qMsg) 
  FW = getRankedNodesDesc(qMsg, qMsg.sim) 
  IF FW.size > MAX_FW_CNT 
    FwList = pick random MAX_FW_CNT  
                    peers from FW 
  ELSE IF FW.size < MIN_FW_CNT 
    qMsg.decTTL() 
    FW = getRankedNodesDesc(qMsg.query, 0) 
    FwList = get first MIN_FW_CNT peers from FW 
  ELSE 
    FwList = get all peers from FW 
  END IF 
  RETURN FwList 
 
getRankedNodesDesc(qMsg, simTreshold) 
  FO = Family U Others 
  FW = Ø 
  FOREACH currNode IN FO 
    IF currNode≠qMsg.src AND currNode ≠qMsg.prev 
        AND qMsg.notVisited(currNode) 
      IF curr.emptyDesc  
        FW = FW U (curr, 0) 
      ELSE IF qMsg.queryVector.getSimilarity(curr)  
                      ≥ simTreshold 
        FW = FW U (curr, 
                         qMsg.queryVector.getSimilarity(curr)) 
      END IF 
    END IF 
  END FOREACH 
  FW.sortDescending() 
  RETURN FW 

Table 1. Routing algorithm for pure network 
When a node has finished evaluating similarity to the 
query vector, it compares the query vector both to the 
family links and other links collection. That way, if a 
query has reached targeted semantic community 
probably only nodes from the family links collection will 
be used to forward the query (depending on the threshold 
and the community a query could even be flooded 
through the community). On the other hand, if the query 
is somewhere outside the targeted community then 
probably a most similar node will be found in the other 

links collection – hopefully that link will lead to the 
desired community. If none of the known nodes satisfies 
the threshold requirement then a minimum forwarding 
rule is activated: query is forwarded to MIN_FW_CNT 
(e.g. MIN_FW_CNT=1) nodes disregarding the 
similarity threshold but message's TTL (time to live) 
attribute is decreased by one. Thus, a message has only 
TTL hops to reach the targeted community (probably 
through a series of other links) but once inside the 
community TTL value doesn't change. On the other 
hand, if a node computes that  more than 
MAX_FW_CNT links (nodes) meet the threshold 
requirement then a maximum forwarding rule is 
activated: query message is forwarded to randomly 
picked MAX_FW_CNT nodes from the set of nodes that 
satisfy the threshold requirement. Initially, message was 
forwarded to MAX_FW_CNT  most similar nodes but 
that strategy has been shown to favor only the most 
similar nodes ignoring the less similar nodes that also 
meet the threshold requirement thus reducing the recall 
Besides routing (forwarding) query message every node 
evaluates its collection of documents against query 
vector. If any of the documents meets the threshold the 
node sends a QueryResponse message to the node that 
originated the query. QueryResponse message carries the 
following information: 
• query message id 
• responder peer id (peer who responds to the message) 
• responder peer description (cluster centroids) 
• response vectors (documents that match the query) 

Every time a node receives a QueryResponse message it 
updates its family links collection with the responder's 
node description: nodes are sorted descending based on 
the similarity with its own description. Family links 
collection size is limited and if it exceeds the maximum 
then a randomly picked node from the bottom N percent 
(e.g. 10%) of the list is removed. Node maintains its 
other links collection using MeetTheOthers message that 
it emitts from time to time. MeetTheOthers message is 
randomly forwarded through the network. 
MeetTheOthers message has: 
• source peer id 
• TTL (decreased with every hop) 
• visitedNodes[TTL] array 

When a MeetTheOthers message is instantiated, a TTL 
value is randomly chosen from a predefined interval. 
Since this is a small number of hops an array of visited 
nodes is carried by the message to avoid reaching a 
same node twice. Every node that receives 
MeetTheOthers message responds with NodeDescription  
message (carrying only its own description) to source 
node and then, if TTL is still greater than zero, forwards 
received message to only one randomly chosen node 
(that hasn't been visited) from the other links collection. 
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Upon receiving NodeDescription message a node 
updates its other links collection and if it exceeds the 
maximum size removes randomly chosen old entry. 
Node description is not taken into account (unlike with 
family links collection) when a node is removed from 
other links collection – node descriptions of other nodes 
are only used in the process of query routing. 
     In the event of node failure, nodes simply discard the 
links with the nodes that don't respond to their messages 
and other nodes replace the disconnected ones. 
 
4.1.2. Membership changes 
Since P2P networks are inherently transient it is 
important for them to handle peer join and peer leave 
(or fail) operations gracefully. When a peer joins a  
pure network using some bootstrap node (in our 
simulations a randomly chosen node is used) it simply 
emits a MeetTheOthers message with TTL equal to the 
other links collection size. That way, new node gets 
"wired" into the network and gradually forms family 
links i.e. positions itself within the community. When 
a newly arrived node receives an answer to its query it 
considers a replier to be family and sends its own 
description to the replier (if it doesn't already know it 
– replier includes a description version in his reply). 
That way existing nodes form their links to the newly 
arrived node. Pure network shows resilience to peer 
failures. A node detects a "dead" link when it fails to 
send a message to another node. In that case the node  
simply deletes dead link from the collection and 
resends the message to someone else. If, by doing so, 
the number of links decreases below a certain 
threshold node emits a MeetTheOthers message. Fig. 5 
shows network properties when 60% of the nodes 
leave the network: between iterations 10 and 20, 3000 
nodes leave the network. In one iteration all nodes in 
the network query for a content similar to their. Recall 
(avg_nodes_recall) is defined as a ratio of retrieved 
relevant documents and relevant documents in the 
entire network. Average relative message count 
(avg_rel_msg_count) is defined as query message 
count divided by network size. Average percentage 
reached (avg_perc_reached) is the average percentage 
of nodes reached during a query. Maintenance 
message count (avg_mntnc_msg_count) is absolute 
average number of maintenance messages (it is shown 
on the same graph to conserve space, e.g. 
avg_mntnc_msg_count for 1st iteration is 21 not 21%). 
Fig. 5 shows no significant improvement in recall 
when peers leave the network (and send messages of 
notification to their neighbors) over the case when 
peers simply fail. Moreover, nodes that leave incur 
slightly more traffic. That is why we've decided that  
in pure network protocol nodes do not inform 

neighbors of their departure, i.e. all departing nodes 
are behaving as if failing.  

 
Fig. 5 Effects of 60% nodes failing/leaving the pure 

network 
 
4.2. Hybrid network 
In order to reduce the traffic (and increase scalability) 
Gnutella designers have switched from the initial pure 
(version 0.4) to hybrid (version 0.6) architecture. 
Accordingly, we've developed hybrid self-organizing 
network that distinguishes two kinds of nodes: leaf and 
ultra nodes. The idea is to put more capable (in terms of 
bandwidth, availability and processing power) nodes in 
charge of routing the query messages and network 
maintenance messages. Such nodes are called ultra 
nodes. Every ultra node maintains connections to a 
certain number of leaf nodes. Leaf nodes send queries to 
their ultra node and have no role in query routing 
process. However in our protocol leaf nodes do 
communicate with other ultra nodes in attempt to cluster 
themselves in the semantic communities. Fig. 6 shows a 
hybrid network with 4 ultra nodes, each attending to 4 
leaf nodes.  

 
Fig. 6 Hybrid network with 4 ultra and 16 leaf nodes 
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4.2.1   Bootstrapping  
The network is setup by linking few ultra nodes. Other 
ultra nodes attempting to join the network have to find 
an existing ultra node(s) to link with. The process is 
analogous to the one in the pure network. Leaf nodes 
attempt to join the network by sending a 
JoinRequestMessage (Fig. 7) carrying node description 
to an ultra node. If the ultra node already maintains 
maximum leaf connections it replies with a negative 
JoinReply message carrying a list of alternative ultra 
nodes (e.g. u2) the leaf can then try to join. Upon 
receiving a negative reply the leaf node tries to join 
another ultra node in the list. If the ultra node hasn't 
reached maximum number of leaf connections it replies 
with a positive JoinReply message and adds the leaf 
(node description) to its leaf links collection. 

 
Fig. 7  Leaf node joining the network 

 
4.2.2   Query routing  
In hybrid architecture only ultra nodes are responsible 
for query routing thus shielding the leaf nodes. A leaf 
node creates a query message and sends it to its ultra 
node. From that moment on ultra nodes subnet functions 
analogous to the pure network and routes the query 
according to the similarity of the known (family and 
other) ultra nodes. Besides forwarding the query to other 
ultra nodes ultra node may forward the query to its leaf. 
Every ultra node has node descriptions of its leaf nodes 
and if it finds that a leaf node description is similar 
enough to the query vector, it forwards the message to 
that leaf node. Leaf node further examines the query 
message and if the query matches any of its documents it 
replies directly to leaf that originated the query. In 
addition to response vectors QueryResponse message 
carries node description of the responder's ultra node 
(ultra node description consists of leaf nodes 
description). This information will be used to cluster 
similar leafs together. 
 
4.2.3   Leaf migration 
Every leaf keeps track of ultra nodes and number of 
results it received from their leaves. If a leaf is in the 
right community (after a significant number of queries) 

the number of results it received from the best other ultra 
node should be comparable to the number of results it 
received from its own ultra node. That would mean that 
neighboring (having the same ultra node) leaf nodes are 
replying to some of its queries. Otherwise, if node is in a 
wrong community, it will receive most of its replies 
from leaves that are not neighboring. In that case, after 
the leaf node has concluded that there is a better ultra 
node available (semantically more fitting), leaf node 
sends a TransferRequest message (message 1 on Fig. 8) 
to the ultra node whose leaves are responsible for most 
results providing that it cannot be found in the negative 
transfer attempts cache. Every leaf nodes maintains this 
cache of ultra node ids that returned negative 
TransferReply messages so that it wouldn't subsequently 
send the same TransferRequest messages to same ultra 
nodes (this cache is periodically cleared).  

 
             Fig. 8 Leaf  transfer with replacement leaf 
 
Ultra node will approve the transfer if: 
(a) it hasn't reached its maximum leaf collection size 
(b) it has reached its maximum leaf collection size but 
there is a leaf in the collection that is semantically less 
befitting to that community than the requesting leaf (we 
call it the replacement node). 
In the latter case, ultra node removes the replacement 
leaf from its collection and sends a TransferExchange 
message (message 2 on Fig.8) to requester's ultra node 
(this information is included in the transfer request 
message)  informing ultra node to remove the requester 
leaf from its collection and add replacement leaf instead 
(in Fig. 8 – remove l4 and add l3). In the former case (a) 
TransferExchange message doesn't include the 
replacement node. In both cases, after receiving 
TransferExchange message, ultra node responds to 
requester leaf node with a positive TransferReply 
message and adds the requester leaf to its leaf collection. 
Requester leaf updates its ultra node link to the new 
node. If the requester's old ultra node received 
TransferExchange that included replacement node, it 
sends a JoinMe message to the replacement node 
(message 4 in Fig. 8) ordering the replacement node to 
update its ultra node (in Fig. 8 replacement node sets u2 
as the new ultra node). When a leaf node changes its 
ultra node it resets query response count statistics. 
    If none of the two conditions are met (a and b) ultra 
node responds to the requester leaf with a negative 
TransferReply message. In that case, only messages 

u1 u2 
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marked 1 and 2 in the Fig.8 are exchanged. Leaf node 
that receives negative TransferReply message sets the 
response count of that ultra node to zero and stores its id 
in the negative transfer attempts cache.  
 
4.2.4   Load balancing 
This leaf migration strategy leads to clustering of similar 
nodes and the more similar nodes there are at some ultra 
node, the more it becomes attractive for other similar 
leaf nodes to transfer there. This way, some ultra nodes 
begin to accumulate more and more leaves (until they 
are full) and other ultra nodes lose leaves as they migrate 
to other ultra nodes (stage B in Fig.9). 

  
Fig.9 Leaf migration and load balancing 

To that purpose a set of messages that will allow ultra 
nodes to balance the load (leaf connections) is defined. 
Following variables are defined: 
• M – maximum number of leaves 
• Lf – number of leaves at balance source node 
• Lb – number of leaves at balance destination node 
• p – percentage of leaves that balance source node 

gives away (we use p = 50%) 
• T – threshold (if an ultra node has more or equal to 

M*T leaves then it may be considered as balance 
source node). We've set threshold at 70%. 

When an ultra node has too few leaves (less than Lb) it 
sends a BalanceRequest message to a neighboring ultra 
node. Lb is determined from the equation (which states 
that balance destination node should not have more than 
T*Lf leaves after the balancing process): 
                            Lf*p + Lb <= T*M                    (2) 
which, if Lf is set to M as the worst case, evaluates to: 
                            Lb <= M*(T-p)                          (3) 
Therefore, when an ultra node falls down to less than 
M*(T-p) leaves (i.e. in our simulations less than 20% of 
M) it starts to send BalanceRequest messages. Related to 
this is the estimation of the similarity factor that a leaf 
node uses to determine whether to apply for transfer: if a 
leaf node finds that another ultra node's leaves provide 
more results than similarity factor times number of 
results its current ultra node provided, it then applies for 
transfer. To prevent leaves that have just been balanced 
to reapply for the old ultra node (or another, more 
populated one) similarity factor (Sf) is estimated as: 
                            Sf *(Lf*p -1) > M                       (4) 
stating that a leaf that has just been balanced should be 
satisfied with a number of results it recieved from its 

new ultra node (Lf*p-1) even though some other full 
ultra node is providing more results (M). From equation 
(4) we get: 
                          Sf > 1 / (T*p - 1/M)                      (5) 
On the other hand, setting Sf too high would slow up the 
process rendering network inert. That's why we define 
[Sfmin, Sfmax] interval and every node starts with a 
minimum value of Sf (making it more mobile) that is 
incremented on every transfer until it reached Sfmax 
(leaf nodes become less mobile as they "grow old"). We 
use interval [1,7]. Setting low starting factor produces 
more initial traffic but also facilitates faster node 
clustering. 
     Balance initiating  node will first use family links to 
send a message and, if all of them fail, start to use other 
links collection. Messages are sent one by one and 
targeted ultra node id is stored in the cache that is being 
emptied once all links have been exhausted. If an ultra 
node that received BalanceRequest message (marked 
with 1 on Fig. 10) doesn't have enough leaves, it 
forwards the request (message 2 on Fig. 10) using 
random family link (bloom filter is used). If a message 
finally reached ultra node that qualifies as balancing 
source, a BalanceReply message is sent (massage 3 on 
Fig. 10) to the requester with a list of nodes that can be 
reassigned. Balancing source doesn't remove leaves from 
its collection yet, because it is not certain how will 
requester node proceed (it is possible that, due to 
latency, requester node has more than one balance 
request active and will not be in position to reassign all 
of the leaves offered, or requester may have 
disconnected in the meanwhile, etc.).  

 
Fig. 10 Ultra node load balancing process 

When the requester node receives the balance reply 
message it sends JoinMe messages to proposed leaves 
(messages 4 and 5 on Fig. 10). Upon receiving JoinMe 
messages leaf nodes update their ultra node link and 
send LeafLeft message (messages 6 and 7 on Fig. 10) to 
the old ultra node. When an ultra node receives LeafLeft 
message, it deletes the respective link from its leaf links 
collection. 
 
4.2.5   Voting process – forming family links 
Ultra node forms its family links based on the votes it 
receives from its leaves. Leaves keep track of number of 
results they've received from other ultra nodes' leaves. 
Leafs periodically compile a list of N ultra nodes that 
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have been responsible for the majority of results and, if 
the number of results is bigger than defined minimum 
size (to reduce the traffic), send their votes via 
VoteMessage to their ultra node. Upon receiving their 
leaves' votes ultra nodes are updating their routing tables 
according to the algorithm in Table 2.  

updateRoutingTable(voteMsg) 
  update new swap list with votes from voteMsg  
  sumSwap = sum of all votes from new swap list 
  sumFmly = sum of all votes from current (family) list  
  IF         (voteCounter>VOTE_CNT_THRESHOLD ) 
     AND (sumSwap>=MERGE_TRSHLD*sumFmly)  
    IF (family list is not empty)  
      IF (old family list is not empty) 
        subtract the old family list from the family      
      END IF 
      old family list = family  
    END IF 
    add new swap list into family list 
    clear new swap list 
  END IF   

Table 2  Routing table update algorithm 
Since family list is a finite sorted list (of ultra node ids 
and numbers of results) it would be wrong to add to that 
list every time a vote arrives – that would make it 
impossible for a new ultra node to enter the list because 
their votes couldn't compare to the votes other nodes 
have gathered throughout the entire "voting history". To 
ensure fairness we keep track of three lists: current 
family list, old family list (a snapshot of previous family 
list) and new swap list that is accumulated until it is 
ready to merge into the curent family list. This way, old 
votes gradually leave the list and new ones have a 
chance of entering. When ultra nodes update their family 
list they take into account one extra rule: every leaf has 
to have at least one "representative" in the family list. 
That is, all ultra nodes that are on top of leaves's list are 
included in the family list. Remaining positions in the list 
are populated by sorting ultra nodes (result counts) in 
descending order. This extra rule is introduced to 
improve search efficiency in those nodes that are, 
hopefully temporarily, outside their communities. This 
way, their ultra node has a direct link to one of the ultra 
nodes of the desired community. In opposition, if this 
rule wasn't employed, such leaf nodes would get 
outvoted and lose short path route to their communities.   
     Aside from the voting process, hybrid network's ultra 
nodes subnet behaves analogous to the pure network in a 
sense that it maintains family links collection and other 
links collection and routes queries according to the same 
principle. Fig. 11 shows a hybrid network consisting of 3 
semantically very distant communities with 2 family 
links, 3 other links and 10 leafs per ultra node after 100 
iterations (100 queries by each node).  

 
Fig.11  family links + other links = all links (100 nodes) 

     If a leaf node fails (disconnects) in hybrid network, 
its ultra node simply discards the corresponding link. If 
an ultra node disconnects its leaves repeat the 
bootstrapping process and (since ultra nodes from their 
semantic community are probably on top of their list) 
hopefully find their new ultra nodes within the same 
community.  
 
4.2.6 Membership changes 
When a node joins hybrid network it performs the same 
steps as when bootstrapping. The only prerequisite is 
that the joining node "knows" some existing node (we 
use randomly selected node in our simulations). 
Departure of leaf nodes doesn't present a problem for 
other nodes – if they leave they inform their ultra node 
of their departure and if they fail ultra node detects it 
eventually (when it tries to send a message to the leaf 
node) and removes the link from the collection. The 
same can't be said for the ultra nodes. When an ultra 
node leaves the network all its leaf nodes have to find 
another ultra node. Leaves attempt to join ultra nodes in 
the order of response counts they've provided in the past 
which improves their chances to remain within the right 
community. It is better when ultra nodes leave and 
inform their leaf nodes because then leaf nodes will 
immediately try to join other ultra peer. Otherwise, a leaf 
node will detect that it's ultra node is dead when it tries 
to send a query message to it. In that case, that query 
will be recorded as failed query and user will have to 
wait until it reconnects to some other ultra node. Fig. 12 
shows the network properties when approximately 60% 
of nodes fail or leave in a short period. Failing (leaving) 
nodes are picked at random - therefore both ultra and 
leaf nodes are failing at random. Top chart in Fig. 12 
shows net size with separately marked ultra node count 
and leaf node count (and their sum – net size). It is 
evident that, unlike pure network, failing ultra nodes are 
degrading recall considerably more than leaving ultra 
nodes. That is why, within hybrid protocol, we 
differentiate these two events and retain 
UltraNodeMessage in the protocol. In both cases, recall 
improves after node departures stop and returns to its 
original level. 
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Figure 12. Effects of 60% nodes failing/leaving the 

hybrid network 

 
 
5   Experimental results  
The experiments were conducted using PlanetSim – an 
overlay network simulation framework [11]. Within the 
framework we've implemented Gnutella, Pure and 
Hybrid protocol. Data set consists of 982 articles from 
six categories: cooking recipes, Greek mythology, 
basketball players' biographies,  musicians' biographies 
and programming code (SQL and C code gathered 
through an application for testing students). Retrieval 
results are compared to the results that would be 
retrieved for the same query in a centralized 
environment, i.e. for a given query we compute the 
recall as: 

. 2 .
:

. .
= no of docs retreived in P P env

recall
no of docs retreived in centralized env

       (6) 

meaning that, every time a new query is created during a 
simulation, all active peers are polled in iterative fashion 
and the number of documents that match the query is 
stored so that it can be compared to result set retrieved 
using P2P search. Our simulations are currently 
restrained to maximum 104 nodes due to our hardware 
limitations. Fig. 13 shows average recall comparison in 
static conditions when net size varies from 102 to 104 
nodes. Gnutella 7/17 means that each node maintains 17 
links and forwards the query to 7 randomly chosen 

nodes. Pure 5/5/5 means that each node in Pure network 
maintains 5 family and 5 others connections and 
forwards the query to maximum 5 nodes. Hybrid 5/5/5 
1:15 means that every ultra node in hybrid network 
maintains 5 family and 5 others connections and 
forwards the query to maximum 5 ultra nodes and that 
every node has maximum 15 leaves while every leaf is 
connected to (maximum) 1 ultra node. 

 
Fig 13. Average recall comparison 

As shown, both Pure and Hybrid protocol outperform 
Gnutella protocol as the size of the network increases 
while producing significantly less messages (Fig. 14 – 
note the log scale). Pure network's moderate results can 
be explained with small number of known nodes (5+5, 
see Fig. 16).   

 
Fig 14. Average query message count 

Fig. 15 shows the average message count in more detail, 
when queries are broken down into categories according 
to the number of documents that match the query. 

  
Fig.15 average message count by relevant documents 

count categories 
Notice that query message count is practically constant, 
especially for the hybrid protocol.  
Fig. 16 shows influence of family and others collection 
sizes on the recall in both networks. Collection size 
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shows influence only on pure network at these network 
sizes (below 104). This is logical because ratio of query 
routing nodes between these two networks is 1:15.  

 
Fig. 16 Influence of family and others collection sizes on 

the recall 
 

 
Fig. 17 Hybrid network 15/15/5 1:15 in a very dynamic 

environment 
Finally, Fig. 17 shows hybrid (15/15/5 1:15) network 
properties in a very dynamic environment: node 
connections for 5000 nodes are formed during first ten 
iterations and then, between iterations 10 and 40, 
approximately 3000 new nodes join, 1500 leave and 
1500 fail. For instance, at iteration 31, there are already 
more new nodes (both ultra and leaf nodes) than original 
nodes – the ones used to setup the network. It is apparent 
that, during such rapid membership changes, recall drops 

(to approximately 80%) and maintenance messages 
count increases (as the new nodes position themselves 
within the network). Lower recall rate is caused by the 
new, unsettled nodes. This is apparent because, as soon 
as the membership changes stop, recall and precision 
increase since new nodes have positioned themselves 
and there are no additional new ones to diminish the 
recall. Precision is here defined as: 

.
:

.
= no of nodesthat should havebeenreached

nodes precision
no of nodesreached

 (7) 

 
 
5   Conclusion 
Content-based search is a challenging problem in P2P 
environments. Many researches have proposed 
structured P2P networks that organize routing structures 
according to the underlying semantic space and use 
some kind of distributed hash table functionality to 
achieve fast (and scalable) retrieval. We focus our 
attention on situations when there is no prior knowledge 
of the semantics of data. To that purpose, a set of 
messages and algorithms for pure and hybrid self-
organizing P2P network has been proposed. In the 
proposed network, nodes organize themselves according 
to the semantics of data they share: similar nodes are 
clustered into semantic communities. This way most 
queries will not have to travel outside their communities.  
We find pure network simpler, more robust and less 
susceptible to obstruction while hybrid network reduces 
query network traffic and therefore scales better. 
Experiments show that pure network handles node 
failures slightly better than hybrid network, but we find 
hybrid superior in other aspects. Most notably, hybrid 
network achieves better recall than pure network with 
roughly 2 or 3 times less messages. Both networks are 
simple and robust which is important in highly transient 
P2P environments. Proposed networks cannot guarantee 
logarithmic scaling of query resolving messages typical 
for the structured P2P systems. Instead, they generate 
traffic that depends on sought community size (and 
query similarity threshold) and are actually independent 
of other communities' sizes. For instance, in our 
experiments hybrid network consisting of 5000 nodes 
achieves 94% recall with average 16,24 messages that 
reach approximately 0,33% of the network. When 
analyzing in detail, we find that recall is mainly 
diminished by nodes that are searching for rare content 
(e.g. there are only 1 or 2 matching documents in the 
whole network). Such queries often fail because there 
are not enough nodes in the network to form a 
community. We expect that nodes with such distinct 
semantics will always present a problem due to the very 
nature of P2P systems where "strength lies in numbers".     
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Future work includes tuning of the system's performance 
as well as dealing with some real world aspects of the 
protocol like malicious peer activities and network 
obstruction. Ultimately, we hope to make network 
available to general population. 
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