
Error measurements and parameters choice in the GNG3D model
for mesh simplification

RAFAEL ALVAREZ LEANDRO TORTOSA JOSE F. VICENT ANTONIO ZAMORA
Universidad de Alicante

Departmento de Ciencia de la Computacion e Inteligencia Artificial
Campus de Sant Vicent, Ap. 99, E-03080

SPAIN
tortosa@dccia.ua.es, jvicent@ dccia.ua.es, zamora@dccia.ua.es

Abstract: In this paper we present different error measurements with the aim to evaluate the quality of the approx-
imations generated by the GNG3D model for mesh simplification. The first phase of this method consists on the
execution of the GNG3D algorithm, described in the paper. The primary goal of this phase is to obtain a simpli-
fied set of vertices representing the best approximation of the original 3D object. In the reconstruction phase we
use the information provided by the optimization algorithm to reconstruct the faces thus obtaining the optimized
mesh. The implementation of three error functions, named Eavg, Emax, Esur, allows us to control the error of the
simplified model, as it is shown in the examples studied. Besides, from the error measurements implemented in
the GNG3D model, it is established a procedure to determine the best values for the different parameters involved
in the optimization algorithm. Some examples are shown in the experimental results.

Key–Words: Surface simplification, mesh reconstruction, error approximations, neural networks, growing neural
gas, growing cell structures.

1 Introduction
Current computer graphic tools allow design and vi-
sualization of more and more realistic and precise 3D
models. These models are numerical representations
of both the real and imaginary worlds. Acquisition
and design techniques of 3D models (modeler, scan-
ner, sensor, etc) usually produce huge data sets con-
taining geometrical and appearance attributes. These
devices generate meshes of great complexity to repre-
sent the models.

Simplification is mandatory when one has to man-
age the meshes produced by 3D scanning devices.
The sampling resolution of current scanning instru-
ments produces surface meshes composed by 20M-
100M faces. Meshes of this size usually have to be
reduced to a more easily manageable size to be used
in real applications. Therefore, the objective is clear:
to produce a model that is visually similar to the orig-
inal model and contains fewer polygons. Some tech-
niques offer efficient processing but produce simpli-
fied meshes which are visually undesirable. Others
create more pleasing approximations but are slow and
difficult to implement.

The typical surface models handled by contempo-
rary computer graphics applications have millions of
triangles. Mesh simplification has emerged as a criti-
cal step for handling such huge meshes. The problem

of approximating a given input mesh with a less com-
plex but geometrically faithful representation is well-
established in computer graphics. Level-of-detail rep-
resentations figure prominently in real-time applica-
tions such as virtual reality, terrain modeling, and sci-
entific visualization.

Over the last decades a tremendous amount of
work has been done on mesh simplification. Most of
the techniques or algorithms proposed to accomplish
this objective are based on reducing the mesh com-
plexity either by merging/collapsing elements or by
re-sampling vertices. Simplification strategies may be
broadly grouped into two categories: local strategies
that iteratively simplify the mesh and global strategies
that are applied to the input mesh as a whole.

Local strategies are the most common and some
examples are the following ones.

• Vertex Decimation, first proposed by Schroeder
et al. [20], operates on a single vertex by delet-
ing that vertex and re-tessellating the resulting
hole. The algorithm operates by making mul-
tiple passes over all the vertices of the model.
A Bayesian technique for the reconstruction and
subsequent decimation of 3D surface models
from noisy sensor data can be seen in [6].

• Re-Tiling Polygonal Surfaces. The paper by

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Rafael Alvarez, Leandro Tortosa, Jose F. Vicent, Antonio Zamora

ISSN: 1790-0832 579 Issue 5, Volume 5, 2008

Turk [21] describes a method to simplify ar-
bitrary polyhedral objects and works best on
smoothly curved surfaces without sharpe edges
or discontinuities.

• Edge Contraction, originally proposed by Hoppe
et al. [13], is a common simplification opera-
tion. An edge contraction operates on a single
edge and contracts it to a single vertex, updating
all edges previously incident on it. Heckbert and
Garland [11] showed that, under the L2 metric,
this strategy produces optimal triangulations in
the limit as the number of triangles goes to infin-
ity and their area goes to zero. Garland and Zhou
[10] described a generalized version for high di-
mensions. See [1, 23] for recent papers in this
context.

Some representative examples of global simplifi-
cation strategies are

• Shape Approximation, proposed by Cohen-
Steiner et al. [4]. They employ a variational
partitioning scheme to segment the input mesh
into a set of non-overlapping connected regions,
and then fit a locally approximating plane to each
one.

• Vertex Clustering, originally proposed by
Rossignac and Borrel [18] to handle meshes of
arbitrary topological structure.

In recent years, the problem of mesh simplifica-
tion has received increasing attention. Several differ-
ent algorithms have been formulated for simplifying
meshes (see, for example, [2, 5, 22]).

In this paper, we define three error functions,
named Eavg, Emax, Esur with the objective to eval-
uate the approximations generated by the GNG3D
method. Such a way, we can control the quality of the
simplified models we are generating. Moreover, two
particular 3d models are used as examples, showing
the numerical results obtained for the different error
functions, applied to these models.

2 A brief description of the GNG3D
algorithm

The GNG model presents some drawbacks itself when
it is applied to the problem of mesh optimization for
three-dimensional objects in computer graphics. The
model only provides us information about the nodes
or vertices and the edges connecting them; there is
no information about the faces of the mesh. These

drawbacks can be summarized in the existence of in-
active nodes that produces the convergence of the al-
gorithm towards a local minimum and the generation
of foldovers in the new mesh. See [14] for a more
detailed description of these problems.

Consequently, it is not possible to perform a
suitable reconstruction of the original object with-
out developing a further step of reconstruction, where
the faces are reconstructed following a technique de-
scribed later.

The method that we propose in this paper, de-
noted as Growing Neural Gas 3D (GNG3D) has been
designed taking as a basis the GNG model, with an
outstanding modification consisting on the possibil-
ity to remove some nodes or neurons that do not pro-
vide us relevant information about the original model.
Besides, it has been added a reconstruction phase in
order to construct the faces of the optimized mesh.
Therefore, the GNG3D model consists on two differ-
ent phases:

Phase 1 Mesh Optimization.

Phase 2 Mesh Reconstruction.

2.1 Phase 1. Mesh Optimization

The primary objective of this optimization phase is the
calculation of the best vertices distribution that shapes
the new simplified mesh. The core of this phase is the
implementation of an optimization algorithm similar
to the GNG algorithm described in Section 2. The de-
tails of this algorithm are described in the following:

Optimization algorithm
INIT: Start with two nodes a and b at random po-

sitions wa and wb in Rn. Initialize the error variable
to zero.

1. Generate an input signal ξ according to P (ξ).

2. Find the nearest node s1 and the second nearest
s2 to the input signal.

3. Increment the age of all edges emanating from
s1. If the age of any edge is greater than amax,
then mark it in order to be eliminated afterwards.

4. Increment the local counter variable of the win-
ner node. Add the square distance between the
input signal and the nearest node in input space
to a local counter variable:

∆error(s1) = ‖ws1 − ξ‖2

Store the nodes with the highest and lowest value
of the local counter variable

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Rafael Alvarez, Leandro Tortosa, Jose F. Vicent, Antonio Zamora

ISSN: 1790-0832 580 Issue 5, Volume 5, 2008

5. Move s1 and its direct topological neighbors to-
wards ξ by fractions εb and εn, respectively, of
the total distance:

∆ws1 = εb(ξ − ws1),

∆wsn = εn(ξ − wn),

where n represents all direct neighbors of s1.

6. If s1 and s2 are connected by an edge, set the age
of this edge to zero. If such an edge does not
exist, create it.

7. Remove edges with an age larger than amax. If
this results in nodes having no emanating edges,
remove them as well.

8. Decrease the error variables of all the nodes by
multiplying with a constant d.

9. Repeat steps 1 to 8 λ times, with λ an integer.

• If the maximum number of nodes has not
been reached then insert a new node as fol-
lows:

– Determine the node q with the maxi-
mum accumulated error.

– Insert a new node r halfway between
q and its neighbor f with the largest
error variable:

wr = 0.5(wq + wf).

– Insert edges connecting the new node
r with nodes q and f , and remove the
original edge between q and f .

– Decrease the error variables of q and
f by multiplying them with a constant
α. Initialize the error variable and the
local counter of the node r with the
new value of the error variable and lo-
cal counter of q, respectively.

• If the maximum number of nodes has been
reached then remove a node as follows:

– Set k the stored node with the lowest
error variable.

– Remove the node k and all the edges
emanating from k.

10. If N is the total number of nodes, every µ · N
iterations of steps 1 to 8 remove all the nodes that
have not been used (local counter equal to zero)
and all the edges emanating from them. Reset the
local counter of all the nodes to zero.

Some basic characteristics of this algorithm must
be remarked.

• The accumulated error of nodes in step 4 is a
quantity that allows us to determine the regions
where there is a low density of nodes according
to the vertices existing in the original 3D object.
Regions where the accumulated error is high are
suitable candidates for being covered with new
nodes or neurons.

• The local counter variable is useful to eliminate
nodes and avoid the problem of local minima.

• Parameters εb, εn, d, λ, α, and µ are not fixed.
They are obtained experimentally.

• The parameter λ is just used to determine the mo-
ment to insert a new node in the mesh.

• The parameter µ is used to determine when to
eliminate a node that has not been referenced in
the previous iterations.

The GNG3D algorithm described above presents
a very important difference respect to the GNG model.
In this algorithm the nodes and the edges emanating
from them that have not been referenced along the
process of constructing the optimum neural network,
are removed. This is carried out because of the intro-
duction of a local counter variable in the step 4 of the
algorithm. This local counter gives us the information
about the number of times that a node has been refer-
enced as the winner one in the process of determining
the closest node to the input signal. The introduction
of this counter for each node is related with the step 11
of the algorithm, where the nodes that have never been
referenced as the winner ones are removed. The edges
emanating from these nodes are also removed. In such
a way, we avoid the foldover problems between some
edges connecting nodes that appear in practice when
executing the GNG model. This is solved because the
nodes that generate this problem have in common that
they are not referenced; so, they will be removed when
the step 11 is performed. Consequently, these nodes
do not appear in the final simplified mesh.

2.2 Phase 2. Reconstruction of the 3D object

In general, phase 1 can be seen as a training process
based on neural networks. At the end of this process
a set of nodes, which represent the new vertices of the
optimized mesh, is computed. The edges connecting
these nodes show the neighboring relations among the
nodes generated by the optimization algorithm. This
phase can be run as many times as we want with the
aim to obtain the best configuration of the nodes in

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Rafael Alvarez, Leandro Tortosa, Jose F. Vicent, Antonio Zamora

ISSN: 1790-0832 581 Issue 5, Volume 5, 2008

the new mesh. Once this process has been completed,
then it begins the second phase of reconstruction that
is analyzed in the following.

The reconstruction phase constitutes a post-
process which uses the information about new nodes
provided by the optimization phase and the informa-
tion about the nodes of the original model. With these
sets of nodes, a concordance process can be carried on
between the nodes of the original object and the nodes
generated by the optimization algorithm. This concor-
dance process allows us to reconstruct the faces of the
new optimized mesh. This reconstruction phase can
be summarized in three steps:

1. Associate a representative (node) to every node
in the original mesh, making groups of nodes
with the same representative.

2. Create a string with all the connections among
the resulting groups.

3. Reconstruct the faces.

Step 1. Associate a representative (node) to every
node in the original mesh, making groups of nodes
with the same representative.

In this step, it must be calculated, for each node
of the original mesh, which is the node of the opti-
mization set that is closer to it. Suppose that A =
{n1, n2, . . . , nN} is the set of nodes (vertices) of the
original object and κ = {k1, k2, . . . , kM} is the set of
nodes obtained by the optimization algorithm. Then,
for each ni ∈ A we must find the representative of ni,
that is, the node kl ∈ κ which is closer to ni. This task
must be repeated for every node of the original object.

As the number of vertices or nodes in the orig-
inal object is generally very high, in order to speed
up this step we use an octree with the aim to divide
the three-dimensional space in a balanced way and to
set bounds to the searching space. An octree is a data
structure to represent objects in the three-dimensional
space, automatically grouping them hierarchically and
avoiding the representation of empty portions of the
space. The first octree node is the root cell, which is
an array of eight contiguous elements. In our case, we
have implemented an octree of one level, where each
son keeps an array of vertices or nodes that are placed
in its region.

The problem that can arise when working with an
octree structure is that dividing the space into regions
and searching only inside the region in which the orig-
inal node is situated can give rise to an undesirable
situation. That is, we can chance upon the possibility
that the representative node obtained in this step is not
the optimum. If it is not the optimum, at least will be
close to it. The worst case occurs when all the nodes

must be checked to find the optimum; in this situation
no benefit will be obtained when using such structure.
In the experiments performed with different models
and different topologies, these cases only arise in the
early iterations of the algorithm, when the number of
nodes is small.

Step 2. Create a string with all the connections
among the resulting groups.

Accordingly to the operations of labelling carried
out in the step 1, the nodes of the original mesh have
been arranged in groups and each one of these groups
has associate one and only one node belonging to the
group of nodes obtained after applying the optimiza-
tion algorithm. Recall that the number of nodes in
the simplified mesh is much smaller than the num-
ber of nodes of the original object. This association
of nodes is performed minimizing the distance among
the two sets of nodes (the original set of nodes and the
set provided by the optimization algorithm). In this
second step we continue analyzing each of the faces
of the original mesh to check if their vertices have dif-
ferent representative. In other words, we are looking
for triangles in the original mesh where the represen-
tative nodes of the vertices belong to different groups.
When a triangle with this property is found, then it is
necessary to store the connection among these groups
for a further representation of these connections in the
optimized mesh.

Step 3. Reconstruct the faces.
In this third step we proceed to create the faces of

the optimized mesh. For this purpose, the key point
is to scan the list of the representatives and when we
find a connection among three neighboring groups, we
conclude that this face must be represented.

3 The error measurement
We have developed in Section 2 an algorithm which
produces simplified versions of any polygonal model.
As we know, the goal of polygonal surface simplifica-
tion is to take a polygonal model as input and generate
an approximation of the original as output.

Therefore, an error measurement is required to
evaluate the quality of approximations produced by
the GNG3D algorithm. This error measurement will
be completely dependent on the choice of error func-
tions, so many such functions have been proposed in
the last years. Ronfard and Rossignac [19] proposed
an efficient measure of the error. Given a contraction
{i, j} → {h} they define the local geometric error to
be the maximum squared distance between vertex vh

and the planes defined by the triangles in C(i)∪C(j),
where C(s) are the cofaces of a simplex s ∈ K, with
K a simplicial complex representing the connectivity

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Rafael Alvarez, Leandro Tortosa, Jose F. Vicent, Antonio Zamora

ISSN: 1790-0832 582 Issue 5, Volume 5, 2008

of the mesh. To avoid error propagation, each new
vertex inherits the plane equations from the cofaces
of the two merged vertices when a contraction is per-
formed.

Garland and Heckbert [9] developed a surface
simplification algorithm based on iterative contrac-
tion of vertex pairs to simplify models and maintains
surface error approximations using quadric metrics.
They observed that, given a simple plain (n, d) one
can express the squared distance from the plane to a
point x by

error(x) = xT Ax + 2bT x + c,

where (A, b, c) = (nnT , dn, d2) is the fundamental
quadric of the plane (n, d).

As explained in [9], the error of the approxima-
tion is typically measured with respect to L2 or L∞
error. The L2 error between two n-vectors u and v

is defined as ‖u− v‖2 =
[∑n

i=1(ui − vi)2
]1/2. The

L∞ error, also called the maximum error, is defined
as ‖u− v‖∞ = maxn

i=1 |ui − vi|. Optimization with
respect to the L2 and L∞ metrics are called least
squares and minimax optimization, and such solutions
are called L2-optimal and L∞-optimal, respectively.
Distances can be measured in various ways, e.g., to
the closest point on a given polygon, or closest point
on the entire surface. Others error measurements can
be found in [3] and [12].

We have chosen two methods of error evaluation.
For the first one, we use a metric which measures the
squared distance between the approximation and the
original model as described in [9]. We define the dis-
tance d(v,A) = minp∈A ‖v − p‖ as the minimum
distance from v to the closest vertex p in the optimized
mesh. This metric provides two error measurements
which permits us to evaluate the approximations we
are generating. These error measurements are:

• Mean error value of the minimum squared dis-
tance, given by

Eavg =
1
|M |

∑
v∈K

d2(v,A).

• Maximum error value of the minimum squared
distance, given by

Emax = maxv∈K

{
d2(v,A)

}
.

Remember that K is the set of vertices of the orig-
inal model, |M | is the number of elements of K, and
A is the set of vertices of the simplified object.

The second error measurement method computes
the difference between the area comprised by the faces

of the original object and the area corresponding to the
faces of the simplified object [3]. Taking that the faces
of the three-dimensional models considered here are
triangular, this metric can be computed in the follow-
ing way:

Esur = SK − SA,

with

SX =
1
2

∑
f∈X

va · vb · senα =
1
2

∑
f∈X

|~va ⊗ ~vb| ,

with X being the set of faces of the original mesh
and va, vb the vectors joining the vertices belonging
to face f .

The quality of the mesh being generated can be
known at any time employing the metric of the dis-
tance to the vertices on any iteration during the train-
ing of the neural network in phase 1. The area dif-
ference metric can only be computed after applying
phase 2 because there are no faces in the mesh being
optimized during Phase 1.

Using the three error measurements exposed in
this section, Eavg, Emax, Esur, we have performed
numerical experiments for a variety of models with
different geometric characteristics.

We choose two representative examples of 3d ob-
jects: gargoyle and horse. Gargoyle is a 3d object
composed by 21279 vertices and 40348 edges, while
horse is a 3d object with 19852 vertices and 37540
edges.

For the Gargoyle we show the results in Table
1. We run the algorithm for this model and stop it
for different iterations. For each iteration we show in
columns two and three the characteristics of the re-
constructed model, that is, the number of vertices and
faces of the approximation generated by the GNG3D
method. At the same time, we obtain from the pro-
gram the values for Eavg, Emax, Esur for that partic-
ular iteration. Therefore, it is easy to compare the
evolution of the error values for each approximation
model when the number of iterations grows.

Remark that the GNG3D algorithm has been im-
plemented with a particular characteristic: when half
the number of vertices of the original object have been
created the algorithm does not add any more vertex to
the mesh. However, that does not mean that the train-
ing process is finished. We can follow running the
optimization algorithm as time as we desire to pro-
duce the best mesh. Therefore, we can perform as
many iterations as we desire, without taking the stop-
ping criteria into account. In our case, the program is
implemented to generate only half of the vertices of
the original model.

The numerical results obtained for the horse 3d
model are summarized in Table 2. We only show a

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Rafael Alvarez, Leandro Tortosa, Jose F. Vicent, Antonio Zamora

ISSN: 1790-0832 583 Issue 5, Volume 5, 2008

Table 1: Error values for the gargoyle 3d model.

Iterations Vertices Faces Eavg Emax Esur

42758 1118 1252 0.707 1.75 16.86
64137 1660 2458 0.324 1.13 9.25
106895 2868 4885 0.102 0.49 3.58
128274 3462 6128 0.068 0.21 3.45
171032 4722 8308 0.034 0.16 2.31
192411 5378 9613 0.025 0.12 2.09
235169 6584 12041 0.015 0.11 1.80
256548 7297 13137 0.011 0.07 1.96
299306 8545 15399 0.007 0.05 0.85
320685 9074 16601 0.006 0.04 1.44
363443 10499 18895 0.004 0.04 1.50
384822 10690 19952 0.003 0.04 1.20
427580 10401 20801 0.004 0.04 1.02
448959 10690 20875 0.003 0.04 1.25
491717 10690 21327 0.003 0.04 1.24
513096 10690 21408 0.002 0.03 1.12
555854 10690 21449 0.002 0.10 1.12
577233 10690 21506 0.002 0.10 0.97

Table 2: Error values for the horse 3d model.

Iterations Vertices Faces Eavg Emax Esur

39702 1226 1239 0.000100 0.000054 0.000241
59553 1848 2498 0.000044 0.000031 0.000150
99255 3097 4934 0.000016 0.000027 −0.000318
119106 3713 6196 0.000011 0.000018 −0.000033
158808 4948 8640 0.000006 0.000015 −0.000251
178659 5610 9901 0.000004 0.000012 −0.000075
218361 6901 12436 0.000003 0.000008 −0.000148
238212 7521 13666 0.000002 0.000008 −0.000154
277914 8794 16162 0.000001 0.000006 −0.000133
297765 9456 17321 0.000001 0.000008 −0.000081
337467 9926 19509 0.000001 0.000006 −0.000077
357318 9926 19614 0.000001 0.000005 −0.000073
397020 9926 19894 0.000001 0.000005 −0.000098
416871 9926 19910 0.000001 0.000006 −0.000057
456573 9926 19905 0.000001 0.000006 −0.000106
476424 9926 19939 0.000001 0.000006 −0.000085
516126 9926 19925 0.000001 0.000006 −0.000007
535977 9926 19940 0.000001 0.000006 −0.000048

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Rafael Alvarez, Leandro Tortosa, Jose F. Vicent, Antonio Zamora

ISSN: 1790-0832 584 Issue 5, Volume 5, 2008

part of the error values collected when the number of
iterations increase.

In both tables we observe that when the number
of iterations increases, the error values that we obtain
for Eavg, Emax, Esur decrease. In other words, when
we perform more and more iterations to obtain a sim-
plified model, the approximation to the original one
is better, what leads us to conclude that the GNG3D
algorithm is efficient in the sense that when more it-
erations are carried out, better results are obtained for
the approximations. That is absolutely agree with the
general objective of the GNG3D algorithm, that is, to
provide the best set of vertices and edges to recon-
struct the simplified model.

4 The parameters choice
Using the three error measurements exposed in Sec-
tion 3, Eavg, Emax, Esur, we have performed numer-
ical experiments for a variety of models with different
geometric characteristics, concluding that we obtain
better approximations from the original object spe-
cially when the number of iterations is high. However,
it is possible to use these error measurements to deter-
mine the best possible parameters in the optimization
algorithm.

To run our experiments we first need to specify a
set of parameters for the optimization algorithm. The
parameters involved in the algorithm are the follow-
ing:

• amax, the maximum age for the edges,

• εb, related to the displacement of the winner node
in the space,

• εn, related to the displacement of the neighbor
nodes in the space,

• d, a constant to decrease the error variables,

• λ, an integer to determine when to create a new
node,

• α, a constant to decrease the error variables of
the nodes after adding a new one,

• µ, a constant to know when to remove the nodes
that have not been referenced in successive itera-
tions.

There is no parameter set that can always pro-
duce the best results (lowest error values) for all
possible three-dimensional models. The parameter
values that minimize error for a certain model can
achieve slightly higher error values for other models.
This characteristic is common in all training processes

based on neural networks. Nevertheless, the simpli-
fied models present a very high similarity with the
original object regardless of parameter values, since
the error is still very small.

As an example, we have taken the 3D model
Bull to perform an experimental analysis of the way
that the value of the parameters influence the error
achieved. We have fixed the values of all the parame-
ters except the one being studied. In Figure 1 (top) we
show the error evolution (in this case Eavg), changing
the parameter εb. Observing the results achieved, we
can conclude that the lowest error is obtained when εb

varies from 0.3 to 0.4. In Figure 1 (middle) we show
the error evolution changing the parameter λ; in this
case, the lowest error is obtained when λ is equal to
85. In Figure 1 (bottom) the study have been done
for the parameter εn. We conclude that the value of
this parameter should be smaller than 0.04 to produce
good results. A similar study can be performed for the
rest of the parameters.

As we have already remarked, these experimen-
tal results are only valid for this model. For any other
one, the results may change, as we can see in Figure 2,
where the model we have taken in this case is Octo-
pus. Observe that the best results of the Eavg for the
parameter εb are exactly at 0.4. It is also remarkable
the differences respect to the Figure 1 for the parame-
ters λ and εn.

5 Conclusion
Using the GNG3D method for mesh simplification,
we have implemented three error functions which al-
low us to evaluate the quality of the approximations
generated from the algorithm. With these error mea-
surements we determine if the differences between the
original and the simplified object are relevant or not.

In the numerical experiments it is observed that
when the number of iterations is high, the error mea-
surements decrease, which means that we are obtain-
ing good simplifications of the original object. The
reduction of the error is specially important in the sur-
face error, which provides us a global idea about the
quality of the simplified surface. Moreover, the er-
ror measurements implemented in the algorithm will
allow us to compare with other methods for mesh sim-
plifications.

Besides, we can use these error measurements to
determine the best values for the different parameters
involved in the running of the optimization algorithm.
Fixing all the parameters except the one we want to
optimize and measuring the error for different values
of the parameter, it is possible to determine the value
for which the error is minimum.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Rafael Alvarez, Leandro Tortosa, Jose F. Vicent, Antonio Zamora

ISSN: 1790-0832 585 Issue 5, Volume 5, 2008

Figure 1: The error depends on the values of the parameters. In this example, we have tested the Eavg obtained
with the GNG3D method when the parameter b varies from 1 to 0.1, the parameter λ varies from 5 to 100, and
the parameter n varies from 0.00001 to 0.10000 for the 3D model Bull.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Rafael Alvarez, Leandro Tortosa, Jose F. Vicent, Antonio Zamora

ISSN: 1790-0832 586 Issue 5, Volume 5, 2008

Figure 2: The error depends on the values of the parameters. In this example, we have tested the Eavg obtained
with the GNG3D method when the parameter b varies from 1 to 0.1, the parameter λ varies from 5 to 100, and
the parameter n varies from 0.00001 to 0.10000 for the 3D model Octopus.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Rafael Alvarez, Leandro Tortosa, Jose F. Vicent, Antonio Zamora

ISSN: 1790-0832 587 Issue 5, Volume 5, 2008

Acknowledgements: The research was supported by
the University of Alicante, (GV06/018).

References:

[1] M. Anderson, J. Gudmundsson and C. Lev-
copoulos, Restricted mesh simplification using
edge contractions, 22nd European Workshop on
Computational Geometry, 2006, pp. 121–124.

[2] S. Atlan and M. Garland, Interactive multireso-
lution editing and display of large terrains, Com-
puter Graphics Forum 25(2), 2006, pp. 211–224.

[3] P. Cignoni, C. Rocchini and R. Scopigno, Metro:
measuring error on simplified surfaces, Com-
puter Graphics Forum 17(2), 1998, pp. 167-174.

[4] D. Coen-Steiner, P. Alliez and M. Desbrun, Vari-
ational shape approximation, ACM Transac-
tions on Graphics 23(3), 2004, pp. 905–914.

[5] L-F. Diachin, P. Knupp, T. Munson and
S. Shontz, A comparison of two optimization
methods for mesh quality improvement, Engi-
neering with Computers 22(2), 2006, pp. 61–74.

[6] J-R. Diebel, S. Thrun and M. Brunig, A Bayesian
method for probable surface reconstruction and
decimation, ACM Transactions on Graphics
25(1), 2006, pp. 39–59.

[7] B. Fritzke, Growing cell structures - a self-
organizing network for unsupervised and su-
pervised learning, Neural Networks 7(9), 1994,
pp. 1441–1460.

[8] B. Fritzke, A growing neural gas network learns
topology, in: G. Tesauro, D.S. Touretzky, T. K.
Leen, (Eds.), Advances in Neural Information
Processing Systems 7, MIT Press, Cambridge
MA, 1995, pp. 625–632.

[9] M. Garland and P. Heckbert, Surface simpli-
fication using quadric error metrics, Proceed-
ings of the 24th annual conference on Com-
puter graphics and interactive techniques, ACM
Press/Addison-Wesley, 1997, pp. 209–216.

[10] M. Garland and Y. Zhou, Quadric-based simpli-
fication in any dimension, ACM Transactions on
Graphics 24(2), 2005, pp. 825–838.

[11] P. Heckbert and M. Garland, Optimal trian-
gulation and quadric-based surface simplifica-
tion, Journal of Computational Geometry: The-
ory and Applications 14(1-3), 1999, pp. 49–65.

[12] H. Hoppe, New Quadric Metric for Simplifying
Meshes with Appearance Attributes, in: Proc.
IEEE Visualization ’99, 1999, pp. 59-66.

[13] H. Hoppe, T. DeRose, T. Duchamp, J. McDon-
ald and W. Stuetzle, Mesh optimization, Com-
puter Graphics 27, 1993, pp. 19–26.

[14] I. P. Ivrissimtzis, W-K. Jeong and H.P. Seidel,
Using growing cell structures for surface re-
construction, Proc. International Conference on
Shape Modeling and Applications, 2003, pp. 78–
88.

[15] T. Kohonen, Self-Organizing formation of topo-
logically correct feature maps, Biological Cy-
bernetics 43, 1982, pp. 59–69.

[16] T. Martinetz and K.J. Schulten, A neural-gas net-
work learns topologies, In T. Kohonen, K. M
Okisara, O. Simula (Eds.), Artificial Neural Net-
works, Amsterdam, 1991, pp. 397-402.

[17] T. Martinetz, Competitive Hebbian learning rule
forms perfectly topology preserving learning,
Proc. ICANN’93: International Conference on
Artificial Neural Networks, Amsterdam, The
Netherlands, Springer-Verlag, 1993, pp. 427–
434.

[18] J. Rossignac and P. Borrel, Multi-resolution 3D
approximation for rendering complex scenes,
Geometric Modeling in Computer Graphics,
Springer Verlag, Genova, Italy, 1993, pp. 455-
465.

[19] R. Ronfard and J. Rossignac, Full-range ap-
proximations of triangulated polyhedra, Proc. of
Eurographics, 15(3), 1996, pp. 67–76.

[20] W.J. Schroeder, J.A. Zarge and W.E. Lorensen,
Decimation of triangle meshes, Proc. SIG-
GRAPH’92: 19th International Conference on
Computer Graphics and Interactive Techniques,
Chicago IL, 1992, pp. 65–70.

[21] G. Turk, Re-Tiling polygonal surfaces, Proc.
SIGGRAPH’92: 19rd International Conference
on Computer Graphics and Interactive Tech-
niques, Chicago IL, 1992, pp. 55–64.

[22] A.W. Vieira, T. Lewiner, L. Velho, H. Lopes
and G. Tavares, Stellar mesh simplification using
probabilistic optimization, Computer Graphics
Forum, 23, 2004, pp. 825–838.

[23] J. Yan, P. Shi and D. Zhang, Mesh simplifica-
tion with hierarchical shape analysis and itera-
tive edge contraction, IEEE Transactions on Vi-
sualization and Computer Graphics 10(2), 2004,
pp. 142–151.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Rafael Alvarez, Leandro Tortosa, Jose F. Vicent, Antonio Zamora

ISSN: 1790-0832 588 Issue 5, Volume 5, 2008

