

Algorithm MONSA for All Closed Sets Finding:
basic concepts and new pruning techniques

REIN KUUSIK, GRETE LIND

Department of Informatics
Tallinn University of Technology

Raja 15, Tallinn 12618
ESTONIA

kuusik@cc.ttu.ee, grete@staff.ttu.ee

Abstract: - In this paper an algorithm named MONSA for closed sets mining is presented. It does not use such
kind of techniques as in ChARM by Zaki and Hsiao. MONSA is an exact depth-first search algorithm
extracting only frequent closed sets using several new very effective pruning techniques to be free from
repetitive and empty patterns. MONSA does not depend on the initial order of objects. In MONSA there is
active only one branch which is under construction. The purpose of this paper is to describe the approach used
in MONSA and the correspondence of its basics and concepts to the approach by Zaki and Hsiao. A full
example of the algorithm’s work is presented. By the algorithm the intersections (closed sets) and IF…THEN
rules on the subsets of source data set simultaneously are found. MONSA treats not only binary data, but a
larger set of discrete values.

Key-Words: - Data mining, Frequent closed sets, Pruning techniques, Depth-first search, Monotone systems

1 Introduction
„The task of mining association rules consists of two
main steps. The first involves finding the set of all
frequent itemsets. The second involves testing and
generating all high confidence rules among itemsets“
[1]. Zaki and Hsiao prove in [1] that „It is not
necessary to mine all frequent itemsets in the first
step, instead it is sufficient to mine the set of closed
frequent itemsets, which is much smaller than the set
of all frequent itemsets“ and „It is also not necessary
to mine the set of all possible rules“, because „any
rule between itemsets is equivalent to some rule
between closed itemsets. Thus many redundant rules
can be eliminated“ [1]. Also it is important to
enumerate closed sets directly, without generating
them „using Apriori-like bottom-up search methods
that examine all subsets of frequent itemsets“ or
finding them from maximal patterns „since all
subsets of the maximal itemsets would again have to
be examined“ [2].

As we see, for mining association rules we need
to find only closed sets. We did it. But in our
algorithm MONSA we use other denotations and
techniques than Zaki and Hsiao [1] [2].

Algorithm MONSA [3] was created for
discovering intersections with special quality (see
section 2.2 (6)). Appears that the set of intersections
it founds is the same as the set of all (frequent)
closed sets. Additionally our algorithm enables to
find rules (between closed itemsets) at the same time

as closed itemsets itself. Nevertheless this is a subset
of all possible rules between closed sets. In order to
ensure that these rules hold with at least required
confidence it is possible to prune the branches of a
search tree according to the threshold given by the
user.

The main goal of the paper is to describe our
algorithm and the main theoretical conceptions on
which it is based.

1.1 The task
MONSA is a depth-first search algorithm used for
discovering intersections with special quality. The
intersection of two (or more) sets is the set of
elements, which belong to both (all) sets,
simultaneously. Without used pruning techniques
MONSA would perform exhaustive search and
produce all permutations of all existing value com-
binations. The value combination is a set of ele-
ments, an element is an attribute with certain value.
Taking into account the minimal frequency allowed
by the user only the frequent part of the result is
found.

There are several problems in intersections’
finding process: we have to prevent finding 1)
repetitious intersections and 2) empty intersections.
Finding empty intersections is avoided by the nature
of the algorithm MONSA, it does not generate
(theoretical) combinations, but traverses only

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Rein Kuusik, Grete Lind

ISSN: 1790-0832 599 Issue 5, Volume 5, 2008

through the really existing ones. In order to prevent
“repetitions” we use pruning techniques called
“bringing zeros down” and “backward comparison”
(see 3.3). Appears that it is not enough, sometimes
we have to perform one more check: 3) is the
extracted intersection (i.e. closed set) really non-
redundant (i.e. not extracted already) or not. This
check is applied only when the current set is not
closed (and addition of elements would make it
closed). We always know whether the current set is
closed or not. In this paper we will show the way we
check it, and it differs from the way presented in [1]
[2]. We also introduce the approach used in MONSA
and the correspondence of its basics and concepts to
the approach by Zaki and Hsiao.

1.2 Basic idea of our approach
The fundamental idea of our approach is very
simple: frequencies determine a frequent set. We
collect the frequencies into a frequency table, which
shows how many times different values of attributes
appear in data set. For example in Table 1 is given a
set of two objects described by three attributes and
its corresponding frequency table.

Table 1. Example X(2,3)

Object \ Attribute A1 A2 A3
O1 1 2 2
O2 1 1 2

Value \ Attribute A1 A2 A3

1 2 1 0
2 0 1 2

Frequent set = A1.1 AND A3.2

As we see all elements (i.e. attribute with certain

value) that have a frequency equal to the number of
objects belong to the frequent set. The frequent set
with such properties can be found as an intersection
through the table.

Table 2. Intersection through X(2,3)

Object \ Attribute A1 A2 A3
O1 1 2 2
O2 1 1 2

Intersection 1 * 2

IntSecX = A1.1 AND A3.2

As we see from Table 1 and Table 2 an

intersection is also findable through the frequencies:
every value which has frequency equal to the number
of objects in the table belongs to the intersection. But
we need special techniques to form tables with this
property. Then for every table we have formed we

find an intersection over the frequency table as we
did in Table 1.

We start the description of our approach with

definitions in 2. Terms used in closed set mining are
given in 2.1 and definitions used explaining
MONSA and the relations between terms of two
approaches are shown in 2.2. Section 3 describes
MONSA, including the algorithm in 3.1, an example
of the working process in 3.2, and the explanation of
used pruning techniques in 3.3. Section 4 concludes
this paper.

2 Definitions

2.1 Definitions of closed set mining
Definitions used in closed set mining are presented
here as in [1] [2].

Typically the database is arranged as a set of
transactions, where each transaction contains a set of
items. Let I = {1,2,...,m} be a set of items, and let
T = {1,2,...,n} be a set of transaction identifiers or
tids.

A set X ⊆ I is also called an itemset, and a set
Y ⊆ T is called tidset.

t(X) denotes a tidset that corresponds to an
itemset X, i.e. the set of all tids that contain X as a
subset: t(X) = ∩x∈X t(x).

i(Y) denotes an itemset that corresponds to a
tidset Y, i.e. the set of items common to all the tids in
Y: i(Y) = ∩y∈Y i(y).

The support of an itemset X, denoted σ(X), is the
number of transactions in which it occurs as a subset.

An itemset is frequent if its support is more than
or equal to a user-specified minimum support
(min_sup) value, i.e. if σ(X) ≥ min_sup.

A frequent itemset X is called closed if there

exists no proper superset Y ⊃ X with σ(X) = σ(Y).
Closed sets are found using closure operation.
A closure of an itemset X, denoted c(X), is

defined as the smallest closed set that contains X. An
itemset X is closed if and only if X = c(X).

The closure of an itemset X is found as:
c(X) = i(t(X)).

The support of an itemset X is also equal to the
support of its closure, i.e. σ(X) = σ(c(X)).

2.2 Definitions used in MONSA
The first version of MONSA was presented in 1993
[3]. Here we present denotations and definitions used

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Rein Kuusik, Grete Lind

ISSN: 1790-0832 600 Issue 5, Volume 5, 2008

for MONSA as in [3]. We also give comments how
these notions and concepts relate to the ones used for
closed sets (see 2.1).

(1) X - a set X = {Xi}, i = 1,2,...,N,

where each object Xi is a conjunction of M attribute

values: j

M

1j
h& Xi

=
= .

X is a set of N objects (records) that are described
by M attributes. Set X has not to be a binary dataset,
every attribute j can acquire integer values in the
interval hj = 0,1,2,...,Kj-1. X can be a transaction
database also.

(2) H - a value combination (VC) of certain

attributes
qDq

h& H
∈

= , D = {je}, e = 1,...,EH (number of

elements hq in H), 1 ≤ EH ≤ M, 1 ≤ je ≤ M,
jf, jt ∈ D, jf # jt, f # t, H ⊆ Xi.

A value combination can contain 1 to M
attributes (with certain values), each only once (i.e.
only with one value); it is a subset of some object or
is a whole object.

(3) Each value combination H defines on the set

X a subset of objects XH = {Xp}, p = 1,2,...,NH,
1 ≤ NH ≤ N,
{Xp} are all objects Xi ∈ X that contain H: XH =
{Xi∈X | Xi ⊇ H}.

The subset of objects defined by the value
combination is similar to the tidset that corresponds
to some itemset (t(X)).

(4) Each value combination H defines on set X a

subset of elements XH ⊆ X: XH = {Xij ∈ X | Xij ∈ H,
i = 1,2,...,N, j = 1,2,...,M}.

An attribute with certain value is called element.
‘Element’ corresponds to ‘item’. The difference is
that each attribute produces as many elements as
many different values it has. Definition (4) says that
‘value combination’ is the same as ‘itemset’ (with
extension that values need not be binary).

(5) Intersection over a set Y = {Yt}, t = 1,2,...,T,

Yt = &hj is a set of such elements hq which belong

simultaneously to all Yt: Hh&YtY qq

T

1t
==∩=∩

=
.

In Y for H there exists always a corresponding
subset of objects YH = {Yp}, p = 1,...,NH, NH ≤ N.

If N = 1, then intersection over Y is an object
itself.

If there exist no objects Yt ∈ Y for which H ⊂
Yt, then YH = ∅.

Definition (5) says that intersection over a set of
objects is a set of common elements, this is the same
as itemset that corresponds to some tidset (i(Y)).

(6) Elementary conjunction (EC) on XH is such an

intersection over the set XH, where ∩XH = A(⊇ H),
XA = XH, NH ≤ N.

In the case of A ⊃ H, XA = XH, A is an EC.
We have a set of elements H and its

corresponding set of objects XH (i.e. t(H)) and find
an intersection over it: ∩XH (i.e. i(t(H))). The
operation i(t(H)) means finding the closure of H.
Therefore the resultant set A (of elements) called
elementary conjunction is a closed set. From the
viewpoint of the algorithm it is essential to find a
technique that guarantees the finding of such subsets
XH only for which ∩XH = A(⊇ H) (i.e. finding of
closed sets only).

(7) Maximal EC on XH is such an intersection

over XH in case of which for a VC
qq

h& H = is a

valid relation
H)h&(A X eeH ⊃==∩ , 1 ≤ q < e ≤ M, XA = XH.

By definition, VC H is EC if ∩XH =H.
H is a maximal EC if it is EC and contains at least

one VC Ht ⊂ H such, that |XHt| = |XH| on X. That
means that the set of objects XH ⊆ X is defined
unique.

Definition (7) says that maximal EC is EC that
has at least one (non-closed) subset with the same
frequency (support) i.e. we can remove at least one
element without changing in frequency. Our
maximal elementary conjunction here is not the same
as maximal (closed) set1.

Additionally, our ‘(absolute) frequency’ is the

same as ‘support’.
For rules we use also ‘relative frequency’ which

corresponds to ‘confidence’.

3 MONSA
MONSA is a depth-first search algorithm. Without
pruning techniques it would traverse the complete
search tree and find all permutations of all existing
value combinations. Empty (i.e. non-existing) com-
binations are avoided by nature of algorithm, they
are not generated (and checked for existence) at all.

1 “A frequent itemset X is called maximal if it is not a subset of

any other frequent itemset.” [2]

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Rein Kuusik, Grete Lind

ISSN: 1790-0832 601 Issue 5, Volume 5, 2008

From the initial data set MONSA finds a result as
a set of intersections (closed sets) and/or a set of
trees (forest), they are listed in the order they are
found, that order does not depend on the initial order
of objects (records). The frequencies of nodes
(intersections) decrease strictly along branches of a
tree(s). The decrease makes allowable to prune the
branches according to the minimal allowed fre-
quency (support). This is similar to the other tree-
based algorithms, including ChARM [2]. The fact
that the decrease is strict gives a high potential to the
intersection (combination from root to the certain
node) to be a closed set. At any level the descendants
of a common parent-node are found in a weakly
decreasing order of their frequencies, the roots also
are found in a weakly descending order. The order of
nodes with equal frequency depends on the searching
principle (usually by columns or by rows of
frequency table).

MONSA uses frequency tables (introduced in
section 1.2). For every extract of objects its
corresponding frequency table is formed. Zero in the
initial frequency table means that the corresponding
element does not exist. During the work the elements
that are exhaustively analyzed are zerofilled in
frequency tables. Such prohibited (eliminated)
elements are not included into the intersections any
more, only the elements with frequency over zero (or
some higher threshold) are considered.

3.1 Description of the algorithm
MONSA finds intersections in given set X(N,M),
where N is the number of objects (for example
transactions), M is the number of attributes and each
attribute j has an integer value hj=0,1,2,…,K-1. A
pair of attribute and its certain value is called
element.

By essence MONSA is a recursive algorithm.
Here its backtracking version is presented.

In this algorithm the following notation is used:
t the number of the step (or level) of the

recursion
FTt frequency table for a set Xt
IntSect vector of elements over set Xt (intersection)
Init activity for initial evaluation

The algorithm is given in Fig. 1.

It has been proved that if a finite discrete data

matrix X(N,M) is given, where N=KM, then the
complexity of algorithm MONSA to find all (K+1)M
elementary conjunctions (intersections) as existing
value combinations is O(N2) operations [3].

By our estimation in practice the upper bound of
the number of value combinations (with minimal
frequency allowed = 1) is

M
UP)K/11(NL +≈ , (1)

but usually it is less.
The precise formula for the number of inter-

sections is as follows:

∑ ∑=
=

−

=

F

f

uKM

p
pNL

1

)*(

1
 , (2)

where F is the number of formatted frequency tables
on set X, u is the number of empty cells in the
frequency table FTf, Np is the absolute number in a
cell of the frequency table (frequency of an attribute
value).

The most important advantages of the algorithm

are:
• The use of new original and very effective

pruning techniques
• The possibility to output the tree immediately

during the finding closed sets
• The frequency is known at the moment the new

node is found
• The ability to find nodes consisting of more than

one element, this reduces the number of nodes
and the size of the tree

• In order to prevent repetitions we do not look
through the already found result and therefore we
do not need additional data structures

• Attributes can have more values than only 0/1

An example in the following chapter explains

how MONSA works.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Rein Kuusik, Grete Lind

ISSN: 1790-0832 602 Issue 5, Volume 5, 2008

Algorithm MONSA

Init

t←0, IntSec0←{}
Find a table of frequencies FT0 for all attributes in X0

DO WHILE there exists FTs#Ø in {FTs}, s≤t

 FOR EACH element hf∈FTt with frequency V=max FTt(hf)#0 DO
 IF pruning is needed (hf has to be pruned) THEN GOTO BACK

 Separate submatrix Xt+1⊂Xt such that Xt+1={Xij∈XtX.f=hf}
 Find a table of frequencies on Xt+1 FTt+1
 ZeroesDown(t+1)
 CheckUniqueness(t+1)
 IF new intersection is unique THEN
 Add elements j with FTt+1(j)=V into vector IntSect+1
 BackwardComparison(t+1)
 Output of IntSect+1

 IF there exist attributes to analyse THEN t←t+1
 ENDIF
 NEXT

 BACK: t←t-1

 IntSect+1←IntSect
ENDDO
All intersections are found

END: end of algorithm

Elimination (pruning) activities:

1)
ZeroesDown(t+1)

 FOR EACH element hu∈FTt DO

 IF FTt(hu)=0 THEN FTt+1(hu)←0
 NEXT

2)
BackwardComparison(t+1)

 FOR EACH element hu∈FTt+1 with frequency #0 DO

 IF FTt+1(hu)=FTt(hu) THEN FTt(hu)←0
 NEXT

3)
CheckUniqueness(t+1)

 IF there exists on Xt+1 hu, 1≤u≤M such, that

 [hu∈IntSect+1 AND FTt+1(hu)=0 AND frequency of hu in Xt+1=V]
 THEN
 Intersection is not unique
 ELSE
 Intersection is unique
 ENDIF

Fig. 1. Algorithm MONSA

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Rein Kuusik, Grete Lind

ISSN: 1790-0832 603 Issue 5, Volume 5, 2008

3.2 Steps of MONSA
In order to explain the work of MONSA we will
demonstrate it using the initial data set given in
Table 3.

In order to find intersections MONSA uses fre-
quency tables. A frequency table contains the counts
of occurrences of all existing values for each
attribute. Each attribute can have a different number
of different discrete values.

The frequency table corresponding to the initial
data from Table 3 is given in Table 4.

Table 3. Initial data

Object \ Attribute A1 A2 A3
O1 1 0 3
O2 2 2 1
O3 2 3 0
O4 2 0 2
O5 0 1 3
O6 0 1 3
O7 1 1 2
O8 1 0 3
O9 2 3 0

Table 4. Frequency table (FT)

Value \ Attribute A1 A2 A3
0 2 3 2
1 3 3 1
2 4 1 2
3 0 2 4

MONSA is a depth-first search algorithm which

backtracks when the current branch is exhausted or
has to be pruned. Inside the backtracking algorithm
the main steps at each level are as follows:

S1: Choose a “leading” element – the first
element with maximal frequency (over zero; at least
with threshold frequency specified by the user), add
it into the (potential) intersection and zerofill the
corresponding cell in the frequency table

S2: Calculate the next frequency table for objects
containing that leading element

S3: If there exist element(s) with frequency equal
to the leading one check the intersection’s
uniqueness => if it is unique, add these elements
(with frequency equal to the leading frequency) into
the intersection; otherwise backtrack

S4: Output intersection
S5: “Bring down” zeroes from the frequency

table of the previous level i.e. at the current level
zerofill all elements that have been zerofilled at the
previous level

S6: “Backward comparison”: elements that have
equal frequencies at both levels are zerofilled at the
previous level

Next we will show how the algorithm works. For

better understanding we give a frequency table (FT)
for each level, the number in subscript shows the
level of recursion (starting from the level 0). The row
above the table header shows the current potential
intersection, where ’*’ means that certain value for
that attribute is not determined yet. The number after
“=” is the frequency of shown intersection. We also
use a non-positional representation of intersections,
for example: A2.0=3 – the intersection consists of
one element – attribute A2 with value 0 and its
frequency is 3.

During the work we zerofill certain elements in
the frequency tables for different reasons. In order to
mark those elements the following notation is used:

→0 – a zerofilled leading element (the result of
step S1);

! – elements with frequency equal to the leading
frequency that are set to zero in case of inclusion into
intersection (the result of step S3);

↓0 – zeroes “brought down” from the previous
level frequency table (the result of step S5);

↑0 – frequencies equal at current and previous
level (set to zero at the previous level, the result of
step S6).

Now we will find all intersections with frequency

at least 2 for data given in Table 3. This threshold –
minimal frequency allowed (=2) – is set by the user.

Having the frequency table for the initial data set
(see Table 5a), the first thing (S1) is to find an
element with maximal frequency. If the search
direction is by columns, then the first element with
maximal frequency (which is 4) is attribute 1 (A1)
with value 2. We include it into the intersection
(2 * * =4; shown above Table 6). In order to prevent
the repeating selection of it (A1.2) we also eliminate
this element from the frequency table FT0 by putting
zero into the corresponding cell (marked with →0 in
Table 5b).

Table 5. Frequency table at level 0

a) b)
FT0 A1 A2 A3 FT0 A1 A2 A3
0 2 3 2 0 2 3 2 ↑0
1 3 3 1 1 3 3 1 ↑0
2 4 1 2 2 4→0 1 ↑0 2
3 0 2 4 3 0 2 ↑0 4

S2: The “leading” element A1.2 is the basis for

extracting a subset of objects, i.e. only objects that

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Rein Kuusik, Grete Lind

ISSN: 1790-0832 604 Issue 5, Volume 5, 2008

contain that certain element (A1.2) belong to the
subset. As the frequency shows this subset consists
of four objects, namely O2, O3, O4 and O9. We
calculate a frequency table for the next level by
taking into account only those (four) objects. As
attribute A1 (with its value 2) was the basis of
separating the subset (and it is already included into
the intersection), we do not look at this attribute at
the current level any more and the new frequency
table FT1 (given in Table 6a) does not contain
frequencies for attribute A1.

Table 6. Frequency table for A1.2 (at level 1)

a) b)
 2 * * =4
FT1 A1 A2 A3 FT1 A1 A2 A3
0 1 2 0 1 2 ↑0
1 0 1 1 0 1
2 1 1 2 1 1
3 2 0 3 2→0 0

S3, S4: In the new frequency table (see Table 6a)

there are no frequencies equal to the leading one
(=4), therefore we can output intersection (2 * * =4
or A1.2=4) without “uniqueness check”.

S5: There are no zeros to bring down from the
initial frequency table (Table 5a) because the only
zerofilled element is the leading element.

S6: The next thing to do is to compare the
frequencies of the current level (Table 6) with the
frequencies of the previous level (Table 5) and find
four coincidences (A2.2, A2.3, A3.0 and A3.1). It
means that all objects containing (some of) these
elements belong to our current subset and will be
fully analysed at the current and subsequent levels.
Using those elements for extracting subsets at the
previous level would cause repetitions. In order to
prevent it we zerofill these four cells at the previous
level (marked with ↑0 in Table 5b).

Now we will repeat all these activities at the next

level.
S1: The (first) element with maximal frequency

in FT1 (Table 6a) is A2.3 with frequency 2, we
remember it in the next potential intersection (2 3 *
=2; shown above Table 7) and eliminate it (→0 in
Table 6b). S2: Next we extract the subset of objects
having this element (A2.3) and find the cor-
responding frequency table (see Table 7).

Table 7. Frequency table for A1.2&A2.3 (at level 2)

 0 !
 2 3 * =2
FT2 A1 A2 A3
0 2 !
1 0
2 0
3 0

S3: This time there exists one element that has the

frequency equal to the leading one (=2) – this
element is A3.0 (! in Table 7). It means that all
objects in the subset contain that element and we
should include it into the intersection. The
intersection would be (2 3 0) instead of (2 3 *).
Before we can do it, we have to check whether this
intersection (with A3.0) is unique (non-redundant)
i.e. is not found already. The check is simple: if the
frequency of that element is not zerofilled in the
previous frequency table then this intersection is not
found yet. The frequency of A3.0 at level 1 (Table
6a) is more than zero, so the new intersection (2 3 0)
is unique and is outputted (A1.2&A2.3&A3.0=2). In
order to prevent A3.0 to be a basis for extracting a
new subset its frequency in the current frequency
table (Table 7) will be set to zero after the “backward
comparison” (S6).

S5: There are no zeroes to bring down in the
column A3 (which is the only attribute under
consideration). S6: Comparison of levels 1 and 2
(Table 6a and Table 7) sets (the same) A3.0 to zero
at level 1 (↑0 in Table 6b).

Nullifying A3.0 at level 2 (Table 7) makes this
frequency table empty. So we will continue at level 1
(Table 6b). Appears that there are no frequencies
over the threshold (minimal frequency allowed =2).

So we backtrack to the initial level. Taking into
account all zerofilling information (shown in Table
5b) the frequency table looks like in Table 8a. We
find that element with maximal frequency is A3.3
(with frequency 4). S1: We include this element into
the intersection (* * 3 =4; shown above Table 9) and
set to zero its frequency in FT0 (→0 in Table 8b).

Table 8. Frequency table at level 0

a) b)
FT0 A1 A2 A3 FT0 A1 A2 A3
0 2 3 0 0 2 ↑0 3 0
1 3 3 0 1 3 3 0
2 0 0 2 2 0 0 2
3 0 0 4 3 0 0 4→0

The frequency table for A3.3 is given in Table 9a

(S2). It contains no frequencies equal to the leading

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Rein Kuusik, Grete Lind

ISSN: 1790-0832 605 Issue 5, Volume 5, 2008

one (=4), so the intersection A3.3=4 is outputted (S3,
S4).

There are no zeros to bring down from FT0 (Table
8a) (S5). Backward comparison (S6) sets to zero
element A1.0 at level 0 (↑0 in Table 8b).

Table 9. Frequency table for A3.3 (at level 1)

a) b)
 * * 3 =4
FT1 A1 A2 A3 FT1 A1 A2 A3
0 2 2 0 2→0 2
1 2 2 1 2 2 ↑0
2 0 0 2 0 0
3 0 0 3 0 0

We continue at level 1 (see Table 9a).
S1: The maximal frequency is 2, the first element

with it is A1.0. We add it into intersection (0 * 3;
shown above Table 10) and set to zero its frequency
(→0 in Table 9b).

S2: We find the frequency table for the next level
i.e. level 2 (see Table 10).

Table 10. Frequency table for A3.3&A1.0 (at level 2)

 1 !
 0 * 3 =2
FT2 A1 A2 A3
0 0
1 2 !
2 0
3 0

S3: In FT2 (Table 10) A2.1 has the frequency

equal to the leading one (=2). Its frequency at
previous level (see Table 9a) is not zeroed, so the
intersection with A2.1 (0 1 3) is unique and is
outputted (A3.3&A1.0&A2.1=2; S4).

S5: There are no zeros to bring down in column
A2.

S6: (that same) A2.1 has equal frequencies at
both levels (1 and 2; see Table 9a and Table 10), its
frequency at level 1 is zerofilled (↑0 in Table 9b).

We zerofill A2.1 at level 2 also (due to the
inclusion into the intersection). The frequenency
table FT2 (Table 10) becomes empty, we backtrack
to level 1. After zerofilling (see Table 9b) the
frequency table for A3.3 looks like in Table 11a.

Table 11. Frequency table for A3.3 (at level 1)

a) b)
 * * 3 =4
FT1 A1 A2 A3 FT1 A1 A2 A3
0 0 2 0 0 2 ↑0
1 2 0 1 2→0 0
2 0 0 2 0 0
3 0 0 3 0 0

S1: We find that first element with maximal
frequency (equal to 2) is A1.1, include it into the
intersection (1 * 3; shown above Table 12) and
zerofill the corresponding cell (→0 in Table 11b).
S2: We calculate the frequency table for the next
level (see Table 12). S3: Element A2.0 has the
frequency equal to 2. As this element is not
zerofilled at the level 1 (Table 11a), we include it
into the intersection (1 0 3) and output (S4) the
intersection (A3.3&A1.1&A2.0=2). S5: There are no
zeros to bring down. S6: Element A2.0 has equal
frequencies at both levels (see Table 11a and Table
12) and we zerofill it at level 1 (marked with ↑0 in
Table 11b). Due to the inclusion into the intersection
the element A2.0 is set to zero at level 2 also. This
frequency table (Table 12) is empty now.

Table 12. Frequency table for A3.3&A1.1 (at level 2)

 0 !
 1 * 3 =2
FT2 A1 A2 A3
0 2 !
1 0
2 0
3 0

The frequency table at level 1 (Table 11b) is also

empty (taking into account the zerofilling
information).

The frequency table at level 0 is shown in Table
13a.

Table 13. Frequency table at level 0

a) b)
FT0 A1 A2 A3 FT0 A1 A2 A3
0 0 3 0 0 0 3 0
1 3 3 0 1 3→0 3 0
2 0 0 2 2 0 0 2
3 0 0 0 3 0 0 0

S1: The maximal frequency is 3 and the first

element with it is A1.1. We add it into the
intersection (1 * * =3) and nullify the corresponding
cell (→0 in Table 13b) S2: The frequency table for
objects containing A1.1 is found (see Table 14a). S3,
S4: It contains no frequencies equal to 3, so the
intersection (shown above Table 14) is outputted as
it is (A1.1=3).

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Rein Kuusik, Grete Lind

ISSN: 1790-0832 606 Issue 5, Volume 5, 2008

Table 14. Frequency table for A1.1 (at level 1)

a) b)
 1 * * =3
FT1 A1 A2 A3 FT1 A1 A2 A3
0 2 0 0 2 0
1 1 0 1 1 0
2 0 1 2 0 1
3 0 2 3 0 2 ↓0

S5: The cell for A3.3 has been zerofilled at level

0 (Table 13) and this zero is now brought down to
level 1 (↓0 in Table 14b). This zero prevents
traversing A1.1&A3.3 (which is the subset of
already found intersection A3.3&A1.1&A2.0=2 with
the same frequency and therefore redundant) and
subsequent subsets. S6: Backward comparison finds
no equal frequencies.

Table 15. Frequency table for A1.1 (at level 1)

a) b)
 1 * * =3
FT1 A1 A2 A3 FT1 A1 A2 A3
0 2 0 0 2→0 0
1 1 0 1 1 0
2 0 1 2 0 1
3 0 0 3 0 0

S1: At current level (see Table 15a) the maximal

frequency is 2 and element with it is A2.0
(zerofilling is shown in Table 15b). S2: The
frequency table for objects containing A2.0 is given
Table 16 and the current intersection (1 2 * =2) is
above it.

Table 16. Frequency table for A1.1&A2.0 (at level 2)

 1 0 * =2
FT2 A1 A2 A3
0 0
1 0
2 0
3 2 !

S3: In FT2 (Table 16) element A3.3 has frequency

2 (equal to the leading one). The “uniqueness check”
(i.e. looking into the corresponding cell in the
previous frequency table) gives the answer: such
intersection (with A3.3) – (1 0 3) has been found
already and current subset has been analysed already.
In such situation we backtrack to the previous level
(without outputting anything).

The frequency table at level 1 (Table 15b)
contains no frequencies over the threshold (=2),
therefore we backtrack again.

Table 17. Frequency table at level 0

a) b)
FT0 A1 A2 A3 FT0 A1 A2 A3
0 0 3 0 0 0 3→0 0
1 0 3 0 1 0 3 0
2 0 0 2 2 0 0 2
3 0 0 0 3 0 0 0

At level 0 (Table 17a) the maximal frequency is 3

and the first element with such frequency is A2.0
(zerofilling is shown in Table 17b). S1, S2: we add it
into the intersection (* 0 *) and find the next
frequency table (Table 18a).

Table 18. Frequency table for A2.0 (at level 1)

a) b)
 * 0 * =3
FT1 A1 A2 A3 FT1 A1 A2 A3
0 0 0 0 0 0
1 2 0 1 2 ↓0 0
2 1 1 2 1 ↓0 1
3 0 2 3 0 2 ↓0

S3, S4: The current intersection is outputted as it

is (A2.0=3), because there are no elements with the
same frequency. S5: The comparison of frequency
tables of level 1 (Table 18) and level 0 (Table 17)
finds 3 zeros to bring down (for A1.1, A1.2, A3.3;
shown in Table 18b). S6: Backward comparison
finds no coincidences of frequencies.

The current frequency table (Table 18b) contains
no frequencies over 2, therefore we go back to the
level 0 (see Table 19a).

Table 19. Frequency table at level 0

a) b)
FT0 A1 A2 A3 FT0 A1 A2 A3
0 0 0 0 0 0 0 0
1 0 3 0 1 0 3→0 0
2 0 0 2 2 0 0 2
3 0 0 0 3 0 0 0

S1: Include element A2.1 with frequency 3 into

the intersection (* 1 * =3; shown above Table 20)
and zero its frequency (→0 in Table 19b).

S2: Find the frequency table for those 3 objects
(Table 20a).

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Rein Kuusik, Grete Lind

ISSN: 1790-0832 607 Issue 5, Volume 5, 2008

Table 20. Frequency table for A2.1 (at level 1)

a) b)
 * 1 * =3
FT1 A1 A2 A3 FT1 A1 A2 A3
0 2 0 0 2 ↓0 0
1 1 0 1 1 ↓0 0
2 0 1 2 0 1
3 0 2 3 0 2 ↓0

S3: No need for uniqueness check.
S4: Output intersection (A2.1=3).
S5: Bring down zeros from FT0 (Table 19) to FT1

(marked with ↓0 in Table 20b).
S6: Backward comparison gives no

consequencies.
The frequency table at level 1 (Table 20b)

contains no frequencies over the threshold, so we
turn back to the level 0 (see Table 21).

Table 21. Frequency table at level 0

a) b)
FT0 A1 A2 A3 FT0 A1 A2 A3
0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0
2 0 0 2 2 0 0 2→0
3 0 0 0 3 0 0 0

S1: Include element A3.2 with frequency 2 into

the intersection (* * 2 =2).
S2: Find the frequency table for the next level

(see Table 22a).
Table 22. Frequency table for A3.2 (at level 1)

a) b)
 * * 2 =2
FT1 A1 A2 A3 FT1 A1 A2 A3
0 0 1 0 0 1 ↓0
1 1 1 1 1 ↓0 1 ↓0
2 1 0 2 1 ↓0 0
3 0 0 3 0 0

S3: No uniqueness check.
S4: Output intersection (A3.2=2).
S5: Bring down zeros (for A1.1, A1.2, A2.0,

A2.1) – see Table 22b.
S6: Backward comparison finds no elements with

equal frequencies at both levels.
The frequency table FT1 is empty (i.e. contains

only zeros). We backtrack to level 0.

The frequency table at level 0 (Table 21b) is also

empty.
There are no more levels to go back, thus the

algorithm has finished its work. All intersections are
found.

As a result we have found 9 intersections (with
minimal frequency allowed =2):

2 * * A1.2=4
2 3 0 A1.2&A2.3&A3.0=2
* * 3 A3.3=4
0 1 3 A3.3&A1.0&A2.1=2
1 0 3 A3.3&A1.1&A2.0=2
1 * * A1.1=4
* 0 * A2.0=3
* 1 * A2.1=3
* * 2 A3.2=2

They all are different (unique), and they are not

empty. All three pruning techniques together
prevented repetitions, both full repetitions (in
different order of elements) and partial repetitions
(i.e. subsets of intersections with the same
frequency). Uniqueness check was applied only
when there was more than one element to include
into the intersection at the same step (level) and this
check was made without looking through the already
found intersections.

Instead of list of intersections the same result can

be listed as a set of trees (immediately during the
process of finding intersections):

(4) 0.500(2)
A1.2=>A2.3&A3.0

(4) 0.500(2)
A3.3=>A1.0&A2.1

 0.500(2)
 =>A1.1&A2.0

(3)
A1.1

(3)
A2.0

(3)
A2.1

(2)
A3.2

The trees are represented from left to right. This

example consists of six trees, it has six root nodes
(on the left). Symbols ’=>’ separate the nodes of a
tree.

Usually a node contains one element – a pair of
certain attribute and a certain value of that attribute.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Rein Kuusik, Grete Lind

ISSN: 1790-0832 608 Issue 5, Volume 5, 2008

Attribute is shown before period and value is after
period. For example, the root node of the first tree
contains attribute A1 and its value 2. A node can
consist of more than one attribute-value pairs like all
non-root nodes in this example, then ’&’ is used to
connect them.

The numbers above node show frequencies.
In the parentheses node’s absolute frequency is

shown. The absolute frequency of node t shows how
many objects have a certain attribute(s) with a
certain value(s) among objects having properties (i.e.
certain attributes with certain values) of all previous
levels t-1,…,1. For example, the first tree shows that
among four objects with A1.2 there are two objects
having both A2.3 and A3.0.

Before parentheses node’s relative (to the
previous level) frequency is shown. The relative
frequency is a ratio A/B, where A is the absolute
frequency of node t and B is the absolute frequency
of node t-1. For the first level the relative frequency
is not calculated.

3.3 Pruning techniques used in MONSA
In order to avoid finding “repetitions” i.e.
permutations of already found intersections two
pruning techniques have been used in algorithm
MONSA:

“bringing zeroes down” – activity that prohibits
arbitrary output repetition of already separated
intersection at the next (deeper) level(s);

“backward comparison” – activity that does not
allow the output of the separated intersection at the
same (current) level and also at previous (higher)
levels (after backtracking).

Impact of these techniques is proved in [3]2.

Appears that these two activities do not prevent

repetitious finding (and output) of some subsets of
already found intersections.

The subset of already found intersection is
redundant only if both have equal frequencies (i.e.
this (sub)set is non-closed). If subset’s frequency is
higher (than its superset’s) then it covers more
objects and is not redundant. Subset’s frequency
cannot be lesser.

Finding a superset of already found set with the
same frequency is impossible, because at any level
MONSA finds all co-existing (i.e. contained in the
same objects) elements with equal frequencies as one
intersection (i.e. maximal EC).

2 Theorems 5.3 and 5.4 accordingly

Next we give an example of redundant subsets
under consideration. For that we have used MONSA
without “uniqueness check” (of a new intersection).

Having the initial data set of nine objects
described by three attributes (see Table 23) MONSA
(without uniqueness check) finds fifteen inter-
sections (with minimal frequenct allowed =2). Both
representation forms – trees and intersections – are
given in Fig. 2.

Table 23. Example X(9,3)

Object \ Attribute A1 A2 A3
O1 4 0 8
O2 5 3 4
O3 5 4 3
O4 5 0 7
O5 3 1 8
O6 3 1 8
O7 4 1 7
O8 4 0 8
O9 5 4 3

(a) Result as a set of
trees:

(4) 0.500(2)
A1.5=>A2.4&A3.3
 0.250(1)
 =>A2.0&A3.7
 0.250(1)
 =>A2.3&A3.4

(4) 0.500(2)
A3.8=>A1.3&A2.1
 0.500(2)
 =>A1.4&A2.0

 (3) 0.667(2)
A1.4=>A2.0
 0.333(1)
 =>A2.1&A3.7

 (3) 0.333(1)
A2.0=>A3.7

 (3) 0.333(1)
A2.1=>A3.7

 (2)
A3.7

(b) Result as a set of
intersections:

I1) A1.5=4
I2) A1.5&A2.4&A3.3=2
I3) A1.5&A2.0&A3.7=1
I4) A1.5&A2.3&A3.4=1

I5) A3.8=4
I6) A3.8&A1.3&A2.1=2
I7) A3.8&A1.4&A2.0=2

I8) A1.4=3
I9) A1.4&A2.0=2
I10) A1.4&A2.1&A3.7=1

I11) A2.0=3
I12) A2.0&A3.7=1

I13) A2.1=3
I14) A2.1&A3.7=1

I15) A3.7=2

Fig. 2. Result found by MONSA (without uniqueness
check)

Here we have six trees and six roots accordingly.

Intersections I1, I5, I8, I11, I13 and I15 correspond
to the roots.

Intersection I11 (A2.0=3) is not redundant
although A2.0 is contained in the intersections I3, I7

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Rein Kuusik, Grete Lind

ISSN: 1790-0832 609 Issue 5, Volume 5, 2008

and I9, because these three intersections have lesser
frequencies and none of them cover all objects
covered by I11.

Intersections I9, I12 and I14 are redundant:
• I9 (A1.4&A2.0) is a subset of I7

(A3.8&A1.4&A2.0) with the same frequency =2
(both cover objects O1 and O8);

• I12 (A2.0&A3.7) is a subset of I3
(A1.5&A2.0&A3.7), both frequencies are 1 (they
cover object O4) and

• I14 (A2.1&A3.7) is a part of I10
(A1.4&A2.1&A3.7), frequencies equal 1 (they
cover O7).
There have to be 12 intersections instead of 15.

Starting from the root of a tree the frequencies of

intersections (nodes) always (strictly) decrease along
any branch of the tree (due to finding maximal EC at
every node). As no branch has two intersections with
the same frequency, the redundant subsets do not
occur in the same branch, they can appear in
different branches of a tree or in different trees.

Among siblings (i.e. direct descendants of a
common node) any element can appear in only one
intersection. Consequently, redundant subsets (under
consideration) do not occur among siblings. This is
also true for the root-level (which formally consists
of descendants of the initial empty set), therefore
these redundant subsets never occur at root-level.

Intersection (closed set) and its redundant sub-
intersection (with the same frequency) do not have to
appear at the same level of a tree (as in all three
cases of our example).

Element(s) that appear in the root node are eli-
minated from further analysis by zerofilling the cor-
responding cell(s) in the frequency table. Elements
that are fully analyzed (exhausted) at deeper levels
are prohibited by “backward comparison”. All these
zeroes are “brought down” to all succeeding levels
and therefore prohibited elements never occur in
redundant intersections. So (due to the elimination
techniques used) no permutation of whole (already
found) intersection (closed set) is not found. Ele-
ments that are partially analyzed (at the non-root
levels) are not eliminated. All this is true for any
subtree also.

Although prohibited elements are eliminated from
the frequency tables they still appear in the subsets
of objects extracted by non-prohibited elements.
Remind that some set (of elements) and its subset
with the same frequency define the same set of ob-
jects. If some prohibited (and eliminated) element
appears in all objects (of subset) it means that this
subset has been analyzed already (this element can
not be contained in the value combination (potential

intersection) on which basis that subset of objects
was extracted). All intersections containing a prohi-
bited element are already found and such subsets
need no more analysis. This situation indicates a
repetitive extraction of certain subset of objects.

To exclude redundant subsets (sub-intersections)
we have to detect a situation when some prohibited
element occurs in all objects and stop analyzing such
branch.

In our example (see Table 23 and Fig. 2)

intersection I7 (A3.8&A1.4&A2.0) has one more
element than redundant set I9 (A1.4&A2.0), namely
A3.8. The set of objects extracted by I9 is the same
as by I7. Consequently, actual frequency of A3.8 is
as much as number of objects in that set (=2). As
A3.8 was prohibited after exhaustive analyze, the
frequency table contains zero in the corresponding
cell. Detecting such situation we can say that
A1.4&A2.0 (I7) is a redundant set.

Such “uniqueness check” is used by MONSA. It
is not necessary to look through the already found
intersections to ensure the new one is non-redundant.

Correctness of ‘uniqueness check’ explained here
is proved in [4].

It is interesting that those redundant subsets seem

to be the same ones for what ChARM [1] [2] needs
“subsumption checking”. In order to ensure that a
candidate set is really closed ChARM looks through
the (certain) already found closed sets, only those
that have 1) the same “tidsum” and 2) the same
support (frequency) as the candidate set. (Tidsums of
different closed sets with equal frequency tend to be
different). For the complete description see [1] [2].

As shown already we perform the uniqueness
check of a new intersection (potential closed set)
otherwise, without looking through the already found
(closed) sets.

4 Conclusion
In this paper we have described algorithm MONSA
for finding closed sets. The first version of MONSA
was created in 1993 and we have developed several
versions during last years.

From the theoretical viewpoint the basic concepts
used in MONSA are compared to the ones used by
Zaki and Hsiao and it is shown that substantially
they are the same.

In MONSA we use some new effective pruning
techniques: zeros down, backward comparison,
uniqueness check. These are simple original
techniques to prevent repetitious finding of already
found closed sets whitout using additional data

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Rein Kuusik, Grete Lind

ISSN: 1790-0832 610 Issue 5, Volume 5, 2008

structures. Uniqueness (non-redundancy) check of a
new potential closed set is made without looking
through the already found closed sets.

During the process of finding all closed sets
MONSA can find also rules between them. The
algorithm works not only on the binary scale.

MONSA is a basic algorithm we have used not
only in data mining [5] [6] [7], but also in solving of
graph theoretical problems as extracting of all
maximal cliques [4] and decision trees constructing
[8]. We have some approaches how to use the
algorithm presented here in machine learning for the
future works.

Acknowledgement
This work was supported in part by the Estonian
Information Technology Foundation under Grant 07-
03-00-22.

References:
[1] M. J. Zaki and C.-J. Hsiao, CHARM: An

efficient algorithm for closed association rule
mining, Technical Report 99-10, Department of
Computer Science, Rensselaer Polytechnic
Institute, October 1999.

[2] M. J. Zaki and C.-J. Hsiao, CHARM: An
efficient algorithms for closed itemset mining,
Proceedings of the Second SIAM International
Conference on Data Mining, 2002.

[3] R. Kuusik, The Super-Fast Algorithm of
Hierarchical Clustering and the Theory of
Monotone Systems, Transactions of Tallinn
Technical University, No 734, 1993, pp. 37-62.

[4] R. Kuusik, Extracting of all maximal cliques:
monotone system approach, Proceedings of the
Estonian Academy of Sciences. Engineering, No
1, 1995, pp. 113-138.

[5] R. Kuusik, G. Lind, L. Võhandu, Data mining:
pattern mining as a clique extracting task,
Proceedings of the Sixth International
Conference on Enterprise Information Systems,
Vol. 2, Porto, Portugal, 2004, pp. 519-522.

[6] R. Kuusik, G. Lind, New frequency pattern
algorithm for data mining, Proceedings of the 13th
Turkish Symposium on Artificial Intelligence and
Neural Networks, Foça, Izmir, Turkey, 2004, pp.
47-54.

[7] G. Lind, Method for Data Mining – Generator of
Hypotheses, Databases and Information Systems.
Proceedings of the 4th International Baltic
Workshop, Vol. 2, Vilnius, 2000, pp. 304-305.

[8] A. Torim, R. Kuusik, Problem and algorithms for
finding the best decision, WSEAS Transactions on

Information Science and Applications, 9 (2),
2005, pp. 1462-1469.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Rein Kuusik, Grete Lind

ISSN: 1790-0832 611 Issue 5, Volume 5, 2008

