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Abstract: - In this paper an algorithm named MONSA for closed sets mining is presented. It does not use such 
kind of techniques as in ChARM by Zaki and Hsiao. MONSA is an exact depth-first search algorithm 
extracting only frequent closed sets using several new very effective pruning techniques to be free from 
repetitive and empty patterns. MONSA does not depend on the initial order of objects. In MONSA there is 
active only one branch which is under construction. The purpose of this paper is to describe the approach used 
in MONSA and the correspondence of its basics and concepts to the approach by Zaki and Hsiao. A full 
example of the algorithm’s work is presented. By the algorithm the intersections (closed sets) and IF…THEN 
rules on the subsets of source data set simultaneously are found. MONSA treats not only binary data, but a 
larger set of discrete values. 
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1   Introduction 
„The task of mining association rules consists of two 
main steps. The first involves finding the set of all 
frequent itemsets. The second involves testing and 
generating all high confidence rules among itemsets“ 
[1]. Zaki and Hsiao prove in [1] that „It is not 
necessary to mine all frequent itemsets in the first 
step, instead it is sufficient to mine the set of closed 
frequent itemsets, which is much smaller than the set 
of all frequent itemsets“ and „It is also not necessary 
to mine the set of all possible rules“, because „any 
rule between itemsets is equivalent to some rule 
between closed itemsets. Thus many redundant rules 
can be eliminated“ [1]. Also it is important to 
enumerate closed sets directly, without generating 
them „using Apriori-like bottom-up search methods 
that examine all subsets of frequent itemsets“ or 
finding them from maximal patterns „since all 
subsets of the maximal itemsets would again have to 
be examined“ [2]. 

As we see, for mining association rules we need 
to find only closed sets. We did it. But in our 
algorithm MONSA we use other denotations and 
techniques than Zaki and Hsiao [1] [2]. 

Algorithm MONSA [3] was created for 
discovering intersections with special quality (see 
section 2.2 (6)). Appears that the set of intersections 
it founds is the same as the set of all (frequent) 
closed sets. Additionally our algorithm enables to 
find rules (between closed itemsets) at the same time 

as closed itemsets itself. Nevertheless this is a subset 
of all possible rules between closed sets. In order to 
ensure that these rules hold with at least required 
confidence it is possible to prune the branches of a 
search tree according to the threshold given by the 
user. 

The main goal of the paper is to describe our 
algorithm and the main theoretical conceptions on 
which it is based. 

 
 

1.1   The task 
MONSA is a depth-first search algorithm used for 
discovering intersections with special quality. The 
intersection of two (or more) sets is the set of 
elements, which belong to both (all) sets, 
simultaneously. Without used pruning techniques 
MONSA would perform exhaustive search and 
produce all permutations of all existing value com-
binations. The value combination is a set of ele-
ments, an element is an attribute with certain value. 
Taking into account the minimal frequency allowed 
by the user only the frequent part of the result is 
found. 

There are several problems in intersections’ 
finding process: we have to prevent finding 1) 
repetitious intersections and 2) empty intersections. 
Finding empty intersections is avoided by the nature 
of the algorithm MONSA, it does not generate 
(theoretical) combinations, but traverses only 
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through the really existing ones. In order to prevent 
“repetitions” we use pruning techniques called 
“bringing zeros down” and “backward comparison” 
(see 3.3). Appears that it is not enough, sometimes 
we have to perform one more check: 3) is the 
extracted intersection (i.e. closed set) really non-
redundant (i.e. not extracted already) or not. This 
check is applied only when the current set is not 
closed (and addition of elements would make it 
closed). We always know whether the current set is 
closed or not. In this paper we will show the way we 
check it, and it differs from the way presented in [1] 
[2]. We also introduce the approach used in MONSA 
and the correspondence of its basics and concepts to 
the approach by Zaki and Hsiao. 

 
 

1.2   Basic idea of our approach 
The fundamental idea of our approach is very 
simple: frequencies determine a frequent set. We 
collect the frequencies into a frequency table, which 
shows how many times different values of attributes 
appear in data set. For example in Table 1 is given a 
set of two objects described by three attributes and 
its corresponding frequency table.  

Table 1. Example X(2,3) 

Object \ Attribute A1 A2 A3 
O1 1 2 2 
O2 1 1 2 

    
Value \ Attribute A1 A2 A3 

1 2 1 0 
2 0 1 2 

    
Frequent set = A1.1 AND A3.2 

 
As we see all elements (i.e. attribute with certain 

value) that have a frequency equal to the number of 
objects belong to the frequent set. The frequent set 
with such properties can be found as an intersection 
through the table.  

Table 2. Intersection through X(2,3) 

Object \ Attribute A1 A2 A3 
O1 1 2 2 
O2 1 1 2 

    
Intersection 1 * 2 

IntSecX = A1.1 AND A3.2 
 
As we see from Table 1 and Table 2 an 

intersection is also findable through the frequencies: 
every value which has frequency equal to the number 
of objects in the table belongs to the intersection. But 
we need special techniques to form tables with this 
property. Then for every table we have formed we 

find an intersection over the frequency table as we 
did in Table 1. 

 
We start the description of our approach with 

definitions in 2. Terms used in closed set mining are 
given in 2.1 and definitions used explaining 
MONSA and the relations between terms of two 
approaches are shown in 2.2. Section 3 describes 
MONSA, including the algorithm in 3.1, an example 
of the working process in 3.2, and the explanation of 
used pruning techniques in 3.3. Section 4 concludes 
this paper. 

 
 

2   Definitions 
 
 

2.1   Definitions of closed set mining 
Definitions used in closed set mining are presented 
here as in [1] [2]. 

Typically the database is arranged as a set of 
transactions, where each transaction contains a set of 
items. Let I = {1,2,...,m} be a set of items, and let 
T = {1,2,...,n} be a set of transaction identifiers or 
tids.  

A set X ⊆ I is also called an itemset, and a set 
Y ⊆ T is called tidset. 

t(X) denotes a tidset that corresponds to an 
itemset X, i.e. the set of all tids that contain X as a 
subset: t(X) = ∩x∈X t(x). 

i(Y) denotes an itemset that corresponds to a 
tidset Y, i.e. the set of items common to all the tids in 
Y: i(Y) = ∩y∈Y i(y). 

The support of an itemset X, denoted σ(X), is the 
number of transactions in which it occurs as a subset. 

An itemset is frequent if its support is more than 
or equal to a user-specified minimum support 
(min_sup) value, i.e. if σ(X) ≥ min_sup. 

 
A frequent itemset X is called closed if there 

exists no proper superset Y ⊃ X with σ(X) = σ(Y). 
Closed sets are found using closure operation. 
A closure of an itemset X, denoted c(X), is 

defined as the smallest closed set that contains X. An 
itemset X is closed if and only if X = c(X). 

The closure of an itemset X is found as: 
c(X) = i(t(X)).  

The support of an itemset X is also equal to the 
support of its closure, i.e. σ(X) = σ(c(X)). 

 
 

2.2   Definitions used in MONSA 
The first version of MONSA was presented in 1993 
[3]. Here we present denotations and definitions used 
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for MONSA as in [3]. We also give comments how 
these notions and concepts relate to the ones used for 
closed sets (see 2.1). 

 
(1) X - a set X = {Xi}, i = 1,2,...,N,  

where each object Xi is a conjunction of M attribute 

values: j

M

1j
h&  Xi

=
= . 

X is a set of N objects (records) that are described 
by M attributes. Set X has not to be a binary dataset, 
every attribute j can acquire integer values in the 
interval hj = 0,1,2,...,Kj-1. X can be a transaction 
database also. 

 
(2) H - a value combination (VC) of certain 

attributes 
qDq

h&  H
∈

= , D = {je}, e = 1,...,EH (number of 

elements hq in H), 1 ≤ EH ≤ M, 1 ≤ je ≤ M,  
jf, jt ∈ D, jf # jt, f # t, H ⊆ Xi. 

A value combination can contain 1 to M 
attributes (with certain values), each only once (i.e. 
only with one value); it is a subset of some object or 
is a whole object. 

 
(3) Each value combination H defines on the set 

X a subset of objects XH = {Xp}, p = 1,2,...,NH, 
1 ≤ NH ≤ N,  
{Xp} are all objects Xi ∈ X that contain H: XH = 
{Xi∈X | Xi ⊇ H}. 

The subset of objects defined by the value 
combination is similar to the tidset that corresponds 
to some itemset (t(X)). 

 
(4) Each value combination H defines on set X a 

subset of elements XH ⊆ X: XH = {Xij ∈ X | Xij ∈ H, 
i = 1,2,...,N, j = 1,2,...,M}. 

An attribute with certain value is called element. 
‘Element’ corresponds to ‘item’. The difference is 
that each attribute produces as many elements as 
many different values it has. Definition (4) says that 
‘value combination’ is the same as ‘itemset’ (with 
extension that values need not be binary). 

 
(5) Intersection over a set Y = {Yt}, t = 1,2,...,T, 

Yt = &hj is a set of such elements hq which belong 

simultaneously to all Yt: Hh&YtY qq

T

1t
==∩=∩

=
. 

In Y for H there exists always a corresponding 
subset of objects YH = {Yp}, p = 1,...,NH, NH ≤ N. 

If N = 1, then intersection over Y is an object 
itself.  

If there exist no objects Yt ∈ Y for which H ⊂ 
Yt, then YH = ∅. 

Definition (5) says that intersection over a set of 
objects is a set of common elements, this is the same 
as itemset that corresponds to some tidset (i(Y)). 

 
(6) Elementary conjunction (EC) on XH is such an 

intersection over the set XH, where ∩XH = A(⊇ H), 
XA = XH, NH ≤ N. 

In the case of A ⊃ H, XA = XH, A is an EC. 
We have a set of elements H and its 

corresponding set of objects XH (i.e. t(H)) and find 
an intersection over it: ∩XH (i.e. i(t(H))). The 
operation i(t(H)) means finding the closure of H. 
Therefore the resultant set A (of elements) called 
elementary conjunction is a closed set. From the 
viewpoint of the algorithm it is essential to find a 
technique that guarantees the finding of such subsets 
XH  only for which ∩XH = A(⊇ H) (i.e. finding of 
closed sets only). 

 
(7) Maximal EC on XH is such an intersection 

over XH in case of which for a VC 
qq

h&  H =  is a 

valid relation  
H )h&(A   X eeH ⊃==∩ , 1 ≤ q < e ≤ M, XA = XH. 

By definition, VC H is EC if ∩XH =H. 
H is a maximal EC if it is EC and contains at least 

one VC Ht ⊂ H such, that |XHt| = |XH| on X. That 
means that the set of objects XH ⊆ X is defined 
unique. 

Definition (7) says that maximal EC is EC that 
has at least one (non-closed) subset with the same 
frequency (support) i.e. we can remove at least one 
element without changing in frequency. Our 
maximal elementary conjunction here is not the same 
as maximal (closed) set1.  

 
Additionally, our ‘(absolute) frequency’ is the 

same as ‘support’. 
For rules we use also ‘relative frequency’ which 

corresponds to ‘confidence’. 
 
 

3   MONSA 
MONSA is a depth-first search algorithm. Without 
pruning techniques it would traverse the complete 
search tree and find all permutations of all existing 
value combinations. Empty (i.e. non-existing) com-
binations are avoided by nature of algorithm, they 
are not generated (and checked for existence) at all. 

 

                                                           
1 “A frequent itemset X is called maximal if it is not a subset of 

any other frequent itemset.” [2] 
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From the initial data set MONSA finds a result as 
a set of intersections (closed sets) and/or a set of 
trees (forest), they are listed in the order they are 
found, that order does not depend on the initial order 
of objects (records). The frequencies of nodes 
(intersections) decrease strictly along branches of a 
tree(s). The decrease makes allowable to prune the 
branches according to the minimal allowed fre-
quency (support). This is similar to the other tree-
based algorithms, including ChARM [2]. The fact 
that the decrease is strict gives a high potential to the 
intersection (combination from root to the certain 
node) to be a closed set. At any level the descendants 
of a common parent-node are found in a weakly 
decreasing order of their frequencies, the roots also 
are found in a weakly descending order. The order of 
nodes with equal frequency depends on the searching 
principle (usually by columns or by rows of 
frequency table).  

MONSA uses frequency tables (introduced in 
section 1.2). For every extract of objects its 
corresponding frequency table is formed. Zero in the 
initial frequency table means that the corresponding 
element does not exist. During the work the elements 
that are exhaustively analyzed are zerofilled in 
frequency tables. Such prohibited (eliminated) 
elements are not included into the intersections any 
more, only the elements with frequency over zero (or 
some higher threshold) are considered. 

 
 

3.1   Description of the algorithm 
MONSA finds intersections in given set X(N,M), 
where N is the number of objects (for example 
transactions), M is the number of attributes and each 
attribute j has an integer value hj=0,1,2,…,K-1. A 
pair of attribute and its certain value is called 
element. 

By essence MONSA is a recursive algorithm. 
Here its backtracking version is presented. 

In this algorithm the following notation is used: 
t the number of the step (or level) of the 

recursion 
FTt frequency table for a set Xt  
IntSect vector of elements over set Xt (intersection) 
Init activity for initial evaluation 

 
The algorithm is given in Fig. 1. 
 
It has been proved that if a finite discrete data 

matrix X(N,M) is given, where N=KM, then the 
complexity of algorithm MONSA to find all (K+1)M 
elementary conjunctions (intersections) as existing 
value combinations is O(N2) operations [3]. 

By our estimation in practice the upper bound of 
the number of value combinations (with minimal 
frequency allowed = 1) is  

M
UP )K/11(NL +≈ , (1) 

but usually it is less. 
The precise formula for the number of inter-

sections is as follows: 

∑ ∑=
=

−

=

F

f

uKM

p
pNL

1

)*(

1
 , (2) 

where F is the number of formatted frequency tables 
on set X, u is the number of empty cells in the 
frequency table FTf, Np is the absolute number in a 
cell of the frequency table (frequency of an attribute 
value). 

 
The most important advantages of the algorithm 

are: 
• The use of new original and very effective 

pruning techniques  
• The possibility to output the tree immediately 

during the finding closed sets 
• The frequency is known at the moment the new 

node is found 
• The ability to find nodes consisting of more than 

one element, this reduces the number of nodes 
and the size of the tree 

• In order to prevent repetitions we do not look 
through the already found result and therefore we 
do not need additional data structures  

• Attributes can have more values than only 0/1  
 
An example in the following chapter explains 

how MONSA works. 
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Algorithm MONSA 

Init 

t←0, IntSec0←{} 
Find a table of frequencies FT0 for all attributes in X0 

DO WHILE there exists FTs#Ø in {FTs}, s≤t 

  FOR EACH element hf∈FTt with frequency V=max FTt(hf)#0 DO 
    IF pruning is needed (hf has to be pruned) THEN GOTO BACK 

    Separate submatrix Xt+1⊂Xt such that Xt+1={Xij∈XtX.f=hf} 
    Find a table of frequencies on Xt+1 FTt+1 
    ZeroesDown(t+1) 
    CheckUniqueness(t+1) 
    IF new intersection is unique THEN 
      Add elements j with FTt+1(j)=V into vector IntSect+1 
      BackwardComparison(t+1) 
      Output of IntSect+1  

      IF there exist attributes to analyse THEN t←t+1 
    ENDIF 
  NEXT 

  BACK: t←t-1 

  IntSect+1←IntSect 
ENDDO 
All intersections are found 

END: end of algorithm 

Elimination (pruning) activities: 

1) 
ZeroesDown(t+1) 

    FOR EACH element hu∈FTt DO 

      IF FTt(hu)=0 THEN FTt+1(hu)←0 
    NEXT 

2) 
BackwardComparison(t+1) 

    FOR EACH element hu∈FTt+1 with frequency #0 DO 

      IF FTt+1(hu)=FTt(hu) THEN FTt(hu)←0 
    NEXT 

3) 
CheckUniqueness(t+1) 

    IF there exists on Xt+1 hu, 1≤u≤M such, that  

    [hu∈IntSect+1 AND FTt+1(hu)=0 AND frequency of hu in Xt+1=V] 
    THEN 
      Intersection is not unique 
    ELSE 
      Intersection is unique 
    ENDIF 

Fig. 1. Algorithm MONSA 
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3.2   Steps of MONSA 
In order to explain the work of MONSA we will 
demonstrate it using the initial data set given in 
Table 3.  

In order to find intersections MONSA uses fre-
quency tables. A frequency table contains the counts 
of occurrences of all existing values for each 
attribute. Each attribute can have a different number 
of different discrete values.  

The frequency table corresponding to the initial 
data from Table 3 is given in Table 4.  

Table 3. Initial data 

Object \ Attribute A1 A2 A3 
O1 1 0 3 
O2 2 2 1 
O3 2 3 0 
O4 2 0 2 
O5 0 1 3 
O6 0 1 3 
O7 1 1 2 
O8 1 0 3 
O9 2 3 0 

 
Table 4. Frequency table (FT) 

Value \ Attribute A1 A2 A3 
0 2 3 2 
1 3 3 1 
2 4 1 2 
3 0 2 4 

 
MONSA is a depth-first search algorithm which 

backtracks when the current branch is exhausted or 
has to be pruned. Inside the backtracking algorithm 
the main steps at each level are as follows: 

S1: Choose a “leading” element – the first 
element with maximal frequency (over zero; at least 
with threshold frequency specified by the user), add 
it into the (potential) intersection and zerofill the 
corresponding cell in the frequency table 

S2: Calculate the next frequency table for objects 
containing that leading element 

S3: If there exist element(s) with frequency equal 
to the leading one check the intersection’s 
uniqueness => if it is unique, add these elements 
(with frequency equal to the leading frequency) into 
the intersection; otherwise backtrack  

S4: Output intersection 
S5: “Bring down” zeroes from the frequency 

table of the previous level i.e. at the current level 
zerofill all elements that have been zerofilled at the 
previous level 

S6: “Backward comparison”: elements that have 
equal frequencies at both levels are zerofilled at the 
previous level 

 
Next we will show how the algorithm works. For 

better understanding we give a frequency table (FT) 
for each level, the number in subscript shows the 
level of recursion (starting from the level 0). The row 
above the table header shows the current potential 
intersection, where ’*’ means that certain value for 
that attribute is not determined yet. The number after 
“=” is the frequency of shown intersection. We also 
use a non-positional representation of intersections, 
for example: A2.0=3 – the intersection consists of 
one element – attribute A2 with value 0 and its 
frequency is 3. 

During the work we zerofill certain elements in 
the frequency tables for different reasons. In order to 
mark those elements the following notation is used: 

→0 – a zerofilled leading element (the result of 
step S1); 

! – elements with frequency equal to the leading 
frequency that are set to zero in case of inclusion into 
intersection (the result of step S3); 

↓0 – zeroes “brought down” from the previous 
level frequency table (the result of step S5); 

↑0 – frequencies equal at current and previous 
level (set to zero at the previous level, the result of 
step S6). 

 
Now we will find all intersections with frequency 

at least 2 for data given in Table 3. This threshold – 
minimal frequency allowed (=2) – is set by the user. 

Having the frequency table for the initial data set 
(see Table 5a), the first thing (S1) is to find an 
element with maximal frequency. If the search 
direction is by columns, then the first element with 
maximal frequency (which is 4) is attribute 1 (A1) 
with value 2. We include it into the intersection 
(2 * * =4; shown above Table 6). In order to prevent 
the repeating selection of it (A1.2) we also eliminate 
this element from the frequency table FT0 by putting 
zero into the corresponding cell (marked with →0 in 
Table 5b). 

Table 5. Frequency table at level 0 

a)     b)    
FT0 A1 A2 A3  FT0 A1 A2 A3 
0 2 3 2  0 2 3 2 ↑0 
1 3 3 1  1 3 3 1 ↑0 
2 4 1 2  2 4→0 1 ↑0 2 
3 0 2 4  3 0 2 ↑0 4 

 
S2: The “leading” element A1.2 is the basis for 

extracting a subset of objects, i.e. only objects that 
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contain that certain element (A1.2) belong to the 
subset. As the frequency shows this subset consists 
of four objects, namely O2, O3, O4 and O9. We 
calculate a frequency table for the next level by 
taking into account only those (four) objects. As 
attribute A1 (with its value 2) was the basis of 
separating the subset (and it is already included into 
the intersection), we do not look at this attribute at 
the current level any more and the new frequency 
table FT1 (given in Table 6a) does not contain 
frequencies for attribute A1. 

Table 6. Frequency table for A1.2 (at level 1)  

a)     b)    
 2 * * =4     
FT1 A1 A2 A3  FT1 A1 A2 A3 
0  1 2  0  1 2 ↑0 
1  0 1  1  0 1 
2  1 1  2  1 1 
3  2 0  3  2→0 0 

 
S3, S4: In the new frequency table (see Table 6a) 

there are no frequencies equal to the leading one 
(=4), therefore we can output intersection (2 * * =4 
or A1.2=4) without “uniqueness check”. 

S5: There are no zeros to bring down from the 
initial frequency table (Table 5a) because the only 
zerofilled element is the leading element. 

S6: The next thing to do is to compare the 
frequencies of the current level (Table 6) with the 
frequencies of the previous level (Table 5) and find 
four coincidences (A2.2, A2.3, A3.0 and A3.1). It 
means that all objects containing (some of) these 
elements belong to our current subset and will be 
fully analysed at the current and subsequent levels. 
Using those elements for extracting subsets at the 
previous level would cause repetitions. In order to 
prevent it we zerofill these four cells at the previous 
level (marked with ↑0 in Table 5b). 

 
Now we will repeat all these activities at the next 

level. 
S1: The (first) element with maximal frequency 

in FT1 (Table 6a) is A2.3 with frequency 2, we 
remember it in the next potential intersection (2 3 * 
=2; shown above Table 7) and eliminate it (→0 in 
Table 6b). S2: Next we extract the subset of objects 
having this element (A2.3) and find the cor-
responding frequency table (see Table 7).  

Table 7. Frequency table for A1.2&A2.3 (at level 2) 

   0 !  
 2 3 * =2 
FT2 A1 A2 A3  
0   2 !  
1   0  
2   0  
3   0  

 
S3: This time there exists one element that has the 

frequency equal to the leading one (=2) – this 
element is A3.0 (! in Table 7). It means that all 
objects in the subset contain that element and we 
should include it into the intersection. The 
intersection would be (2 3 0) instead of (2 3 *). 
Before we can do it, we have to check whether this 
intersection (with A3.0) is unique (non-redundant) 
i.e. is not found already. The check is simple: if the 
frequency of that element is not zerofilled in the 
previous frequency table then this intersection is not 
found yet. The frequency of A3.0 at level 1 (Table 
6a) is more than zero, so the new intersection (2 3 0) 
is unique and is outputted (A1.2&A2.3&A3.0=2). In 
order to prevent A3.0 to be a basis for extracting a 
new subset its frequency in the current frequency 
table (Table 7) will be set to zero after the “backward 
comparison” (S6). 

S5: There are no zeroes to bring down in the 
column A3 (which is the only attribute under 
consideration). S6: Comparison of levels 1 and 2 
(Table 6a and Table 7) sets (the same) A3.0 to zero 
at level 1 (↑0 in Table 6b).  

Nullifying A3.0 at level 2 (Table 7) makes this 
frequency table empty. So we will continue at level 1 
(Table 6b). Appears that there are no frequencies 
over the threshold (minimal frequency allowed =2).  

So we backtrack to the initial level. Taking into 
account all zerofilling information (shown in Table 
5b) the frequency table looks like in Table 8a. We 
find that element with maximal frequency is A3.3 
(with frequency 4). S1: We include this element into 
the intersection (* * 3 =4; shown above Table 9) and 
set to zero its frequency in FT0 (→0 in Table 8b). 

Table 8. Frequency table at level 0 

a)     b)    
FT0 A1 A2 A3  FT0 A1 A2 A3 
0 2 3 0  0 2 ↑0 3 0 
1 3 3 0  1 3 3 0 
2 0 0 2  2 0 0 2 
3 0 0 4  3 0 0 4→0

 
The frequency table for A3.3 is given in Table 9a 

(S2). It contains no frequencies equal to the leading 
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one (=4), so the intersection A3.3=4 is outputted (S3, 
S4). 

There are no zeros to bring down from FT0 (Table 
8a) (S5). Backward comparison (S6) sets to zero 
element A1.0 at level 0 (↑0 in Table 8b). 

Table 9. Frequency table for A3.3 (at level 1) 

a)     b)    
 * * 3 =4     
FT1 A1 A2 A3  FT1 A1 A2 A3 
0 2 2   0 2→0 2  
1 2 2   1 2 2 ↑0  
2 0 0   2 0 0  
3 0 0   3 0 0  

 
We continue at level 1 (see Table 9a). 
S1: The maximal frequency is 2, the first element 

with it is A1.0. We add it into intersection (0 * 3; 
shown above Table 10) and set to zero its frequency 
(→0 in Table 9b). 

S2: We find the frequency table for the next level 
i.e. level 2 (see Table 10).  

Table 10. Frequency table for A3.3&A1.0 (at level 2) 

  1 !   
 0 * 3 =2 
FT2 A1 A2 A3  
0  0   
1  2 !   
2  0   
3  0   

 
S3: In FT2 (Table 10) A2.1 has the frequency 

equal to the leading one (=2). Its frequency at 
previous level (see Table 9a) is not zeroed, so the 
intersection with A2.1 (0 1 3) is unique and is 
outputted (A3.3&A1.0&A2.1=2; S4). 

S5: There are no zeros to bring down in column 
A2. 

S6: (that same) A2.1 has equal frequencies at 
both levels (1 and 2; see Table 9a and Table 10), its 
frequency at level 1 is zerofilled (↑0 in Table 9b). 

We zerofill A2.1 at level 2 also (due to the 
inclusion into the intersection). The frequenency 
table FT2 (Table 10) becomes empty, we backtrack 
to level 1. After zerofilling (see Table 9b) the 
frequency table for A3.3 looks like in Table 11a. 

Table 11. Frequency table for A3.3 (at level 1) 

a)     b)    
 * * 3 =4     
FT1 A1 A2 A3  FT1 A1 A2 A3 
0 0 2   0 0 2 ↑0  
1 2 0   1 2→0 0  
2 0 0   2 0 0  
3 0 0   3 0 0  

 

S1: We find that first element with maximal 
frequency (equal to 2) is A1.1, include it into the 
intersection (1 * 3; shown above Table 12) and 
zerofill the corresponding cell (→0 in Table 11b). 
S2: We calculate the frequency table for the next 
level (see Table 12). S3: Element A2.0 has the 
frequency equal to 2. As this element is not 
zerofilled at the level 1 (Table 11a), we include it 
into the intersection (1 0 3) and output (S4) the 
intersection (A3.3&A1.1&A2.0=2). S5: There are no 
zeros to bring down. S6: Element A2.0 has equal 
frequencies at both levels (see Table 11a and Table 
12) and we zerofill it at level 1 (marked with ↑0 in 
Table 11b). Due to the inclusion into the intersection 
the element A2.0 is set to zero at level 2 also. This 
frequency table (Table 12) is empty now. 

Table 12. Frequency table for A3.3&A1.1 (at level 2) 

  0 !   
 1 * 3 =2 
FT2 A1 A2 A3  
0  2 !   
1  0   
2  0   
3  0   

 
The frequency table at level 1 (Table 11b) is also 

empty (taking into account the zerofilling 
information). 

The frequency table at level 0 is shown in Table 
13a. 

Table 13. Frequency table at level 0  

a)     b)    
FT0 A1 A2 A3  FT0 A1 A2 A3 
0 0 3 0  0 0 3 0 
1 3 3 0  1 3→0 3 0 
2 0 0 2  2 0 0 2 
3 0 0 0  3 0 0 0 

 
S1: The maximal frequency is 3 and the first 

element with it is A1.1. We add it into the 
intersection (1 * * =3) and nullify the corresponding 
cell (→0 in Table 13b) S2: The frequency table for 
objects containing A1.1 is found (see Table 14a). S3, 
S4: It contains no frequencies equal to 3, so the 
intersection (shown above Table 14) is outputted as 
it is (A1.1=3).  
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Table 14. Frequency table for A1.1 (at level 1) 

a)     b)    
 1 * * =3     
FT1 A1 A2 A3  FT1 A1 A2 A3 
0  2 0  0  2 0 
1  1 0  1  1 0 
2  0 1  2  0 1 
3  0 2  3  0 2 ↓0 

 
S5: The cell for A3.3 has been zerofilled at level 

0 (Table 13) and this zero is now brought down to 
level 1 (↓0 in Table 14b). This zero prevents 
traversing A1.1&A3.3 (which is the subset of 
already found intersection A3.3&A1.1&A2.0=2 with 
the same frequency and therefore redundant) and 
subsequent subsets. S6: Backward comparison finds 
no equal frequencies. 

Table 15. Frequency table for A1.1 (at level 1) 

a)     b)    
 1 * * =3     
FT1 A1 A2 A3  FT1 A1 A2 A3 
0  2 0  0  2→0 0 
1  1 0  1  1 0 
2  0 1  2  0 1 
3  0 0  3  0 0 

 
S1: At current level (see Table 15a) the maximal 

frequency is 2 and element with it is A2.0 
(zerofilling is shown in Table 15b). S2: The 
frequency table for objects containing A2.0 is given 
Table 16 and the current intersection (1 2 * =2) is 
above it. 

Table 16. Frequency table for A1.1&A2.0 (at level 2) 

 1 0 * =2 
FT2 A1 A2 A3  
0   0  
1   0  
2   0  
3   2 !  

 
S3: In FT2 (Table 16) element A3.3 has frequency 

2 (equal to the leading one). The “uniqueness check” 
(i.e. looking into the corresponding cell in the 
previous frequency table) gives the answer: such 
intersection (with A3.3) – (1 0 3) has been found 
already and current subset has been analysed already. 
In such situation we backtrack to the previous level 
(without outputting anything). 

The frequency table at level 1 (Table 15b) 
contains no frequencies over the threshold (=2), 
therefore we backtrack again. 

Table 17. Frequency table at level 0 

a)     b)    
FT0 A1 A2 A3  FT0 A1 A2 A3 
0 0 3 0  0 0 3→0 0 
1 0 3 0  1 0 3 0 
2 0 0 2  2 0 0 2 
3 0 0 0  3 0 0 0 

 
At level 0 (Table 17a) the maximal frequency is 3 

and the first element with such frequency is A2.0 
(zerofilling is shown in Table 17b). S1, S2: we add it 
into the intersection (* 0 *) and find the next 
frequency table (Table 18a). 

 
Table 18. Frequency table for A2.0 (at level 1) 

a)     b)    
 * 0 * =3     
FT1 A1 A2 A3  FT1 A1 A2 A3 
0 0  0  0 0  0 
1 2  0  1 2 ↓0  0 
2 1  1  2 1 ↓0  1 
3 0  2  3 0  2 ↓0 

 
S3, S4: The current intersection is outputted as it 

is (A2.0=3), because there are no elements with the 
same frequency. S5: The comparison of frequency 
tables of level 1 (Table 18) and level 0 (Table 17) 
finds 3 zeros to bring down (for A1.1, A1.2, A3.3; 
shown in Table 18b). S6: Backward comparison 
finds no coincidences of frequencies. 

The current frequency table (Table 18b) contains 
no frequencies over 2, therefore we go back to the 
level 0 (see Table 19a). 

Table 19. Frequency table at level 0 

a)     b)    
FT0 A1 A2 A3  FT0 A1 A2 A3 
0 0 0 0  0 0 0 0 
1 0 3 0  1 0 3→0 0 
2 0 0 2  2 0 0 2 
3 0 0 0  3 0 0 0 

 
S1: Include element A2.1 with frequency 3 into 

the intersection (* 1 * =3; shown above Table 20) 
and zero its frequency (→0 in Table 19b). 

S2: Find the frequency table for those 3 objects 
(Table 20a). 
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Table 20. Frequency table for A2.1 (at level 1) 

a)     b)    
 * 1 * =3     
FT1 A1 A2 A3  FT1 A1 A2 A3 
0 2  0  0 2 ↓0  0 
1 1  0  1 1 ↓0  0 
2 0  1  2 0  1 
3 0  2  3 0  2 ↓0 

 
S3: No need for uniqueness check. 
S4: Output intersection (A2.1=3). 
S5: Bring down zeros from FT0 (Table 19) to FT1 

(marked with ↓0 in Table 20b). 
S6: Backward comparison gives no 

consequencies. 
The frequency table at level 1 (Table 20b) 

contains no frequencies over the threshold, so we 
turn back to the level 0 (see Table 21). 

Table 21. Frequency table at level 0 

a)     b)    
FT0 A1 A2 A3  FT0 A1 A2 A3 
0 0 0 0  0 0 0 0 
1 0 0 0  1 0 0 0 
2 0 0 2  2 0 0 2→0
3 0 0 0  3 0 0 0 

 
S1: Include element A3.2 with frequency 2 into 

the intersection (* * 2 =2). 
S2: Find the frequency table for the next level 

(see Table 22a). 
Table 22. Frequency table for A3.2 (at level 1) 

a)     b)    
 * * 2 =2     
FT1 A1 A2 A3  FT1 A1 A2 A3 
0 0 1   0 0 1 ↓0  
1 1 1   1 1 ↓0 1 ↓0  
2 1 0   2 1 ↓0 0  
3 0 0   3 0 0  

 
S3: No uniqueness check. 
S4: Output intersection (A3.2=2). 
S5: Bring down zeros (for A1.1, A1.2, A2.0, 

A2.1) – see Table 22b. 
S6: Backward comparison finds no elements with 

equal frequencies at both levels. 
The frequency table FT1 is empty (i.e. contains 

only zeros). We backtrack to level 0. 
 
The frequency table at level 0 (Table 21b) is also 

empty.  
There are no more levels to go back, thus the 

algorithm has finished its work. All intersections are 
found. 

 

As a result we have found 9 intersections (with 
minimal frequency allowed =2): 

2 * * A1.2=4 
2 3 0 A1.2&A2.3&A3.0=2 
* * 3 A3.3=4 
0 1 3 A3.3&A1.0&A2.1=2 
1 0 3 A3.3&A1.1&A2.0=2 
1 * * A1.1=4 
* 0 * A2.0=3 
* 1 * A2.1=3 
* * 2 A3.2=2 
 
They all are different (unique), and they are not 

empty. All three pruning techniques together 
prevented repetitions, both full repetitions (in 
different order of elements) and partial repetitions 
(i.e. subsets of intersections with the same 
frequency). Uniqueness check was applied only 
when there was more than one element to include 
into the intersection at the same step (level) and this 
check was made without looking through the already 
found intersections.  

 
Instead of list of intersections the same result can 

be listed as a set of trees (immediately during the 
process of finding intersections): 

 
(4) 0.500(2) 
A1.2=>A2.3&A3.0 

 
(4) 0.500(2) 
A3.3=>A1.0&A2.1 

    0.500(2) 
    =>A1.1&A2.0 

 
(3) 
A1.1 

 
(3) 
A2.0 

 
(3) 
A2.1 

(2) 
A3.2 

 
The trees are represented from left to right. This 

example consists of six trees, it has six root nodes 
(on the left). Symbols ’=>’ separate the nodes of a 
tree.  

Usually a node contains one element – a pair of 
certain attribute and a certain value of that attribute. 
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Attribute is shown before period and value is after 
period. For example, the root node of the first tree 
contains attribute A1 and its value 2. A node can 
consist of more than one attribute-value pairs like all 
non-root nodes in this example, then ’&’ is used to 
connect them. 

The numbers above node show frequencies.  
In the parentheses node’s absolute frequency is 

shown. The absolute frequency of node t shows how 
many objects have a certain attribute(s) with a 
certain value(s) among objects having properties (i.e. 
certain attributes with certain values) of all previous 
levels t-1,…,1. For example, the first tree shows that 
among four objects with A1.2 there are two objects 
having both A2.3 and A3.0. 

Before parentheses node’s relative (to the 
previous level) frequency is shown. The relative 
frequency is a ratio A/B, where A is the absolute 
frequency of node t and B is the absolute frequency 
of node t-1. For the first level the relative frequency 
is not calculated. 

 
 

3.3   Pruning techniques used in MONSA 
In order to avoid finding “repetitions” i.e. 
permutations of already found intersections two 
pruning techniques have been used in algorithm 
MONSA: 

“bringing zeroes down” – activity that prohibits 
arbitrary output repetition of already separated 
intersection at the next (deeper) level(s); 

“backward comparison” – activity that does not 
allow the output of the separated intersection at the 
same (current) level and also at previous (higher) 
levels (after backtracking). 

Impact of these techniques is proved in [3]2.  
 
Appears that these two activities do not prevent 

repetitious finding (and output) of some subsets of 
already found intersections.  

The subset of already found intersection is 
redundant only if both have equal frequencies (i.e. 
this (sub)set is non-closed). If subset’s frequency is 
higher (than its superset’s) then it covers more 
objects and is not redundant. Subset’s frequency 
cannot be lesser.  

Finding a superset of already found set with the 
same frequency is impossible, because at any level 
MONSA finds all co-existing (i.e. contained in the 
same objects) elements with equal frequencies as one 
intersection (i.e. maximal EC). 

                                                           
2 Theorems 5.3 and 5.4 accordingly 

Next we give an example of redundant subsets 
under consideration. For that we have used MONSA 
without “uniqueness check” (of a new intersection). 

Having the initial data set of nine objects 
described by three attributes (see Table 23) MONSA 
(without uniqueness check) finds fifteen inter-
sections (with minimal frequenct allowed =2). Both 
representation forms – trees and intersections – are 
given in Fig. 2. 

 
Table 23. Example X(9,3) 

Object \ Attribute A1 A2 A3 
O1 4 0 8 
O2 5 3 4 
O3 5 4 3 
O4 5 0 7 
O5 3 1 8 
O6 3 1 8 
O7 4 1 7 
O8 4 0 8 
O9 5 4 3 

 
(a) Result as a set of 
trees: 
 
(4) 0.500(2) 
A1.5=>A2.4&A3.3 
    0.250(1) 
    =>A2.0&A3.7 
    0.250(1) 
    =>A2.3&A3.4 
 
(4) 0.500(2) 
A3.8=>A1.3&A2.1 
    0.500(2) 
    =>A1.4&A2.0 
 
 (3) 0.667(2) 
A1.4=>A2.0 
    0.333(1) 
    =>A2.1&A3.7 
 
 (3) 0.333(1) 
A2.0=>A3.7 
 
 (3) 0.333(1) 
A2.1=>A3.7 
 
 (2) 
A3.7 

 

(b) Result as a set of 
intersections: 
 
I1)  A1.5=4 
I2)  A1.5&A2.4&A3.3=2 
I3)  A1.5&A2.0&A3.7=1 
I4)  A1.5&A2.3&A3.4=1 
 
 
 
I5)  A3.8=4 
I6)  A3.8&A1.3&A2.1=2 
I7)  A3.8&A1.4&A2.0=2 
 
 
I8)  A1.4=3 
I9)  A1.4&A2.0=2 
I10) A1.4&A2.1&A3.7=1 
 
 
I11) A2.0=3 
I12) A2.0&A3.7=1 
 
I13) A2.1=3 
I14) A2.1&A3.7=1 
 
 
I15) A3.7=2 

 

Fig. 2. Result found by MONSA (without uniqueness 
check) 

 
Here we have six trees and six roots accordingly. 

Intersections I1, I5, I8, I11, I13 and I15 correspond 
to the roots. 

Intersection I11 (A2.0=3) is not redundant 
although A2.0 is contained in the intersections I3, I7 
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and I9, because these three intersections have lesser 
frequencies and none of them cover all objects 
covered by I11.  

Intersections I9, I12 and I14 are redundant: 
• I9 (A1.4&A2.0) is a subset of I7 

(A3.8&A1.4&A2.0) with the same frequency =2 
(both cover objects O1 and O8); 

• I12 (A2.0&A3.7) is a subset of I3 
(A1.5&A2.0&A3.7), both frequencies are 1 (they 
cover object O4) and 

• I14 (A2.1&A3.7) is a part of I10 
(A1.4&A2.1&A3.7), frequencies equal 1 (they 
cover O7). 
There have to be 12 intersections instead of 15.  
 
Starting from the root of a tree the frequencies of 

intersections (nodes) always (strictly) decrease along 
any branch of the tree (due to finding maximal EC at 
every node). As no branch has two intersections with 
the same frequency, the redundant subsets do not 
occur in the same branch, they can appear in 
different branches of a tree or in different trees. 

Among siblings (i.e. direct descendants of a 
common node) any element can appear in only one 
intersection. Consequently, redundant subsets (under 
consideration) do not occur among siblings. This is 
also true for the root-level (which formally consists 
of descendants of the initial empty set), therefore 
these redundant subsets never occur at root-level. 

Intersection (closed set) and its redundant sub-
intersection (with the same frequency) do not have to 
appear at the same level of a tree (as in all three 
cases of our example). 

Element(s) that appear in the root node are eli-
minated from further analysis by zerofilling the cor-
responding cell(s) in the frequency table. Elements 
that are fully analyzed (exhausted) at deeper levels 
are prohibited by “backward comparison”. All these 
zeroes are “brought down” to all succeeding levels 
and therefore prohibited elements never occur in 
redundant intersections. So (due to the elimination 
techniques used) no permutation of whole (already 
found) intersection (closed set) is not found. Ele-
ments that are partially analyzed (at the non-root 
levels) are not eliminated. All this is true for any 
subtree also.  

Although prohibited elements are eliminated from 
the frequency tables they still appear in the subsets 
of objects extracted by non-prohibited elements. 
Remind that some set (of elements) and its subset 
with the same frequency define the same set of ob-
jects. If some prohibited (and eliminated) element 
appears in all objects (of subset) it means that this 
subset has been analyzed already (this element can 
not be contained in the value combination (potential 

intersection) on which basis that subset of objects 
was extracted). All intersections containing a prohi-
bited element are already found and such subsets 
need no more analysis. This situation indicates a 
repetitive extraction of certain subset of objects. 

To exclude redundant subsets (sub-intersections) 
we have to detect a situation when some prohibited 
element occurs in all objects and stop analyzing such 
branch. 

 
In our example (see Table 23 and Fig. 2) 

intersection I7 (A3.8&A1.4&A2.0) has one more 
element than redundant set I9 (A1.4&A2.0), namely 
A3.8. The set of objects extracted by I9 is the same 
as by I7. Consequently, actual frequency of A3.8 is 
as much as number of objects in that set (=2). As 
A3.8 was prohibited after exhaustive analyze, the 
frequency table contains zero in the corresponding 
cell. Detecting such situation we can say that 
A1.4&A2.0 (I7) is a redundant set. 

Such “uniqueness check” is used by MONSA. It 
is not necessary to look through the already found 
intersections to ensure the new one is non-redundant. 

Correctness of ‘uniqueness check’ explained here 
is proved in [4]. 

 
It is interesting that those redundant subsets seem 

to be the same ones for what ChARM [1] [2] needs 
“subsumption checking”. In order to ensure that a 
candidate set is really closed ChARM looks through 
the (certain) already found closed sets, only those 
that have 1) the same “tidsum” and 2) the same 
support (frequency) as the candidate set. (Tidsums of 
different closed sets with equal frequency tend to be 
different). For the complete description see [1] [2].  

As shown already we perform the uniqueness 
check of a new intersection (potential closed set) 
otherwise, without looking through the already found 
(closed) sets. 

 
 

4   Conclusion 
In this paper we have described algorithm MONSA 
for finding closed sets. The first version of MONSA 
was created in 1993 and we have developed several 
versions during last years.  

From the theoretical viewpoint the basic concepts 
used in MONSA are compared to the ones used by 
Zaki and Hsiao and it is shown that substantially 
they are the same. 

In MONSA we use some new effective pruning 
techniques: zeros down, backward comparison, 
uniqueness check. These are simple original 
techniques to prevent repetitious finding of already 
found closed sets whitout using additional data 
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structures. Uniqueness (non-redundancy) check of a 
new potential closed set is made without looking 
through the already found closed sets.  

During the process of finding all closed sets 
MONSA can find also rules between them. The 
algorithm works not only on the binary scale. 

MONSA is a basic algorithm we have used not 
only in data mining [5] [6] [7], but also in solving of 
graph theoretical problems as extracting of all 
maximal cliques [4] and decision trees constructing 
[8]. We have some approaches how to use the 
algorithm presented here in machine learning for the 
future works. 
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