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Abstract: - In this paper we explore the use of orthogonal functions as generators of representative, compact 
descriptors of image content. In Image Analysis and Pattern Recognition such descriptors are referred to as 
image features, and there are some useful properties they should possess such as rotation invariance and the 
capacity to identify different instances of one class of images. We exemplify our algorithmic methodology 
using the family of Daubechies wavelets, since they form an orthogonal function set. We benchmark the 
quality of the image features generated by doing a comparative OCR experiment with three different sets of 
image features. Our algorithm can use a wide variety of orthogonal functions to generate rotation invariant 
features, thus providing the flexibility to identify sets of image features that are best suited for the recognition 
of different classes of images.   
 
Key-Words: - Rotation Invariant Features, Zernike Moments, Haar Wavelets, Daubechies Wavelets, 
Orthogonal Functions, OCR  
 
1 Introduction 
The problem of finding compact descriptors of the 
content of images for the use of automatic 
recognition of image information is nowadays more 
present than ever. Just as we have got used to 
browsing through textual data for words, terms or 
phrases, the demand for browsing through images in 
search of a given object, face, structure or any other 
2D graphical representation is growing. Whether it 
is to render an image or illustration readable by the 
computer, or to be able to recognize objects for 
security or supervision purposes, image mining 
remains one of the big milestones to be settled by 
the information society. A popular technique to 
analyze images for the purpose of automatic 
recognition is supervised learning. In supervised 
learning a representative set of images is available 
from which relevant features that uniquely 
characterize the objects in the images can be 
extracted. The extracted features then allow the 
computer to recognize similar objects in images that 
are not contained in the representative set. 
Techniques for feature extraction in Image Analysis 
commonly use a basis of orthogonal functions to 
generate a subspace over which images are 
projected. The coefficients resulting from the 
projection are then, either directly or the result of a 
combination of them used as features to characterize 
the image. Zernike moments and orthogonal 
Fourier-Mellin moments, have been extensively 

used in Image Analysis since they allow the 
extraction of rotation invariant features for image 
recognition [1][2][3].Wavelets are also popular 
families of functions to build basis sets for feature 
extraction [4][5]. Because of their efficiency to 
identify temporal/spatial features in different types 
of data sets, wavelet  functions have gained 
popularity in a large domain of data classification 
applications including data mining[19], 
classification of music[18], data stream mining[16], 
separation of linearly mixed signals[15], fingerprint 
verification[17] and medical image retrieval[14] 
among others. 
In [6] and [7], Gabor Wavelets are used as basis 
functions to build a projection subspace. The image 
coefficients are obtained using the Gabor Transform 
and they characterize the orientations of local image 
structure. The method requires the choice of a 
number of parameters for the wavelets and the 
extracted coefficients are not rotation invariant. In 
[8] a log-polar wavelet transform is used to extract 
rotation and scale invariant features for texture 
analysis. [9] also proposes the extraction of shape 
descriptors using wavelet analysis. In this paper we 
propose a general framework to extract rotation 
invariant features from images. The features are 
compact descriptors of the image content and are 
well suited for image classification, analysis and 
supervised learning.  The framework we propose is 
inspired in the popular Zernike moments which have 
been proved to provide robust features for image 
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description. We exemplify the use of our framework  
using wavelet functions and measure the quality of 
the extracted features as image descriptors in an 
OCR experiment.  
 
2   Problem Formulation 
 Zernike moments are the coefficients that result 
from the projection of an image over a set of 
orthogonal functions in the unit disk called Zernike 
functions. The structure of  these functions results in 
the extraction of features that are rotation invariant. 
When expressed in polar coordinates, a Zernike 
function ),( θrVpq  can be factorized in two terms, 
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 where Ζ∈qp, , and j is the imaginary unit. The 
projection of an image I(x,y) over a function of the 
basis pqV  is done using the inner product defined by  
  ∫ ∫ ∂∂==

D
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 where the integral is over the unit disk with 
center on the origin. The image term in the integral 
is complex conjugated since the functions in the 
basis pqV  are complex valued. The resulting µpq is 
the coefficient that measures the similarity of one 
function of the basis pqV  to I(x,y). I(x,y) must be 
projected over all the functions in the basis and the 
resulting set of coefficients µpq is then used as 
features that describe I(x,y) in terms of the basis 

pqV . The projection process, together with the 
orthogonality of the basis functions under the inner 
product in (2), ensures that if all the functions in 

pqV  are weighted with their corresponding 
coefficient and then linearly combined, they will 
provide ),(ˆ yxI , the best approximation to I(x,y) in 
terms of least square error, that is, 
           ∑
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 where the set P of integer pairs (p,q) is the set 
that holds the restrictions defined in (1). 
 A rotation of the image by an angle of 0θ  

produces coefficients µpq that are multiplied by a 
unit modulus complex number with an angle 
dependent on 0θ . That is, the coefficients maintain 
their original modulus before rotation, therefore the 
coefficients’ modulus can be used as rotation 

invariant features. A rotation of I(x,y) by an angle 
0θ , can be represented in polar coordinates as 

),( 0θθ +rI . The projection of ),( 0θθ +rI  over the 
Zernike basis pqV  is defined as, 
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 where pqρ is the coefficient of the projection of 

the rotated image over one Zernike function in pqV  

and the new r term that appears is the integrand is 
the Jacobian of the transformation of I(x,y) to polar 
coordinates. By applying the change of variable 

0θθθ +=′ , an }exp{ 0θjq term can be factorized 

from the integral resulting in the following 
relationship, 
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 where the coefficients of the rotated image pqρ , 
provide rotation invariant features, since the 
modulus of the coefficients stays constant under 
rotations of the projected image.  
 
2.1 Proposed Framework 
To create a new basis of functions from which 
rotation invariant features can be extracted, the new 
basis must be orthogonal and must maintain an 
exponential term when expressed in polar 
coordinates. Therefore the elements of the new basis 
will take the form, 

          }exp{)(),( θθ jqrRrF pqpq −=             (6) 
 To form an orthonormal basis using the above 
definition will require setting certain restrictions 
over the functions )(rRpq . To be orthonormal, the 
inner product between two functions of the set must 
hold the following equality, 
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where ijd  is the Kronecker symbol. Since 
complex exponential functions with integer period 
follow the equality, 

      ∫ =∂−−
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 the relationship in (7) can be rewritten as, 
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 From (9) it can be inferred that if the )(rRpq  

terms follow the condition  
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 the resulting set is orthonormal in the unit disk. 
 Our proposed strategy is to start with a set of 
orthonormal functions over the unit interval that 
achieves the condition 

         ∫ =∂
1
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 we will then modify the functions in (11) to 
produce a set of orthonormal functions in the unit 
disk that complies with (10).  
 Given a set of orthonormal functions in the unit 
interval { })(),...,(),( 10 rRrRrR M , we will modify 
them to take the form 
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 members of the final family of orthonormal 
functions in the unit disk will take the form, 
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 To test for orthonormality, it suffices to evaluate 
the inner product between any two members of the 
set in (12), 
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 This strategy allows the use of any, from a wide 
range, of known orthogonal functions in the unit 
interval, to form many different families of 
orthonormal functions in the unit disk, which can 

then be used to extract rotation invariant features.
 We use families of wavelet functions to produce 
orthonormal basis in the unit disk, because they have 
the advantage that, using the DWT (Discrete 
Wavelet Transform) the projection of images onto 
the basis can be carried out in a much faster and 
easier way than the projection of images over the 
basis of Zernike functions. Our results also show 
that the quality of the features extracted from the 
wavelet based basis is as good as the quality of the 
features obtained from Zernike moments. We use 
Daubechies wavelets since they are generators of 
orthogonal basis of functions. We use Daubechies-2 
and Daubechies-4 wavelets. Daubechies-2 wavelets, 
also called Haar wavelets, constitute the simplest of 
wavelet basis. The Haar Wavelet basis is defined in 
terms of a father and a mother function [11]. The 
father function is defined as 

    1)( =Φ t     (15) 
 and the mother function is defined as 
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 the rest of the wavelet basis is defined in terms 
of   )2(2)(, stt jj

sj −Ψ=Ψ    (17) 

 where j,s,  are integers such that js 20 ≤≤ . Fig. 
1 shows the Haar wavelets for j = 0,1 and 2. 

 
Fig. 1. The Haar wavelet basis 

 
Fig. 2 shows the normalized value of the real part of 
some of  the functions in the orthonormal basis that 
was created using the Haar wavelet basis. The first 
column shows functions based on the wavelet )(tΦ , 
the second, third and fourth columns use functions 
based on the wavelets )(tΨ , )(0,1 tΨ , 

and )(1,1 tΨ respectively. Each row uses a different 
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value of q (the parameter of the exponential term), 
starting with q=1 for row 1, and incrementing q by 1 
thru q = 4 for row 4. 
  

 
Fig. 2. Orthonormal basis functions in the unit disk. 
  
 The orthonormal basis in the unit disk takes the 
final form 

 θ

π
θ jq

sjqsj errF −Ψ= )(1),( 2
,,,  (18) 

 We also created an orthonormal basis in the unit 
disk using Daubechies-4 wavelets. These functions 
are best described as a family of compactly 
supported functions, with four vanishing moments. 
For these, the scaling function (father function Φ(t)) 
can be represented as a linear combination of scaled 
and shifted versions of itself, 
          ∑∞

−∞=
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The series h[s] that defines the family of 
Daubechies-4 wavelets is: 
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 The Daubechies-4 wavelet is illustrated in Fig.3. 
Although this wavelet is not discontinuous as the 
Haar wavelet is, its function has little regularity. 

 
Fig.3. The Daubechies-4 wavelets 

Just as we did with the Haar wavelets, we make the 
Daubechies-4 wavelets orthonormal over the unit 
disk by changing their domain from t, to (r, θ), and 
then associating them an exponential term. The final 
basis of functions takes the form, 

 θφ
π

θ jq
sqs errF −= )(1),( 2

,   (22) 

 with q the parameter of the exponential term, 
and θ the parameter that reflects image rotations. By 
expressing the basis functions in polar terms, their 
magnitude remains unaffected by rotations in the 
images. 
 
2.2 Projection Process 
To project an image I(x,y) over the basis in (18), we 
first binarize the image and then translate and scale 
the coordinates of the foreground pixels such that 
their centroid lies in (0,0) and all foreground pixels 
are at a distance smaller or equal to unity from (0,0). 
That is, all the foreground pixels lie within the unit 
disk. After binarization and normalization, the 
projection of I(x,y) over the proposed orthonormal 
basis, can be carried out in a 2 step process. First, 
the image I(x,y) is projected over the exponential 
part of the basis functions, then the image is 
projected over the wavelet functions. The projection 
process is carried out using the inner product 
expressed in polar coordinates, 
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 where  qsj ,,µ are the coefficients resulting from 

the projection. Integrating first over θ and then over 
r, (19) can be written as 
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 From (23) we can define the intermediate 
function 
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 and using the variable substitution 2r=ρ , the 
projection can be written as 
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 which is the definition of the projection of a 
function )( ρqg  over a member of the wavelet 

basis )(, ρsjΨ . To take advantage of the DWT 
(Discrete Wavelet Transform), the 
continuous )( ρqg  function must be approximated 

by a discrete series of finite length ][xgq , formed 
by uniform sampling the continuous function 

)( ρqg . To evaluate ][xgq , we define 

  θθρθρ jq
q eIT ),(),( =    (28) 

  θθρρ
π

dTg qq ),()(
2

0
∫=    (29) 

 The evaluation of ),( ooI θρ at a foreground 

pixel coordinate (r,θ)0 equals unity, therefore, the 
evaluation of ),( ooT θρ at the same point equals 

0θjqe . The evaluation of the function )( 0ρqg  at a 

point ρ0  is the integral of function Tq over the line 
defined by the circle of radius 0ρ . To 

approximate the value of )( 0ρqg  we sum the 

values of Tq  that are at a distance 0ρ  from the 
origin. To enhance the performance of the DWT, we 
calculate the discrete series ][xgq  to have a length 

N which is a power of two. To calculate ][xgq  we 
subdivide the unit interval [0,1] in N subintervals of 
length 1/N. For a value x = xo, the evaluation of  

][ 0xgq  is the sum of values of Tq that are at a 

distance 
N

x
N
x 100 +

≤≤ ρ from the origin, this 

is proportional to the number of foreground pixels in 
the image that are at a distance ρ  from (0,0). 
The projection algorithm proceeds iterating over as 
many values of q as coefficients are desired for the 
projection of the image over each wavelet function. 
At each iteration, the projection algorithm calculates 
the series ][xgq  and uses the DWT to produce the 
desired coefficients. 
 
 
3   Results 
Using the framework proposed in the last section, 
we created two basis of functions that are 
orthonormal in the unit disk: one using the Haar 
wavelets and another one using the Daubechies 

wavelets. We then tested the quality and rotation 
invariance of the image features that were produced 
using the two basis of functions,  by doing an OCR 
experiment. The OCR experiment was done with 
6471 images of 58 different classes of symbols. To 
have some comparison metrics for the quality of the 
image features extracted, the OCR experiment was 
also run using the open source OCR program 
gOCR[12], and using Zernike moments as image 
features. The features extracted from Zernike 
moments also provided a comparison metric for the 
speed of calculation and rotation invariance of the 
features produced with our basis of functions. 
 
 
3.1 OCR Results using the Haar Wavelet 

Basis 
We extracted a set of 144 complex coefficients (288 
features) for each of the 6471 images available for 
the OCR experiment using the basis functions built 
with the Haar wavelets. Each image contained only 
one symbol of 58 possible classes. We then used the 
support vector machine algorithm LibSVM[10] to 
implement a system of supervised learning. Support 
Vector Machines (SVMs) require a training set of 
known OCR classes. Using the N features of the 
known classes, an SVM creates partitions in the N-
dimensional feature space which, ideally, cluster the 
features of the independent classes. If the feature 
space is well built, when a new image is presented to 
the SVM, its features will belong to the partition of 
the space that corresponds to the correct class. 
We ran the OCR test doing Bootstraping, a well-
known technique to estimate performance statistics 
of a system of supervised learning independently of 
the training set used. In Bootstraping, the set of 6471 
known images is randomly divided into 2 sets: a 
training set and a test set. The training set is used to 
build the partitions of the features space in the SVM, 
and the test set is then classified using the feature 
space previously built. Each time the set of 6471 
known images is partitioned into a training and a test 
set and the SVM algorithm is run is known as one 
replic in the Bootstraping process. In this part of the 
experiment we ran 200 replics of Bootstraping. 
From the results of the Bootstraping process we 
calculated the average error of the system and the 
average a posteriori error per class. The average 
error of the system is an estimate of the probability 
that the system makes an error when classifying any 
given image. The average a posteriori error per class 
is an estimate of the probability that the 
classification of an image into one specific class be 
wrong. Table 1 shows the average error and the 
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standard deviation of the OCR results and Table 2 
shows the a posteriori errors per class. 
 

Features from Avg. Error Std. Deviation 
Haar wavelets 0.041501 .00441240 

 
Table 1. Average error and standard deviation of the 
OCR system using Haar-wavelet features after 200 
replics of Bootstraping. 
 
 

Class ! * + / 1 2 3 4 5 
APE* .07 .05 0 .09 .02 .01 0 0 .01
Class 6 7 8 9 = > ? A B 
APE* 0 0 .01 0 .09 0.1 .52 .01 .01
Class C D E F G H I J K 
APE* .02 .01 0 0 .02 .01 .08 .18 .01
Class L M N O P Q R S T 
APE* .01 0 0 .02 .01 0 0 .03 .04
Class U V W X Y Z \ _ a 
APE* .08 0 0 .02 0 0 .07 .63 0 
Class b d e F g h I J n 
APE* .04 0 .02 .03 .04 .04 .1 .1 .01
Class q r t ~      
APE* 0 .04 0 .34      

*APE = a Posteriori Error 
 
Table 2. Probability of a posteriori errors per class in 
the OCR experiment using features extracted from 
functions built with Haar wavelets. 
 
3.2 OCR Results using Daubechies-4 Wavelet 
Basis 
We extracted 144 complex coefficients (288 
features) for each of the 6471 images in the OCR 
experiment using the basis functions built with the 
Daubechies-4 wavelets. As in the experiment with 
the Haar-wavelet functions, every image contained 
only one of 58 possible classes of symbols. Using 
the Daubechies-4 features, we ran the OCR 
experiment using Support Vector Machines with 
200 replics of Bootstraping. The 200 replics allowed 
us to calculate the average error of the OCR system, 
the standard deviation and the average a posteriori 
error per class. Tables 3 and 4 show these results. 
 

Features from Avg. Error Std. Deviation
Daubechies-4  
wavelets 

0.103617264 .005475998 

 
Table 3. Average error and standard deviation of our 
OCR system using Daubechies-4 features after 200 
replics of Bootstraping. 
 

Class ! * + / 1 2 3 4 5 
APE* .11 0.0 .06 .09 0.0 .01 .02 0.0 .03 
Class 6 7 8 9 = > ? A B 
APE* .03 .02 .01 0.0 .09 .25 .69 0.0 .01 
Class C D E F G H I J K 
APE* .04 0.0 0.0 .04 .02 .03 .06 .02 .02 
Class L M N O P Q R S T 
APE* .01 .01 .02 .03 .03 .01 .04 .04 .12 
Class U V W X Y Z \ _ A 
APE* .03 .03 0.0 .03 .05 .04 .07 .68 .01 
Class b d e f g h i j N 
APE* 0.0 .02 .05 .06 0.0 .02 .15 .08 .04 
Class q r t ~      
APE* .02 .1 .01 .14      

 
Table 4. Probability of a posteriori errors per class in 
the OCR experiment using features extracted from 
functions built with the Daubechies-4 wavelets. 
 
3.2 OCR Results using gOCR 
gOCR is a robust open source OCR that is used in 
many non-commercial applications. From the 58 
classes that we recognized with the Haar wavelet 
coefficients, gOCR can recognize 53, so we ran the 
OCR experiment with gOCR over 4595 images. 
Because gOCR cannot be bootstrapped, we only ran 
one pass over the images and were able to obtain an 
average error for the system and an a posteriori error 
per class but not a standard deviation. The results 
obtained with gOCR are shown in Tables 5 and 6. 
 

gOCR Avg. Error 
 0.063731 

 
Table 5. Average error in the OCR test using gOCR 
 

Class 1 2 3 4 5 6 7 8 9 
APE* 0 .01 0 0 .02 0 0 .02 0 
Class * + < > a A B B C 
APE* .05 .25 0 .2 .64 0 0 0 .02
Class D d E e F f G G H 
APE* 0 0 0 0 0 .02 .67 Na 0 
Class H I I j J K L M n 
APE* 0 0 0 Na 0 0 0 0 .02
Class N O P q Q R r S T 
APE* 0 .02 0 Na .06 0 .74 .05 0 
.04 T U V W X Y Z   
APE* .04 0 0 0 0 0 .2   

*APE = a Posteriori Error 
 
Table 6. Probability of a posteriori errors per class 
using gOCR. 
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3.3 OCR Results using Zernike features 
We ran the OCR test one more time using features 
extracted from Zernike functions. The objective was 
to evaluate the performance of the OCR in average 
error, standard deviation, rotation invariance and 
speed of computation when using Zernike features 
vs using the features obtained from the orthonormal 
functions built with the Haar  and Daubechies-4 
wavelets. Tables 7 and 8 show the results of the 
average error, standard deviation and a posteriori 
errors per class when the OCR experiment is done 
with Zernike features.  

 
Table 7. Average error and standard deviation of the 
OCR system using Zernike Moments as descriptors. 
  

Class ! * + / 1 2 3 4 5 
APE* .12 0 .15 .11 .04 .02 .02 0 .01
Class 6 7 8 9 = > ? A B 
APE* .03 .03 .02 .01 .22 0 .56 0 .01
Class C D E F G H I J K 
APE* .04 0 0 .02 .02 .03 .11 .03 .01
Class L M N O P Q R S T 
APE* 0 .04 .01 .02 .04 .03 0 .03 .06
Class U V W X Y Z \ _ A 
APE* .06 .04 .01 0 .07 0 .09 .51 .01
Class B d e f g h I J N 
APE* 0 .01 .02 .06 .01 .01 .29 .07 .02
Class Q r t ~      
APE* .01 .13 .02 .31      

*APE = a Posteriori Error 
 
Table 8. Probability of a posteriori errors per class 
for the OCR using Zernike Moments as descriptors. 
 
3.4 Rotation Invariance of Image Features 
To compare the rotation invariance qualities of the 
three feature sets used in the OCR experiment, we 
calculated the first 4 features of letters “A”, “B” and 
“C” with 4 different rotations. Because the order of 
magnitude of the features extracted from Zernike 
moments, Haar wavelets and Daubechies-4 wavelets 
vary greatly, they cannot be directly compared for 
rotation invariance. Instead, for the set of rotations 
for each letter, we calculated the following 
dispersion measure, 

|))((|/|))((|))(( ,, xfxfeVarxfeRi
jj iii θθ µ=   (30) 

where Ri stands for rotation invariance and fei(x) 
represents the feature i of class x. So in (30), the 
rotation invariance of feature i of class x is given by 
the ratio of the variance of the magnitude of feature i 

subject to a set of rotations θ j,var(  |fei,θ j |), to the 
mean value of the magnitude of feature i subject to a 
set of rotations θ j, µ(|fei,θ j|). Fig. 4 shows the four 
rotations applied to letters “A”, “B”, and “C” that 
were used to calculate the rotation invariance of the 
first four features of the three sets of features. 

 

Fig. 4. Images of letters A, B and C with the 4 
rotations used to compare the rotation invariance of 
the 3 different sets of features. 
 
Tables 9, 10 and 11 show the rotation invariance 
measures obtained using (30). For each set (A, B, C) 
of rotated letters we calculated 4 features using the 
Haar, Daubechies-4 and Zernike basis. The 
measures indicate how much the modulus of the 
features vary when an image is rotated, the smaller 
the value, the less the variation of the feature 
modulus and the greater the rotation invariance 
associated to the feature. 
 

Table 9. Measures of the rotation invariance of the 
first four image features of rotations of the letter A.  
 

Rotation Invariance of Features 1 to 4 for  “B” 
Haar-wavelet features 
2.056E-07 4.395E-06 1.814E-06 2.67E-06
Daubechies-4 features 
2.407E-06 6.450E-07 2.042E-05 2.03E-06
Zernike features 
0.6366197 0.6366197 0.0053833 0.124141

Table 10. Measures of the rotation invariance of the 
first four image features of rotations of the letter B.  

 

  
    

Features From Avg. Error Std. Deviation 
Zernike Mmts. 0.08709277 0.00598263 

 

Rotation Invariance of Features 1 to 4 for “A” 
Haar-wavelet features 
2.83E-07 1.4891E-06 1.7556E-06 3.2797E-06
Daubechies-4 features 
6.40E-06 1.7158E-06 6.4726E-06 3.2810E-06
Zernike features 
0.636619 0.63661977 0.00591442 0.13663572
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Rotation Invariance of Features 1 to 4 for  “C” 
Haar-wavelet features 
1.330E-06 5.725E-06 5.194E-05 9.13E-05
Daubechies-4 features 
2.362E-05 6.329E-06 1.212E-05 1.89E-05
Zernike features 
0.6366197 0.6366197 0.0769928 3.382378

 
Table 11. Measures of the rotation invariance of the 
first four image features of rotations of the letter C.  
 
3.5 Speed of Computation of Image Features 
The reported times in Table 12 measure the time 
taken to calculate the features used in the OCR 
experiment with the three different basis of 
functions (the image loading and normalization 
times are not taken into account). The total 
calculation time is divided over the total amount of 
features calculated for the entire corpus to obtain an 
average calculation time per feature. 
 

OCR with 
Haar-wavelet 
Features 

OCR with 
Daubechies-4 
wavelet features 

OCR with 
Zernike 
Features 

Features per Image 
288 288 272 
Total Images 
6471 6471 6471 
Calculated Features for all Images in 1 Replic 
1863648 1863648 1760112 
Avg. calculation Time for all Features in 1 Replic (ms)
2253.25 4522.8 208648.4 
Avg. calculation Time per Feature (ms) 
0.0012 0.002426853 0.137502 

 
Table 12. Comparison of calculation times for Haar, 
Daubechies-4 and Zernike features used in the OCR 
experiment. 
 
4 Discussion of Results 
 
4.1 OCR Experiment 
For the OCR experiment, we used as comparison 
metric the average error of the open source OCR 
program gOCR, which is a popular OCR application 
used in many non-commercial systems. gOCR also 
produced the best OCR results (smallest average 
error of classification) among three open source 
OCRs that we tested to be used as our comparison 
metric. The average error of the gOCR system was 
6.37%, which is a very acceptable error for an OCR 
when identifying single characters that cannot be 
verified in the context of a word. 

For the OCR experiment, we formed two basis 
functions, which were orthogonal over the unit disk 
using Haar and Daubechies-4 wavelets. Using these 
orthogonal basis, we extracted two sets of image 
features (288 features per image) from the set of 
6471 images of 58 classes of symbols. We used the 
sets of image features in a supervised learning 
system, where a support vector machine algorithm 
classified the symbols in the images into the 58 
classes. Since the gOCR system does not use 
supervised learning for the classification, we 
obtained a second comparison metric for our results 
by running the support vector machine algorithm 
using Zernike moments as image features. Since 
Zernike moments are well established, robust 
descriptors, they provided a good frame of 
comparison for our wavelet-based image features. In 
the OCR experiment, the results in term of average 
error are shown in Table 13, where it can be seen 
that the features obtained from the Haar wavelets 
performed best and, in general, the experiments that 
used supervised learning outperformed gOCR. 
 

OCR results Average Error 
gOCR 6.37% 
Zernike features 5.47% 
Haar wavelet features 4.41% 
Daubechies-4 features 5.98% 

  
Table 13. Comparison of the average error in the 
OCR experiment obtained with the 4 systems tested. 
 
4.2 Rotation Invariance results 
One of the main motivations of the algorithmic 
methodology proposed in this paper was to produce 
image features that were rotation invariant since our 
research includes identifying randomly positioned 
objects in images. Again, as comparison metric for 
the rotation invariance quality of our produced sets 
of image features we used Zernike moments. 
Zernike moments are a standard for comparison for 
rotation invariance and it is this quality that makes 
them so popular in scientific literature. To test for 
rotation invariance we used three sets of images. 
Each set of images represented a symbol (letters 
“A”, “B”, and “C”) with four rotations. We 
calculated 4 features for each set of  images. If  a 
feature were perfectly rotation invariant, its value 
would be the same for all the images in the set. We 
compared the variation of the first 4 features 
produced with the three basis of functions. For 
comparison we propose a dispersion measure that 
calculates the ratio of the variance of  the magnitude 
of a feature vs the average magnitude of the feature, 
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(see (30)). Table 14 shows the results of rotation 
invariance, where the features obtained from Haar 
wavelets showed the best invariance to rotation 
followed by the Daubechies-4 features. Both sets of 
wavelet-based features outperformed the features 
obtained from Zernike moments. 
 

Average Rotation 
Invariance of  
Image features 

Letter 
“A” 

Letter 
“B” 

Letter 
“C” 

Zernike moments 0.3539 
 

0.350691 
 

1.183152 
 

Haar wavelet  1.701E-6 
 

2.273E-6 
 

3.758E-5 
 

Daubechies-4  4.468E-6 
 

6.377E-6 
 

1.525E-5 
 

 
Table 14. Results of the rotation invariance of the 
image features obtained from the wavelet basis vs 
the image features obtained from Zernike moments. 
 
4.3 Speed of Computation Results 
Another main objective of our algorithmic 
methodology to produce image features, was that 
their computation complexity be much lower than 
the computational complexity of Zernike features. 
Since our research includes automatic recognition of 
images over large databases of several thousand 
images, speed of computation was an issue. Table 
15 shows the results of the average computation 
time in milliseconds needed to extract one feature 
using the three different sets of projection functions. 
Haar wavelet functions proved to have the smaller 
computational complexity and outperformed 
Daubechies-4 and Zernike in speed of computation. 
 

Avg. computation time  
per feature 

 

Zernike moments 0.1375 ms 
Haar wavelets 0.0012 ms 
Daubechies-4 wavelets 0.0024 ms 

  
Table 15. Results of speed of computation per 
feature for the three function basis. 
 
5 Conclusion 
We propose a framework for extracting rotation 
invariant image features from a wide variety of 
function sets. The function sets are first made 
orthogonal over the unit disk by a non linear scaling 
of their domain and then an exponential term is 
associated to them. We have tested the proposed 
framework using the Daubechies family of wavelets, 
in particular Haar and Daubechies-4 to obtain 

features for over 6000 images. We did an OCR 
experiment to compare the average error of a 
supervised learning system vs the error of an open 
source OCR. We also compared the quality of the 
wavelet features against the Zernike moments. The 
OCR experiment using supervised learning obtained 
a lower average classification error than the open 
source OCR, and in particular the features obtained 
from our wavelet based functions performed better 
than the features obtained from Zernike moments. 
As for rotation invariance and speed of computation, 
the wavelet based features also outperformed the 
Zernike features.  
Of interest in the methodology we propose in this 
paper is that, for a given type of image classes, 
several sets of image features can be produced until 
the one that produces the best classification results is 
identified. The sets of image features will all have 
the property of rotation invariance. In our results, we 
observed that, for binarized images of letters, the 
Haar wavelet features produced the best results. Our 
current work includes running tests with gray-level 
and color images to find the most suitable set of 
image features for automatic recognition of the 
image content. 
 
References: 
[1]Belkasim S., Hassan E., Obeidi T., „Explicit 

invariance of Cartesian Zernike moments“, Patt. 
Recognition Letters, Vol 28, 2007, pp 1969-1980 

[2] Teoh Ben Jin A., Ngo Chek Ling D., Than Song 
O., “An efficient fingerprint verification system 
suing integrated wavelet and Fourier-Mellin 
invariant transform”, Image and Vision 
Computing, Vol 22, 2004, pp. 503-513 

[3]  Sastry C.S., Pujar A.K., Deekshatulu B.L., “A 
Fourier-Radial Descriptor Algorithm for 
Invariant Feature Extraction”, International 
Journal of Wavelets, Multiresolution and Inf. 
Proc, Vol. 4, No. 1, 2006, pp. 197-212 

[4] Sastry C. S., Pujari A. K., Deekshatulu B.L., 
Bhagvati C., “A wavelet based multiresolution 
algorithm for rotation invariant feature 
extraction”, Pattern Recognition Letters, Vol. 
25, 2004, pp. 1845-1855 

[5] Li C., Huang, J-Y., Chen C-M., „Soft computing 
approach to feature extraction“, Fuzzy sets and 
systems, Vol. 147, 2004, pp. 119-140 

[6] Shustorovich, A.,”Scale specific and Robust 
Edge/Line Encoding with Linear Combinations 
of Gabor Wavelets”, Pattern Recognition, Vol. 
27, No. 5., 1994, pp.713-725  

[7] Shustorovich A., “A Subspace Projection 
Approach to Feature Extraction: The Two-
Dimensional Gabor Transform for Character 

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Santiago Akle, Maria-Elena Algorri, Ante Salcedo

ISSN: 1790-0832 672 Issue 5, Volume 5, 2008



Recognition”, Neural Networks, Vol. 7, No. 8, 
1994, pp 1295-1301  

[8] Lee M-C., Pun C-M.,”Rotation and Scale 
Invariant Wavelet Feature for Content-Based 
Texture Image Retrieval”, Journal of the 
American Society. for Information Science and 
Technology, Vol 54. No. 1, 2003, pp. 68-80 

[9] Shen D., Ip H., “Discriminative wavelet shape 
descriptors for recognition of 2D patterns”, 
Pattern Recognition, Vol 32, 1999 pp. 151-165 

 [10]  Chang, C-C., Lin C-J., „LibSVM: A library 
for support vector machines“, 2001, 
http://www.csie.ntu.tw/cjlin/libsvm 

[11] Mallat, S., “A Wavelet Tour of Signal 
Processing”, Elsevier, 1999 

[12] Schulenburg J,gOCR,http://jocr.sourceforge.net 
[13] Park L. A. F., Ramamohanarao K., 

Palaniswami M., “A Novel Document Retrieval 
Mehtod Using the Discrete Wavelet Transform”, 
ACM Transactions on Information Systems, Vol. 
23, No. 3, July 2005, pp. 267 – 298 

[14]Karam O.H., Hamad A.M., Ghoniemy S., Rady 
S., “Enhancement of Wavelet-Based Medical 
Image Retrieval through Feature Evaluation 
Using an Information Gain Measure”, Proc. of 
the ACM Symposium on Applied Computing, 
2003, pp. 220 -- 226  

[15] Kisilev P., Zibulevsky M., Zeevi Y.Y., “A 
Multiscale Framework for Blind Separation of 
Linearly Mixed Signals”, Journal of Machine 
Learning Research, Vol. 4, 2003, pp. 1339—
1364 

[16] Papadimitriou S., Brockwell A., Faloutsos C., 
“Adaptive, unsupervised stream mining”, The 
VLDB Journal, Vol. 13, 2004, pp. 222 – 239 

[17] Andrew T.B.J., David N.C.L., “Integrated 
Wavelet and Fourier-Mellin Invariant Feature in 
Fingerprint Verification System”, Proc. of the 
ACM SIGMM workshop on Biometrics methods 
and applications, 2003, pp. 82—88 

[18] Grimaldi M., Cunningham P., Kokaram A., “A 
Wavelet Packet Representation of Audio Signals 
for Music Genre Classification Using Different 
Ensemble and Feature Selection Techniques”, 
Proc. of the ACM SIGMM intl. workshop on 
Multimedia info. retrieval, 2003, pp. 102-- 108  

[19] Li. T., Li, Q., Zhu S., Ogihara M., „A Survey 
on Wavelet Applications in Data Mining“, 
SIGKDD Explorations Newsletter, Vol. 4, No. 2, 
2002, pp. 49—68 

  

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Santiago Akle, Maria-Elena Algorri, Ante Salcedo

ISSN: 1790-0832 673 Issue 5, Volume 5, 2008


