

IMPROVING QUERY PERFORMANCE IN VIRTUAL DATA
WAREHOUSES

ADELA BÂRA
ION LUNGU

MANOLE VELICANU
VLAD DIACONIŢA
IULIANA BOTHA

Economic Informatics Department
Academy of Economic Studies

Bucharest
ROMANIA

ion.lungu@ie.ase.ro
manole.velicanu@ie.ase.ro

bara.adela@ie.ase.ro
diaconita.vlad@csie.ase.ro

iuliana.botha@ie.ase.ro

Abstract: In order to improve the quality of Business Intelligence Systems in an organization we can choose to build
the system using BI techniques such as OLAP and data warehousing or by using traditional reports based on SQL
queries. The cost and developing time for BI tools is greater than those for SQL Reports and these factors are
important in taking decisions on what type of techniques we used for BIS, also the problem of low performance in
data extraction from data warehouse can be critical because of the major impact in the using the data from data
warehouse: if a BI report is taking a lot of time to run or the data displayed are no longer available for taking critical
decisions, the project can be compromised. In this case there are several techniques that can be applied to reduce
queries’ execution time and to improve the performance of the BI analyses and reports. In this paper we present an
overview of an implementation of a Business Intelligence project in a national company, the problems we confronted
with and the techniques that we applied to reduce the cost of execution for improving query performance in this
decisional support system.

Key-Words: Tuning and optimization, SQL query plans, Business Intelligence projects, Virtual data warehouse, Data
extraction, Query optimization and performance, Partitioning techniques, Indexes, Analytical functions

1 Introduction
The main goal of Business Intelligence Systems (BIS)
is to assist managers, at different levels in the
organization, in taking decisions and to provide in real
time representative information, to help and support
them in their activities such as analyzing departmental
data, planning and forecasting activities for their
decision area [1].

Through Business Intelligence Systems managers
can manipulate large sets of data in a short period of
time or in real time manner. In essence, managers at
every departmental level can have a customized view
that extracts information from transactional sources
and summarizes it into meaningful indicators. These
systems usually work with large sets of data and
require a short response time and if you consider using
analytical tools like OLAP against virtual data
warehouses then you have to build your system
through SQL queries and retrieve data directly from
OLTP systems. In this case, the large amount of data
in ERP systems may lead to an increase of responding

time for BIS. That’s why you should consider applying
optimization techniques in order to improve the BI
system’s performance.

2 Data warehouses – a different business
perspective

ERP systems are implemented in many
organizations for operational and transactional
processing for different functional areas such as:
financials, inventory, purchase, order management,
production. Information from these functional areas
within an ERP system is managed by a relational
software database (such as Oracle Database, DB2 or
Microsoft SQL Server). Operational levels of
management require detailed reports with daily
operational activities. But the managers need
information for strategic and tactical decision that
often requires reports with aggregated data from ERP
and non-ERP application sources. The usual reports
developed from daily transactions does not satisfy the
business needs, an executive cannot take a real time

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Adela Bâra, Ion Lungu, Manole Velicanu, Vlad Diaconiţa, Iuliana Botha

ISSN: 1790-0832 632 Issue 5, Volume 5, 2008

decision based on a hundred pages per month cash-
flow detailed report. Information must be aggregated
and presented with a template based on a business

model. In the table below we represent the main
differences between ERP reports and BIS reports:

CHARACTERISTICS ERP REPORTS EIS REPORTS

Objectives Analyze indicators that measure current and

internal activities or daily reports

Processes optimization, analyze key

performance indicators,

forecast internal and external data, internal

and external focus

Level of decision Operational/Medium Strategic/High

User involved Operational level of management Executives, strategic level of management

Data Management Relational databases Data warehouse Data warehouse

OLAP

Data Mining

Typical operation Report/Analyze Analyze

Number of

records/transaction

Limited Huge

Data Orientation Record Cube

Level of detail Detailed, summarized, pre-aggregate Aggregate

Age of data Current Historical/current/prospective

Table 1: A comparison between ERP and BIS reports

The reports developed on transactional data
usually operate on relatively few rows at a time. So, in
order to improve the query performance we can use an
index that can point to the rows that are required and,
for this case the DBMS system can construct an
accurate plan to access those rows efficiently through
the shortest possible path. In Business Intelligence
environments selectivity is less important, because
they often access more table's rows and full table scans
are common. In this situation indexes are not even
used [4]. BI Systems usually work with large sets of
data and require a short response time. If you consider
not using analytical tools like OLAP and data
warehousing techniques then you have to build your
system through SQL queries and retrieve data directly
from OLTP systems. In this case, the large amount of
data in ERP systems may lead to an increase of
responding time for the BIS. That’s why you should
consider phrasing the queries using the best
optimization techniques.
2.1 Data warehouse - virtual vs. aggregate
From our point of view a data warehouse represents
the main technique for integrating and organizing
data from different sources, homogeneous or
heterogeneous, with different characteristics, extracted
from transactional systems or from flat files. Data
warehouses integrate data based on a business model,

and contain an extract, transform and load process
(ETL) that is applied in order to aggregate and store
data on several hierarchical levels required for
Business Intelligence systems’ dynamical extraction
and analysis.
From this approach, the role of the data warehouse is
essential for data management and knowledge
management. But, in data warehouse’s development in
the organization or even at departmental levels (also
known as data marts) the main problems are about
online performance, data access, metadata
administration, storing and organizing the data
warehouse, the size and the periodical loading of data.
These problems may appear distinctively accordingly
to the characteristics and the type of the data
warehouse and also to the performance of the DBMS
in charge.
In the following sections we’ll present a classification
of the data warehouse from the functional area point of
view: there are three types of data warehouses [2], [3]:

• Central data warehouse or enterprise
warehouse collects all the data from the
organization that concern different business
subjects for taking decisions and contains a
large amount of data. Usually contains both
detailed data and aggregate data and in terms
of size it starts from a few gigabytes to several

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Adela Bâra, Ion Lungu, Manole Velicanu, Vlad Diaconiţa, Iuliana Botha

ISSN: 1790-0832 633 Issue 5, Volume 5, 2008

terabytes. This type of data warehouse must be
implemented on powerful UNIX servers or
against parallel architectures and requires lots
of resources and expenses, the development
phases take more than one year.

• Data mart contains a subset of organizational
data, with specific characteristics required by a
group of users or managers or department. The
data mart’s domain is limited on certain
subjects and the data is usually aggregated on
the hierarchical levels developed for these
specific requirements. The data marts are
implemented at departmental levels with fewer
resources than enterprise data warehouses and
the platforms are UNIX or Windows
2000/2003. The development cycle takes
several months or about a year and the size
counts over 1 gigabyte. The data mart is more
easily to implement and can be considered as a
sub-data warehouse.

• Virtual data warehouse is a set of views or
materialized views among the operational
databases logically implemented as a data

warehouse (in terms of dimensions and facts).
In order to improve the query performance
only a few of the view are materialized and
aggregated. A virtual data warehouse is easy
to developed, but the problem of extracting
data and processing is the task of the DBMS,
this can lead to inefficiency and low-
performance and also time consuming. But the
necessity of storing data into a data warehouse
is eliminated. The virtual data warehouse
involves a smaller size of data, if this size is
increasing the extracting time is also
increasing and our recommendation is to
combine the virtual data warehouse with a
solution that can store the aggregate data (a
data mart or a data warehouse).

In the next table we compare from different pot of
view and criteria the advantages and
disadvantages of these three types of data
warehouses.

Enterprise data warehouse Data Mart Criteria
Virtual Aggregate Virtual Aggregate

The size of the data
warehouse

None, data are
stored in databases

Extremely high (terra
bytes), data is
aggregated and stored
at every level

None, data are
stored in databases

High (max 1Tb),
data is aggregated
and stored at every
level but the size is
smaller

The size of the data
sources

Extremely high,
data dictionary
contains
information about
the VDW views an
structures also

The DW not implies the
data sources, the size
depends on the
transactional systems

Extremely high,
data dictionary
contains
information about
the DM views an
structures also

The DM not
implies the data
sources, the size
depends on the
transactional
systems

Data warehouse’s
objects

These are objects
of the database –
views and tables
that will be mapped
on the VDW

These are
multidimensional
objects: facts,
dimensions,
hierarchical levels,
attributes, relations, etc.

These are objects
of the database –
views and tables
that will be mapped
on the VDM

These are
multidimensional
objects: facts,
dimensions,
hierarchical levels,
attributes, relations,
etc.

Metadata
administration

It’s realized at
relational level.

It’s realized at
multidimensional level.

It’s realized at
relational level.

It’s realized at
multidimensional
level.

Loading performance Very low, it is not
a loading it actually
a query against
millions of rows
from relational
databases.

Moderate, the data
volume and structure
make it time consuming
and it can take more
than a day.

Low, it is not a
loading but a query
against thousands
of rows from
relational
databases.

High, the volume
of data it is not so
big so the process
can take less than a
day.

ETL process It is realized at the
relational level and
consists in data
processing through

It is realized at the data
warehouse level
through functions,
procedures and special

It is realized at the
relational level and
consists in data
processing through

It is realized at the
data warehouse
level through
functions,

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Adela Bâra, Ion Lungu, Manole Velicanu, Vlad Diaconiţa, Iuliana Botha

ISSN: 1790-0832 634 Issue 5, Volume 5, 2008

functions, packages
and stored
procedures. The
process is realized
in online with low
performance.

operators. It a very
complex process for
data transformation.

functions, packages
and stored
procedures. The
process is realized
in online with low
performance.

procedures and
special operators. It
a complex process
for data
transformation.

The level of detail Detailed, the data
are extracted
directly from
relational sources.

Detailed and aggregate,
data is stored pre-
calculated.

Detailed, the data
are extracted
directly from
relational sources.

Detailed and
aggregate, data is
stored pre-
calculated.

Operators and
analytical processing

Usually are applied
at the interface
level or at the
client level.

They are applied at the
data warehouse level
and at the applications
level.

Usually are applied
at the interface
level or at the
client level.

They are applied at
the data warehouse
level and at the
applications level.

Modifying the DW’s
structure

Very difficult, with
important changes
in VDW’s views
and structures – is
the rebuilding of
the VDW.

With difficulties, it
implies several changes
in DW’s structure. At
the development phase
it should be considered
such possibilities in
order not to re-build the
whole DW.

Difficult, with
several changes in
the VDM’s
structure and
views.

Easily, not so many
changes.

Analytical performance Very low, all the
aggregations,
sorting and
calculations are
processed online,
that lead to an
increasing time,
over an hour.

High, all the
aggregations, sorting
and calculations are
processed before the
extraction and stored in
that form and retrieved
by the client
application. But the size
of the DW can slow
down the analytical
process.

Moderate, all the
aggregations,
sorting and
calculations are
processed online,
but the size of the
data is not so huge
and lead to respond
time in term of
minutes.

Very high, all the
aggregations,
sorting and
calculations are
processed before
the extraction and
stored in that form
and retrieved by
the client
application.

Historical data analysis The analysis is
limited to the
period of relational
sources.

Data are loaded into the
DW periodically, so the
historical data is
available from the
beginning of the DW.

The analysis is
limited to the
period of relational
sources.

Data are loaded
into the DM
periodically, so the
historical data is
available from the
beginning of the
DM.

Forecast It can be applied
only at the client
level, but it’s
difficult to work
with due of the
huge volume of
data.

It can be applied both at
the data warehouse
level and at the client
level using special
functions and operators.

It can be applied
only at the client
level, and it’s
working well with
short periods.

It can be applied
both at the data
warehouse level
and at the client
level using special
functions and
operators.

Application
independence

The impact of data
changes is very
strong and the
applications must
be re-build.

The logical levels of the
data warehouse confer
independence to the
applications and the
changes in the DW
have a minor impact on
them.

Applications are
dependent on
database views so
every change in the
VDM structure has
an impact on the
applications.

The logical levels
of the data mart
confer
independence to
the applications
and the changes in
the DW have a
minor impact on
them.

Development cycle The development
time is medium;
the problems
appear at the ETL

The development
period can take over an
year, the DW’s objects
must be design, the

The development
period can take less
than 3 months.

The development
time is medium;
the problems
appear at the ETL

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Adela Bâra, Ion Lungu, Manole Velicanu, Vlad Diaconiţa, Iuliana Botha

ISSN: 1790-0832 635 Issue 5, Volume 5, 2008

process. ETL process must be
developed, also
mappings and
transformations take
place.

process.

Technical risks The slow respond
time and time
consuming queries,
ETL process that
must be realized at
the client level,
huge data volume,
all these can make
the VDW
inefficient.

The complexity of the
development cycle and
the huge volume of
data, also the impact
over the organization
are the major risks
factors.

The ETL process
that is realized at
the client level.

There are fewer
risks involved, but
the functionality is
not so proper
developed.

Table 2: Comparative analysis of different types of data warehouses

3 Actual state and problems of the BI
project

In the research project that we implemented in one
of the multinational companies from our country we
applied these concepts and also the requests from the
executives and managers from the company. For the
project lifecycle we applied the steps described in the
book Executive Information Systems [2]. With BI
techniques, like data warehouse, OLAP, data mining,
portal we succeeded to implement the BI system’s
prototype and to validate it with the managers and
executives. The BIS gathers data from the ERP system
implemented in the organization from different
functional areas or modules such as: financials,
inventory, purchase, order management, production.
Information from these functional modules within the
ERP system is managed by a relational database
management system - Oracle Database Enterprise
Edition 10g. From the relevant data sources we applied
an ETL (extract, transform and load) process that load
data into the target sources. In this step we have to
choose between the two data warehouses solutions:
store data and virtual extraction. After a comparative
analysis between these techniques we choose the
second solution. The major elements in this choose
ware that the ERP system was not yet fully
implemented and there are many more changes to do,
the amount of data is not so large – 3 millions records
from January 2007 to August 2007, and the
implementation of a virtual data warehouse is fastest
and with a low budget then a traditional data
warehouse. We also consider developing in parallel in
the next months a traditional data warehouse after
testing and implemented the actual prototype.

So, we developed the virtual data warehouse
based on a set of views that collects data from the ERP
system based on an ETL process that we designed.

After we developed the analytical decisional reports
and test them in a real organizational environment
with over 100 users, we measured the performance of
the system and the main problem was the high cost of
execution. These analytical reports were over 80%
resource consuming of the total resources allocated for
the ERP and BI systems. Also, the critical moment
when the system was breaking down was at the end of
each month when all transactions from functional
modules were posted to the General Ledger module.
Testing all parameters and factors we concluded that
the major problem was in the data extraction from the
views.

First solution was to rewrite the views and
build materialized views and semi-aggregate tables.
Data sources are loaded in these tables by the ETL
process periodically, at the end of the month after
posting to the General Ledger or at user request. The
ETL process contains a set of procedures grouped in
three types of packages: extraction, transforming and
loading. The target data are stored in tables used
directly by the analytical reports. A benefit of this
solution is that it eliminates the multiple joins from the
views and also that we can use the ETL process to load
data in the future data warehouse that we are going to
implement in the next months.

After these operations we re-test the systems
under the real conditions. The time for data extraction
was again too long and the costs of executions
consumed over 50% of total resources. So we consider
using some of optimization techniques like: table
partitioning, indexing, using hints and using analytical
functions instead of data aggregation in some reports.
In the following section we describe these techniques
and provide a comparative analysis of some of our
testing results.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Adela Bâra, Ion Lungu, Manole Velicanu, Vlad Diaconiţa, Iuliana Botha

ISSN: 1790-0832 636 Issue 5, Volume 5, 2008

3. Compute statistics and explain the
execution plan of SQL queries

When a SQL statement is executed on an Oracle
database, the Oracle query optimizer determines the
most efficient execution plan after considering many
factors related to the objects referenced and the
conditions specified in the query. The optimizer
estimates the cost of each potential execution plan
based on statistics in the data dictionary for the data
distribution and storage characteristics of the tables,
indexes, and partitions accessed by the statement and it
evaluates the execution cost. This is an estimated value
depending on resources used to execute the statement.
The optimizer calculates the cost of access paths and
joins orders based on the estimated computer resources,
which includes I/O, CPU, and memory [4]. This
evaluation is an important factor in the processing of
any SQL statement and can greatly affect execution
time.

During the evaluation process, the query optimizer
reviews statistics gathered on the system to determine
the best data access path and other considerations. We
can override the execution plan of the query optimizer
with hints inserted in SQL statement. A SQL statement
can be executed in many different ways, such as full
table scans, index scans, nested loops, hash joins, and
sort merge joins. We can set the parameters for query
optimizer mode depending on our goal. By default the
optimizer is set to the best throughput which chooses
the least amount of resources necessary to process all
rows accessed by the statement. But for MIS, time is
one of the most important factor and we should
optimize a statement with the goal of best response
time. To set up the goal of the query optimizer we can
use one of the hints that can override the
OPTIMIZER_MODE initialization parameter for a
particular SQL statement [4]. So, we can use
FIRST_ROWS (n) hint to instruct Oracle to optimize
an individual SQL statement with a goal of best
response time to return the first n number of rows. The
hint uses a cost-based approach for the SQL statement,
regardless of the presence of statistic. The second
option is to use ALL_ROWS hint that explicitly
chooses the cost-based approach to optimize a SQL
statement with a goal of best throughput.

We can collect exact or estimated statistics about
physical storage characteristics and data distribution in
these schema objects by using the DBMS_STATS
package. We can use this package to collect
histograms for table columns that contain values with
large variations in number of duplicates, called skewed
data [5]. The resulting statistics provide information
about data uniqueness and distribution and based on
this, the query optimizer can compute plan costs with a

high degree of accuracy. This enables the query
optimizer to choose the best execution plan based on
the least cost. For example we can gather and view
statistics against tables in our schema:

BEGIN
DBMS_STATS.GATHER_TABLE_STATS

(USER, 'BALANCE_RESULTS_A');
END;
/
SELECT COLUMN_NAME, COUNT(*)
FROM USER_TAB_HISTOGRAMS
WHERE TABLE_NAME='

BALANCE_RESULTS_A'
GROUP BY COLUMN_NAME;

4 Optimization solutions
4.1 Partitioning

The main objective of Partitioning technique
is to radically decrease the amount of disk activity and
limiting the amount of data to be examined or operated
on and enabling parallel execution required to perform
Business Intelligence queries against virtual data
warehouses. Tables are partitioning using a
partitioning key that is a set of columns which will
determine by their conditions in which partition a
given row will be store. Oracle Database 10g on which
our ERP is implemented provides three techniques for
partitioning tables:

Range Partitioning - specify by a range of
values of the partitioning key;

List Partitioning - specify by a list of values of
the partitioning key;

Hash Partitioning - a hash algorithm is applied
to the partitioning key to determine the partition for a
given row;

Also, there can be use sub partitioning
techniques in which the table in first partitioned by
range/list/hash and then each partition is divided in sub
partitions:

Composite Range-Hash Partitioning – a
combination of Range and Hash partitioning
techniques, in which a table is first range-partitioned,
and then each individual range-partition is further sub-
partitioned using the hash partitioning technique;

Composite Range-List Partitioning - a
combination of Range and List partitioning techniques,
in which a table is first range-partitioned, and then
each individual range-partition is further sub-
partitioned using the list partitioning technique.

Index-organized tables can be partitioned by
range, list, or hash [4]

In our case we consider evaluating each type
of partitioning technique and choose the best method
that can improve the BI system’s performance.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Adela Bâra, Ion Lungu, Manole Velicanu, Vlad Diaconiţa, Iuliana Botha

ISSN: 1790-0832 637 Issue 5, Volume 5, 2008

Thus, we create two tables based on the main
table which is used by some analytical reports and
compare the execution cost obtained by applying the
same query on them. First table
BALANCE_RESULTS_A contained un-partitioned
data and is the target table for an ETL sub-process. It
counts 55000 rows and the structure is shown below in
the scripts. The second table
BALANCE_RESULTS_B is a range partitioned table
by column ACC_DATE which refers to the accounting
date of the transaction. This table has four partitions as
you can observe from the script below:

CREATE TABLE BALANCE_RESULTS_B
(ACC_DATE DATE NOT NULL,
 PERIOD VARCHAR2(15) NOT NULL,
 ACC_D NUMBER,
 ACC_C NUMBER,
 ACCOUNT VARCHAR2(25),
 DIVISION VARCHAR2(50),
 SECTOR VARCHAR2(100),
 MANAGEMENT_UNIT VARCHAR2(100))
PARTITION BY RANGE (ACC_DATE)
(PARTITION QT1 VALUES LESS THAN
(TO_DATE('01-APR-2007', 'DD-MON-YYYY')),
PARTITION QT2 VALUES LESS THAN
(TO_DATE('01-JUL-2007', 'DD-MON-YYYY')),
PARTITION QT3 VALUES LESS THAN
(TO_DATE('01-OCT-2007', 'DD-MON-YYYY')),
PARTITION QT4 VALUES LESS THAN
(TO_DATE('01-JAN-2008', 'DD-MON-YYYY')));

Then, we create the third table which is
partitioned and that contained also for each range
partition four list partitions on the column “Division”
which is very much used in data aggregation in our
analytical reports. The script is showed below:

CREATE TABLE BALANCE_RESULTS_C
(ACC_DATE DATE NOT NULL,
 PERIOD VARCHAR2(15) NOT NULL,
 ACC_D NUMBER,
 ACC_C NUMBER,
 ACCOUNT VARCHAR2(25),
 DIVISION VARCHAR2(50),
 SECTOR VARCHAR2(100),
 MANAGEMENT_UNIT VARCHAR2(100))
PARTITION BY RANGE (ACC_DATE)
SUBPARTITION BY LIST (DIVISION)
(PARTITION QT1 VALUES LESS THAN
(TO_DATE('01-APR-2007', 'DD-MON-YYYY'))
(SUBPARTITION QT1_OP VALUES
('A.MTN','B.CTM','C.TRS','D.WOD','E.DMA'),
 SUBPARTITION QT1_GA VALUES ('F.GA
OP','G.GA CORP'),

 SUBPARTITION QT1_AFO VALUES ('H.AFO
DIV','I.AFO CORP'),
 SUBPARTITION QT1_EXT VALUES
('J.EXT','K.IMP')),
PARTITION QT2 VALUES LESS THAN
(TO_DATE('01-JUL-2007', 'DD-MON-YYYY'))
(SUBPARTITION QT2_OP VALUES
('A.MTN','B.CTM','C.TRS','D.WOD','E.DMA'),
 SUBPARTITION QT2_GA VALUES ('F.GA
OP','G.GA CORP'),
 SUBPARTITION QT2_AFO VALUES ('H.AFO
DIV','I.AFO CORP'),
 SUBPARTITION QT2_EXT VALUES
('J.EXT','K.IMP')),
PARTITION QT3 VALUES LESS THAN
(TO_DATE('01-OCT-2007', 'DD-MON-YYYY'))
(SUBPARTITION QT3_OP VALUES
('A.MTN','B.CTM','C.TRS','D.WOD','E.DMA'),
 SUBPARTITION QT3_GA VALUES ('F.GA
OP','G.GA CORP'),
 SUBPARTITION QT3_AFO VALUES ('H.AFO
DIV','I.AFO CORP'),
 SUBPARTITION QT3_EXT VALUES
('J.EXT','K.IMP')),
PARTITION QT4 VALUES LESS THAN
(TO_DATE('01-JAN-2008', 'DD-MON-YYYY'))
(SUBPARTITION QT4_OP VALUES
('A.MTN','B.CTM','C.TRS','D.WOD','E.DMA'),
 SUBPARTITION QT4_GA VALUES ('F.GA
OP','G.GA CORP'),
 SUBPARTITION QT4_AFO VALUES ('H.AFO
DIV','I.AFO CORP'),
 SUBPARTITION QT4_EXT VALUES
('J.EXT','K.IMP')));

After loading data in these two partitioned tables
we gather statistics with Analyze clause and the results
of these statistics are showed below in fig 1 and fig 2:

SELECT * FROM USER_TAB_PARTITIONS S
WHERE S.TABLE_NAME =
'BALANCE_RESULTS_B';

Fig. 1: Statistics from table BALANCE_RESULTS_B

SELECT * FROM USER_TAB_SUBPARTITIONS S
WHERE S.TABLE_NAME =
'BALANCE_RESULTS_C';

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Adela Bâra, Ion Lungu, Manole Velicanu, Vlad Diaconiţa, Iuliana Botha

ISSN: 1790-0832 640 Issue 5, Volume 5, 2008

Fig. 2: Statistics from table BALANCE_RESULTS_C

Analyzing the decision support reports we choose a
sub-set of queries that are always performed and
which are relevant for testing the optimization

techniques. We run these queries on each test table A,
B and C and compare the results in table 3.

TABLE: TABLE_A TABLE_B TABLE_C

Partition range by date on
column “ACC_DATE”

Partition range by date with four list
partitions on column “DIVISION”

QUERRY:

Not
partitioned

Without
partition
clause

Partition
(QT1)

Without
partition
clause

Partition
(QT1)

Sub-partition
(QT1_AFO)

SELECT * FROM … 100 121 - 224 - -
WHERE EXTRACT (MONTH FROM
ACC_DATE) =1;

103 124 42 227 72 72

… AND DIVISION='H.AFO DIVIZII' 101 122 42 10 5 72
SELECT SUM(ACC_D) TD,
SUM(ACC_C) TC FROM
BALANCE_RESULTS_A A
WHERE EXTRACT (MONTH FROM
ACC_DATE) =1
AND DIVISION='H.AFO DIVIZII'

101 122 42 10 5 72

… AND MANAGEMENT_UNIT
='MTN'

101 122 42 225 72 72

SELECT /*+ USE_HASH (A U)*/ A.*,
U.LOCATION,U.COUNTRY,
U.REGION
FROM BALANCE_RESULTS_A A
,MANAGEMENT_UNITS U
WHERE
A.MANAGEMENT_UNIT=U.MANAGE
MENT_UNIT
AND EXTRACT (MONTH FROM
ACC_DATE) =1

106 127 46 231 76 76

… AND A.DIVISION = 'H.AFO
DIVIZII'

105 126 45 14 9 75

…/*+ USE_NL (A U)*/ 191 212 71 100 8 101
…/*+ USE_NL (A U)*/
--WITH INDEXES

151 172 58 60 6 88

…/*+ USE_MERGE (A U)*/
--WITH INDEXES

104 125 45 13 8 75

…AND U.MANAGEMENT_UNIT
='MTN'

104 125 45 75 9 75

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Adela Bâra, Ion Lungu, Manole Velicanu, Vlad Diaconiţa, Iuliana Botha

ISSN: 1790-0832 639 Issue 5, Volume 5, 2008

Thus, we create two tables based on the main
table which is used by some analytical reports and
compare the execution cost obtained by applying the
same query on them. First table
BALANCE_RESULTS_A contained un-partitioned
data and is the target table for an ETL sub-process. It
counts 55000 rows and the structure is shown below in
the scripts. The second table
BALANCE_RESULTS_B is a range partitioned table
by column ACC_DATE which refers to the accounting
date of the transaction. This table has four partitions as
you can observe from the script below:

CREATE TABLE BALANCE_RESULTS_B
(ACC_DATE DATE NOT NULL,
 PERIOD VARCHAR2(15) NOT NULL,
 ACC_D NUMBER,
 ACC_C NUMBER,
 ACCOUNT VARCHAR2(25),
 DIVISION VARCHAR2(50),
 SECTOR VARCHAR2(100),
 MANAGEMENT_UNIT VARCHAR2(100))
PARTITION BY RANGE (ACC_DATE)
(PARTITION QT1 VALUES LESS THAN
(TO_DATE('01-APR-2007', 'DD-MON-YYYY')),
PARTITION QT2 VALUES LESS THAN
(TO_DATE('01-JUL-2007', 'DD-MON-YYYY')),
PARTITION QT3 VALUES LESS THAN
(TO_DATE('01-OCT-2007', 'DD-MON-YYYY')),
PARTITION QT4 VALUES LESS THAN
(TO_DATE('01-JAN-2008', 'DD-MON-YYYY')));

Then, we create the third table which is
partitioned and that contained also for each range
partition four list partitions on the column “Division”
which is very much used in data aggregation in our
analytical reports. The script is showed below:

CREATE TABLE BALANCE_RESULTS_C
(ACC_DATE DATE NOT NULL,
 PERIOD VARCHAR2(15) NOT NULL,
 ACC_D NUMBER,
 ACC_C NUMBER,
 ACCOUNT VARCHAR2(25),
 DIVISION VARCHAR2(50),
 SECTOR VARCHAR2(100),
 MANAGEMENT_UNIT VARCHAR2(100))
PARTITION BY RANGE (ACC_DATE)
SUBPARTITION BY LIST (DIVISION)
(PARTITION QT1 VALUES LESS THAN
(TO_DATE('01-APR-2007', 'DD-MON-YYYY'))
(SUBPARTITION QT1_OP VALUES
('A.MTN','B.CTM','C.TRS','D.WOD','E.DMA'),
 SUBPARTITION QT1_GA VALUES ('F.GA
OP','G.GA CORP'),

 SUBPARTITION QT1_AFO VALUES ('H.AFO
DIV','I.AFO CORP'),
 SUBPARTITION QT1_EXT VALUES
('J.EXT','K.IMP')),
PARTITION QT2 VALUES LESS THAN
(TO_DATE('01-JUL-2007', 'DD-MON-YYYY'))
(SUBPARTITION QT2_OP VALUES
('A.MTN','B.CTM','C.TRS','D.WOD','E.DMA'),
 SUBPARTITION QT2_GA VALUES ('F.GA
OP','G.GA CORP'),
 SUBPARTITION QT2_AFO VALUES ('H.AFO
DIV','I.AFO CORP'),
 SUBPARTITION QT2_EXT VALUES
('J.EXT','K.IMP')),
PARTITION QT3 VALUES LESS THAN
(TO_DATE('01-OCT-2007', 'DD-MON-YYYY'))
(SUBPARTITION QT3_OP VALUES
('A.MTN','B.CTM','C.TRS','D.WOD','E.DMA'),
 SUBPARTITION QT3_GA VALUES ('F.GA
OP','G.GA CORP'),
 SUBPARTITION QT3_AFO VALUES ('H.AFO
DIV','I.AFO CORP'),
 SUBPARTITION QT3_EXT VALUES
('J.EXT','K.IMP')),
PARTITION QT4 VALUES LESS THAN
(TO_DATE('01-JAN-2008', 'DD-MON-YYYY'))
(SUBPARTITION QT4_OP VALUES
('A.MTN','B.CTM','C.TRS','D.WOD','E.DMA'),
 SUBPARTITION QT4_GA VALUES ('F.GA
OP','G.GA CORP'),
 SUBPARTITION QT4_AFO VALUES ('H.AFO
DIV','I.AFO CORP'),
 SUBPARTITION QT4_EXT VALUES
('J.EXT','K.IMP')));

After loading data in these two partitioned tables
we gather statistics with Analyze clause and the results
of these statistics are showed below in fig 1 and fig 2:

SELECT * FROM USER_TAB_PARTITIONS S
WHERE S.TABLE_NAME =
'BALANCE_RESULTS_B';

Fig. 1: Statistics from table BALANCE_RESULTS_B

SELECT * FROM USER_TAB_SUBPARTITIONS S
WHERE S.TABLE_NAME =
'BALANCE_RESULTS_C';

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Adela Bâra, Ion Lungu, Manole Velicanu, Vlad Diaconiţa, Iuliana Botha

ISSN: 1790-0832 640 Issue 5, Volume 5, 2008

Window sizes can be based on either a physical
number of rows or a logical interval, based on
conditions over values [1]

Analytic functions are performed after
completing operations such joins, WHERE, GROUP
BY and HAVING clauses, but before ORDER BY
clause. Therefore, analytic functions can appear only
in the select list or ORDER BY clause [4].

Analytic functions are commonly used to
compute cumulative, moving and reporting aggregates.
The need for these analytical functions is to provide
the power of comparative analyses in the BI reports
and to avoid using too much aggregate data from the
virtual data warehouse. Thus, we can apply these
functions to write simple queries without grouping
data like the following example in which we can
compare the amount of current account with the
average for three consecutive months in the same
division, sector and management unit, back and
forward (fig 3):

SELECT PERIOD, DIVISION, SECTOR,
MANAGEMENT_UNIT, ACC_D,
AVG(ACC_D) OVER (PARTITION BY DIVISION,
SECTOR, MANAGEMENT_UNIT

ORDER BY EXTRACT (MONTH FROM ACC_DATE)
RANGE BETWEEN 3 PRECEDING AND 3
FOLLOWING) AVG_NEIGHBOURS
FROM BALANCE_RESULTS_A

Fig 3: Comparative costs obtained with analytical
functions

5 Conclusions
Virtual data warehouse that we implemented in the
Business Intelligence System developed in a
multinational company is based on a set of views that
extracts, joins and aggregates rows from many tables
from the ERP system. In order to develop this
decisional system we have to build analytical reports
based on SQL queries. But the data extraction is the
major time and cost consuming job. So, the solution is
to apply a several techniques that improved the
performance. In this paper we presented some of these
techniques that we applied, like table partitioning,
using hints, loading data from the online views in
materialized views or in tables in order to reduce
multiple joins and minimized the execution costs. Also,
for developing reports easiest an important option is to
choose analytic functions for predictions (LAG and
LEAD), subtotals over current period (SUM and
COUNT), classifications or ratings (MIN, MAX,
RANK, FIRST_VALUE and LAST_VALUE).
Another issue that is discussed in this article in the
difference between data warehouses in which the data
are stored in aggregate levels and virtual data
warehouse. The comparative analysis on which we
based in taking our choice between traditional data
warehouse and virtual warehouse in the subject of
another article that will be presented in the future
conferences.

References:
[1] Lungu Ion, Bara Adela, Fodor Anca -

Business Intelligence tools for
building the Executive Information
Systems, 5thRoEduNet International
Conference, Lucian Blaga University,
Sibiu, June 2006

[2]

Lungu Ion, Bara Adela – Executive
Information Systems, ASE Printing
House, 2007

[3]

Lungu Ion, Bara Adela, Diaconiţa
Vlad - Building Analytic Reports for
Decision Support Systems -
Aggregate versus Analytic Functions,
“Economy Informatics” Review,
nr.1-4/2006, pg. 17-20, ISSN 1582-
7941. www.ssrn.com

[4]

Oracle Corporation - Database
Performance Tuning Guide
10g Release 2 (10.2), Part Number
B14211-01, 2005

[5]

Oracle Corporation - Oracle
Magazine, 2006

[6] www.oracle.com
[7] Ralph Kimball - The Data

Warehouse Toolkit, John Wiley &
Sons, New York, 1996

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Adela Bâra, Ion Lungu, Manole Velicanu, Vlad Diaconiţa, Iuliana Botha

ISSN: 1790-0832 641 Issue 5, Volume 5, 2008

