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Abstract: - In this paper, a new Minimum Description Length (MDL) approach for the characterization of a 
mobile phone’s color camera is presented. The use of high-order polynomials, Fourier sine series, and artificial 
neural networks (ANN) for solving this problem are compared and contrasted. The MDL formalism is used for 
determining the stochastic complexity of polynomial and Fourier sine models for the characterization of a 
Nokia N93 mobile phone camera. A quantitative evaluation of their performances, as well as for using an ANN, 
is provided.  
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1 Introduction 

Digital cameras are becoming increasingly 
important image acquisition tools to realize image 
and color processing. The accurate handling of the 
color characteristics of the obtained images is a 
difficult task, due to the fact that the RGB signals 
generated by a digital camera are device-dependent. 
Different digital cameras will produce different 
RGB responses for the same captured scene. 
Furthermore, while digital cameras bring simplicity 
in handling image capture, satisfying customer 
expectations is difficult as well. This is due to the 
fact that a camera captures the physical values of the 
light, while human observers perceive the result of 
processing of their visual systems. 

The proliferation of camera phone devices in the 
consumer market has led to an increased need to 
transfer images among different storing/ 
manipulating/displaying mediums without loss of 
color fidelity [1]. Furthermore, the picture quality of 
camera phones is improving substantially enough 
that it is expected that these phones will begin to 
replace the low-end digital cameras [2]. The quality 
in even low-end camera phones will be enough to 
compete with low-end digital cameras. Already it is 
considered that, e.g., the two mega-pixels Nokia 
N90 with Carl Zeiss lens is a digital camera 
replacement. We must also specify that this is high-
end phone, more costly than a high-end digital 
camera with five mega-pixels; so it is generally 
considered that the high-end market for digital 
cameras is safe. 
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We can consider that the images captured by a 
camera are depending mainly on three factors: the 
characteristics of the used camera, the illumination 
of the captured image, and on the actual color 
content of the scene. Since the camera is an integral 
part of the resulting image, research into image 
understanding normally requires a camera model. 
The most common use of camera characterization is 
to predict camera responses, given an input energy 
spectral distribution. This has applications in the 
development and practical realization of color-
related image processing algorithms, such as 
computational color constancy algorithms. A 
common solution to obtain high-fidelity cross-media 
color reproduction is to characterize each device in 
terms of CIE tri-stimulus values [3, 10]. Using 
appropriate characterization procedures, it is 
possible to convert the camera RGB values to CIE 
XYZ values, and then to convert back the XYZ values 
to RGB ones on another medium, e.g., a monitor. 

Before a capture can be shown on the display of 
a camera phone, the captured image data must first 
be processed. The processing sequence, or the 
reconstruction chain, contains functions to 
reconstruct the image from the sensor's data, to 
adjust the color of the image, to attenuate noise, to 
correct the geometrical distortions, and to adjust the 
sharpness of the image [4, 17, 18]. 

The quality of the final picture depends not only 
on the optical elements (lenses) and the imaging 
sensor, but also on the algorithms used in the 
reconstruction chain. The challenge for research is 
to develop processing methods that improve the 
image but are not too complicated for the phone 
engine to execute in real time. 

In this paper, the MDL formalism will be used to 
compare the characterization of the digital camera 
of a Nokia N93 mobile phone, using polynomial 
transforms and Fourier sine transforms. We mention 
here that the MDL formalism was previously used 
in color processing for spatial segmentation of color 
images [3, 6, 9]. In addition, ANN are used and 
compared with the previous two approaches for 
camera characterization. In [6] the Levenberg-
Marquardt (LM) optimization method was used for 
training a fully connected multi-layer perceptron 
network to derive mappings between the camera 
responses and tri-stimulus values. An Agfa digital 
StudioCam camera, a three-chip CCD device with 
8-bit resolution for each channel and 4500 × 3648 
pixel spatial resolution was used. The ANN 
contained three input units to receive the camera 
responses, three output units to output the tri-

stimulus values and a single hidden layer. The 
number of units in the hidden layer was varied to be 
3, 5, 10, 18, 27 or 40. The conclusion from [7] was 
that the optimum hidden layer has 18 units, and the 
obtained neural network has almost identical results 
with the more traditional technique of polynomial 
transforms. We considered that adding also neural 
networks to our study can be of interest; this is 
because for high-end cameras the camera responses 
exhibit an approximately linear relationship with the 
mean reflectance, or Y tri-stimulus value of the grey 
sample, while for low-end cameras this relationship 
is nonlinear. Our purpose in the case of ANN 
solution is again to obtain the smallest complexity, 
so we decided to use the method from [6] for 
training. This training method uses MDL as 
stopping criterion in order to avoid over-fitting and 
has feed-forward neural network architecture with a 
single hidden layer. 
 
 
2 Characterization of Cameras 
For the characterization of cameras, linear 
transforms are considered fundamental [5, 19, 20]. 
The camera characterization is the relationship 
between device coordinates (RGB) and some-device 
independent color space, such as CIE XYZ. 

The polynomial approach appears to be a 
common method for obtaining the XYZ tri-stimulus 
values. This approach was also used in [8] for 
comparing a high-end digital camera with a low-end 
digital camera,   in   terms   of    accuracy   of   
colorimetric characterization and “What You See Is 
What You Get" color texture simulation. Their 
conclusion was that the high-end digital camera 
clearly outperformed the low-end digital camera 
used in tests, in terms of texture simulation. The 
high-end camera produced mostly acceptable and 
good matches while the low-end camera produced 
mostly bad matches. We can also drawn the 
conclusion that polynomial transforms do not have 
good performances for low-end cameras, and we 
consider this to be in connection with their stronger 
nonlinear characteristics when compared to high-
end cameras. 

The most common and efficient method for 
characterizing a digital camera is to use a chart 
containing a set of colors of known tri-stimulus 
values. These charts include neutral patches that 
may be used to linearize the camera RGB responses, 
and colored patches that may be used for camera 
characterization to CIE XYZ values. 
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Fig. 1. Typical CMOS Camera Configuration 
 
 
 
2.1 Image Formation in Color CMOS 
Cameras 
Over the past years, there has been a growing 
interest in digital cameras based on CMOS 
(Complementary Metal Oxide Semiconductor) 
image sensors [9]. CMOS imager technology 
creates the opportunity for low-power low-cost 
highly integrated imaging systems, which is of 
great importance, for example, for wireless 
applications. A typical CMOS camera 
configuration is illustrated in Fig. 1. 
A significant place in CMOS image formation is 
occupied by digital signal processing algorithms. 
These algorithms can be implemented either in 

hardware or software. In particular, typical image 
processing operations in digital cameras are dead-
pixel correction, color interpolation, color 
conversion, data filtering, and data compression. 
Obviously, depending on the peculiarities of 
architecture and the noise properties of the sensor, 
different processing algorithms have to be 
developed and applied. 
 
 
2.2 Noise Sources in Color CMOS Cameras 
In CMOS imaging, there are two basic kinds of 
noise: read noise and fixed pattern noise (FPN). 
Read noise (also known as temporal noise) occurs 
randomly from time to time, is generated by several 
basic noise mechanisms of electronic components 
and looks to observers like the "snow" present on 
inactive TV channels. This noise can be minimized 
by careful electronic design. Under low-light and 
low-signal conditions where read noise exceeds 
photon noise data is read noise limited. Photon and 
dark current shot noise, kTC noise, and thermal 
noise are among the principal sources of read noise 
at the pixel. Photon shot noise follows the laws of 
phgsics and is generated by the random number of 
photons in the incident light sensed by a photodiode 
and follows a Poisson law. This noise level varies as 
function of the square root of the photon number. 
When photon noise exceeds system noise, data is 
photon shot noise limited. 

FPN, on the other hand, does not change from 
frame to frame and is somewhat analogous to 
peering at scenes through a chain-link fence. This 
kind of noise, being one of the strongest degrading 
factors in CMOS imaging, is caused by mismatches 
in the device characteristics of the current reference 
array and of the pixel transistors. In modern sensors, 
analog processing techniques are used to reduce 
noise before the image signal leaves the sensor chip. 
For example, FPN can be significantly reduced 
using so-called correlated double sampling. 

Obviously, different CMOS sensors have 
different noise properties. That is why at the first 
stage, it is necessary to analyze the noise 
characteristics of the sensor. It is worth-while to 
estimate the actual levels of temporal and fixed 
patter noise, their statistical properties, and the 
correlation properties between color channels. For 
this purpose, an appropriate methodology is to be 
developed using, for example, test images and 
statistical modelling. As a result, a model of noise 
or, at least, some noise characteristics of the output 
signal in the sensor are to be obtained. Then, such a 
model can be used for developing the noise removal 
algorithms. 
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Fig. 2. RGB cone responses for LMS: long l0 R, 
medium m0 G, and short s0 B cones. 

 
 
 
2.3 Tri-stimulus for Representing Colors 
Colors can be represented by three numbers – the 
so-called tri-stimulus, whether RGB or XYZ. This 
fact is a direct result of the physiology of human 
vision. Electromagnetic radiation whose wavelength 
is in the visible range (370 to 740 nanometers) is 
converted in the retinal cones into three signals, 
which correspond to the response of the three types 
of cones. This response is a function of wavelength 
and is described by the spectral sensitivity curves 
for the cones, as illustrated in Fig. 2. 

Colored light can be represented as a spectral 
distribution, which plots power as a function of 
wavelength. In signal processing, plot spectra as a 
function of frequency is used, which is the inverse 
of wavelength. The cones convert this to three cone 
response values (l, m, s) that are the cone 
sensitivities in the long, medium, and short 
wavelength regions. So, colored light can be defined 
by integrating the product of the spectral sensitivity 
curves and the incoming spectrum. Two important 
principles follow from this process: 

■ Trichromacy: all spectra can be reduced to 
precisely three values without loss of information 
with respect to the visual system – the tri-stimulus. 

■ Metamerism: any spectra that create the 
same trichromatic response are indistinguishable. 

This means that two different spectra will look the 
same if they stimulate the same cone response.  

In 1931, the Commission Internationale de 
l’Eclairage (CIE, or International Commission on 
Illumination) standardized a set of color-matching 
functions that form the basis for most color 
measurement instruments used today. They 
averaged experimental work from two independent 
sets of color-matching experiments performed on 
small visual fields (2 degrees), to create the 1931 
standard observer, or the 2° observer. This standard 
observer statistically represents the average color-
matching results for the human population having 
normal color vision. The 2-degree field is an 
important part of this specification. There is a 
second CIE standard observer, called the 10° 
observer, which was standardized in 1964, and 
should be used for fields larger than 4 degrees. 
Figure 6 shows the cone response functions for the 
1964 standard observer.  

The CIE recommendations that define CIE 
XYZ, and the standard functions needed to 
implement it, were first defined in 1931. They are 
the foundation for all modern color measurement 
and specification. Perception beyond tri-stimulus 
theory is an ongoing area of research, and progress 
over the past decade or so has provided some 
practical ways to model color perception beyond 
simple color matching. The cone response can be 
used to model the way the cones adjust to changes 
in illumination, a process called adaptation. The 
visual system adapts to both the brightness and the 
color of the ambient lighting, redefining “white.” 
So, a transformation from the cone response 
(effectively RGB encoding signals) to a perceptual 
encoding (hue, lightness, and colorfulness) is 
achieved. The achromatic channel (A) is defined as 
the weighted sum of the cone response signals. The 
red-green opponent channel (R-G) is computed from 
the difference between the red (L) and green (M) 
channels, and the yellow-blue opponent channel is 
the difference between the yellow (L+M) and blue 
channels (S). Figure 11 shows a perceptual color 
space defined by these axes. Hue is defined as the 
angular dimension, saturation as the radial one. 

Many perceptually organized color spaces 
exist. CIELAB and CIELUV are computationally 
derived from tri-stimulus values, plus the tri-
stimulus values for a reference white. All perceptual 
models have a similar lightness axis and place hues 
in the same order around the hue circle, though the 
spacing of the hues varies. Most perceptual color 
systems are designed so that distance in the color 
space is proportional to perceptual distance. That is, 
they make it possible to compute how different two 
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colors appear. This is in contrast to tri-stimulus 
representations, which can only specify whether two 
colors match exactly.  

A common feature of all perceptually 
organized spaces is a unique specification for white 
and black, in contrast to tri-stimulus values, where a 
wide range of values can appear white (depending 
on adaptation). In a physically defined color space, 
white is defined by the light illuminating the colored 
chips. In CIELAB and CIELUV, unique white is 
defined by dividing the tri-stimulus values of the 
stimulus by the tri-stimulus values of the reference 
white. For example, L*, which is the lightness axis 
for both spaces, is defined as a function of 
Y/Ywhite. It is tempting to convert tri-stimulus 
values to CIELAB or CIELUV, then use this 
specification to define colors in a different viewing 
environment, such as the display-to-print example 
previously mentioned. Perceptually, however, this is 
not as accurate a way to model adaptation as using 
LMS.  

sCIELAB9 is an extension of CIELAB that 
uses spatial filtering in LMS to more accurately 
model the color of image pixels, which are both 
small and surrounded by pixels of various colors. 
Classic colorimetry assumes a 2-degree sample 
(about 5/8-inch across when viewed at a distance of 
18 inches), viewed on a neutral background. Using 
sCIELAB rather than CIELAB for pixel colors 
gives a more accurate way to evaluate how similar 
two images appear.  sCIELAB has been combined 
with the LMS projection algorithm previously 
described to create a tool for simulating on a display 
how colored images would appear to a person with 
color blindness (http://www.vischeck.com). The 
goal of the CIE color appearance models, 
CIECAM97s and CIECAM02,5 is to create models 
for color appearance that accurately predict 
perception, yet are computationally practical enough 
to apply to color reproduction problems such as 
gamut mapping and image quality assessment. 
These models take as input CIE XYZ for the 
stimulus and the reference white, plus parameters 
that describe the immediately surrounding color, the 
overall level of illumination, and to what degree the 
observer is adapted to the illumination. The outputs 
of these models are quantitative values for hue, 
lightness, brightness, chroma, saturation, and 
colorfulness, all of which are precisely defined as 
part of the modeling process. In applications, the 
goal is to preserve these quantities across different 
transformations of media and viewing 
environments. In general, perceptual and relative 
colorimetric spaces are best suited for photography 
because they aim to preserve the same visual 

appearance as the original.  Two examples of such 
spaces are HVS and HSL 
(http://en.wikipedia.org/wiki/HSV_color_space). 
HSL stands for hue, saturation, lightness, while HSV 
stands for hue, saturation, value. They are illustrated 
in figures 3 and 4. 

 

 
Fig. 3. HSL color space 

 

 
 

Fig. 4. HVS color space 
 

2.2 Dynamic Range of CMOS Cameras 
Dynamic range refers to intra-scene performance; 
that is, the ability to quantitatively detect very dim 
and very bright parts of a single image. Because the 
smallest measurable intensity varies between 
applications and experimental conditions, a 
definition for specifying dynamic range independent 
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of how the camera is used has been adopted. This is 
defined mathematically as the rate: 

linear full well (electrons)/ 
read noise (electrons) 

and is therefore a dimensionless number. The linear 
full well is a specific measure of pixel well capacity. 
The read noise (the noise associated with a single 
readout event) is usually minimized to yield the 
largest dynamic range possible. 
 As a general rule, camera cost increases 
with increasing dynamic range, so dynamic range 
requirements should be considered very carefully 
when selecting a camera.  
 
 
3 Minimum Description Length 
We start this section by defining the complexity of a 
given model M as  

 ∑
ℵ∈








=
nnx

nn xxPMnC )(log):(
^
θ             (1) 

where P � is a probability distribution on Xn (P � is not 
necessarily in M). 

To get a first idea of why Cn is called model 

complexity, we note that the more sequences xn 

with large 






 )(
~

nn xxP θ , the larger Cn(M). In other 

words, the more sequences exist that can be fit well 
by an element of M, the larger M’s complexity is. 

MDL tells us to pick the model M(j) maximizing 
the normalized maximum likelihood (NML) 
P �NML(D|M(j)), or, equivalently, minimizing  
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From a coding theoretic point of view, we associate 
with each M(j) a code with lengths ( ))(

NML
jMP • , 

and we pick the model minimizing the code length 
of the data. The code length ( ))(

NMLlog jMDP−  
has been called the stochastic complexity of the data 
D relative to model M(j) [9], whereas Cn(M(j)) is 
called the parametric complexity or model cost of 

M(j). We have already indicated that Cn(M(j)) 
measures something like the ‘complexity’ of model 

M(j). On the other hand, 









− )(log

)(^
DDP

j

θ  is 

minus the maximized log-likelihood of the data, so 
it measures something like (minus) fit or error – in 
the linear regression case it can be directly related to 
the mean squared error. Thus, (2) embodies a trade-
off between lack of fit (measured by minus log-
likelihood) and complexity (measured by Cn(M(j))).    
The confidence in the decision is given by the 
codelength difference  

 ( ) ( )[ ].loglog )2()1(
NML MDPMDP NML−−−   (3) 

In general, ( )MDPNMLlog− can only be evaluated 
numerically; the exception is the case when M is 
from the Gaussian family. In many cases, even 
numerical evaluation is computationally 
problematic. 

We will use MDL for modelling our data, in 
order to compare three models for camera 
characterization. Taking into consideration the 
polynomial transforms used in [7] and 
computational simplicity issues we considered the 
following models: 

1. Polynomial model  
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(4) 

2. Fourier sine model (we considered camera 
response functions to be even)  
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3. Neural network model. We will not include 
this model in the current computation, but we will 
give the results of using this model in Section 4. We 
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just specify here that we start with a minimum size 
model, selectively add the needed neurons and 
prune the less fit neurons. 

In order to estimate the optimal model by using 
the MDL principle we need to compute the 
stochastic complexity. The MDL principle states 
that the best model/model class among a collection 
of tentatively suggested ones is the one that gives 
the smallest stochastic complexity to the given data. 
In fact, by using the MDL principle we are looking 
for an optimal trade-off between the model 
complexity, which in our case is given by the 
number of coefficients and goodness-of-fit. The 
model complexity is increasing with the number of 
coefficients because the more coefficients M1 or M2 
has, the more bits we need to describe it. Both 
models: polynomial model M1 and sine Fourier 
series model M2 will be used to compress the 
description of data points. The RGB values are 
regarded as given so we do not have to encode 
them. 

When dealing with color images, which are 
multi-component images, a common problem is 
how to exploit the information present in various 
components. We have used a multi-dimensional 
Gaussian probability like in [6], to model the 
residual noise ε, se we considered the following 
density function: 
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        (6) 

 

where Σ represents the model of correlation between 
components and the amplitude of the noise. 

Encoding the model M means to encode its 
parameters ai for i = 0-12. This encoding will give 
us the complexity term. The overall optimum 
depends on both the degree of the polynomial and 
the precision with which the parameter values are 
encoded. Normally, we expect that the squared error 
to decrease as the order of the selected model is 
increasing, but the complexity of the model is 
increasing. We need to compute the maximum 
likelihood of data for the corresponding density 
function. The system formed by the following 
equations is obtained: 

,0log
=

∂
∂
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                                                    (7)  

for i = 0,…,12. The NML density function is 
considered:  
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The selection criterion is given by:  
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where k denotes the number of elements in γ and  

ββ )'('1 ss
n

R =                                                  (12) 

with s= {R,G,B}. The model that minimizes the 
above expression is the one that fits the data best. 
We will prefer the model class with the smallest 
stochastic complexity with respect to that model 
class. 
 
 
 
4 Experimental Results 

For the results presented in this paper we have used 
the Macbeth ColorChecker chart which contains a 
number of 24 patches. 160 training samples and 80 
test samples were captured using this chart with 3.2 
mega-pixels Nokia N93 camera phone. The 
2048x1536 pixels color CMOS camera sensor of 
Nokia N93 comes equipped with a Carl Zeiss Vario-
Tessar lens and 3X optical zoom. It has exposure 
compensation: +1 ~ -1EV at 0.5 step, focal length 
4.5 mm (wide) /12.4 mm (tele) 34.25 - 94.1 
mm(35mm equiv.), focus range 10m, macro focus 
distance 30 cm (macro at wide)  and10 cm (macro at 
middle to tele), and a mechanical shutter with 
shutter speed of 1/2400~1/3 s. As suggested in [4], 
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we turned automatic white balance off, in order to 
obtain an effective camera characterization.  

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 5. Stochastic complexity and computational 
complexity of polynomial and Fourier sine series 

models 
 
 
The training samples were used to train the 

neural network and to determine the stochastic 
complexity using the MDL formalism for 
polynomial and Fourier sine models. 

 
 

i 7 8 9 10 11 
M1 -191.1 -244.3 -295.3 -280.1 -275.5 

M2 -175.3 -252.6 -303.8 -293.1 -262.1 

 
Table 1.  Stochastic complexity of M1 and M2.  
 
 
In Table 1 the results for the two models M1 and M2 
are presented. On the first line the number of free 
parameters ai, with i ranging from 7 to 11, is given. 
The results for values smaller than 7 or bigger than 
11 are increasing, so we consider them not to be of 
interest. For space economy we decided not to 
display them in the table. All computed values are 
illustrated graphically in Figure 5. On the second 
line the results for the polynomial model M1, and on 
the third line the ones for the Fourier sine model M2

, are given. From these results we conclude that for 
the both models the best model order is 9.  
The Fourier series model M2 has the smallest 
stochastic complexity, so it is the best one for the 
given data. For this model order, the polynomial 
model M1 has the computational complexity of 15 
multiplications and 9 additions, while the Fourier 
sine model M2 has the computational complexity of 
12 multiplications, 9 additions and 3 shifts. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 6. Obtained ANN 
 
 
For the neural network model, we started with 3 
input and output units, and 1 hidden unit. The neural 
network was trained by adding units in the hidden 
layer using a procedure with a MDL stopping 
criterion similar with the one presented in [4]. The 
resulted neural network contained 21 hidden units, 
and is illustrated in Fig. 6. The presented results are 
average values from training the neural network 
models 10 times. 
 
Model M1 M2 ANN 

Median CIELAB error 1.98 1.12 1.24 
Maximum CIELAB error 30.4 25.9 34.1 
 
Table 2.  Performance of tested models.  
 
The obtained models were then tested using the test 
samples. The color errors between measured and 
estimated tri-stimulus values were computed using 
the CIELAB color difference formula. The 
maximum and median CIELAB errors for the used 3 
models are given in Table 2. We note that better 
performances are obtained by the models with a 
stronger nonlinear character. 
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4 Conclusion 
In this paper, the MDL formalism has been used to 
study the low-end digital camera characterization of 
a Nokia imaging phone. Three different models 
have been considered: polynomial transforms, 
Fourier sine transforms, and neural networks. Better 
performances were obtained for the models with 
higher nonlinear characteristics. The abilities of 
camera characterization models based on Fourier 
sine and neural networks are slightly similar and 
better than those of the polynomial model. 
 
 
References: 
[1] M.C. Stone, “Representing colors as three 

numbers [color graphics],” IEEE Computer 
Graphics and Applications, Vl. 25, No. 4, July-
August 2005, pp. 78-85. 

[2] Red Herring, “Photo phones hurting cameras,” 
http://www.redherring.com/, August 2005. 

[3] F. Galland, N. Bertaux, and P. Refregier, 
“Minimum description length synthetic 
aperture radar image segmentation,” IEEE 
Transactions on Image Processing, vol. 12, no. 
9, pp. 995–1006, September 2003. 

[4] S. Pateux, “Spatial segmentation of color 
images according to the mdl formalism,” 
Proceedings of the International Conference on 
Image Processing ICIP, vol. 2, pp. 554–557, 
September 2000. 

[5] V. Cheung, S. Westland, D. Connah, and 
C. Ripamonti, “A comparative study of the 
characterisation of colour cameras by means of 
neural networks and polynomial transforms,” 
Coloration Technology, vol. 120, no. 1, pp. 19–
25, 2004. 

[6] Yu Ning Lai and Shiu Yin Yuen, “Successive-
least-squares error algorithm on minimum 
description length neural networks for time 
series prediction,” Proceedings of the 17th 
International Conference on Pattern 
Recognition ICPR, vol. 4, pp. 609–612, August 
2004. 

[7] T.L.V. Cheung and S. Westland, “Colour 
camera characterisation using artificial neural 
networks,” Proceedings of the 10th Color 
Imaging Conference, pp. 117–120, 2002. 

[8] Hong Guowei, Han Bing, and M.R. Luo, 
“Colorimetric characterisation of low-end 
digital camera and its application for on-screen 
texture visualisation,” Proceedings of the 
International Conference on Image Processing 
ICIP 2000, vol. 1, pp. 741–744, September 
2000. 

[9] J. Rissanen, “Strong optimality of the 
normalized ml models as universal codes and 
information in data,” IEEE Transactions on 
Information Theory, vol. 47, no. 5, pp. 1712–
1717, June 2001. 

[10]  E. R. Fossum, "CMOS image sensors: 
electronic camera-on-a-chip," IEEE 
Transactions on Electron Devices, vol. 44, pp. 
1689 -1698, 1997. 

[11] Y. T. Tsai, H. Wei-Geng, T. Shinn-Yih, and C. 
Shih-Liang, "Optimized image processing 
algorithms for a single sensor camera," in Proc. 
of the IEEE Pacific Rim Conference on 
Communications, Computers and Signal 
Processing IPRCCSP, 1997, vol. 2, pp. 1010-
1013, 1997.  

[12]  Y. T. Tsai, "Color image compression for 
single-chip cameras," IEEE Transactions on 
Electron Devices, vol. 38, pp. 1226-1232, 
1991.  

[13]  S. K. Mendis, S. E. Kemeny, R. C. Gee, B. 
Pain, C. O. Staller, K. Quiesup, and E. R. 
Fossum, "CMOS active pixel image sensors for 
highly integrated imaging systems," IEEE 
Journal of Solid-State Circuits, vol. 32, pp. 187 
-197, 1997.  

[14] A. J. Blanksby, M. J. Loinaz, D. A. Inglis, and 
B. D. Ackland, "Noise performance of a color 
CMOS photogate image sensor," in Technical 
Digest. of IEEE International Electron Devices 
Meeting, vol. 2, pp. 205-208, 1997.  

[15]  D. X. Yang, H. Min, B. A. Fowler, A. E. 
Gamal, M. Beiley, and K. Cham, "Test 
structures for characterization and comparative 
analysis of CMOS image sensors," in Advanced 
Focal Plane Arrays and Electronic Cameras. 
Proc. of SPIE. (T. M. Bernard, ed.), vol. 2950, 
pp. 8-17, 1997.  

[16]  Kobus Barnard & Brian Funt. "Camera 
Characterization for Color Research", Color 
Research and Application, 2001. 
http://www.CS.Berkeley.EDU/~kobus/research
/publications/camera_characterization/index.ht
ml.  

[17]  Eyal de Lara, K. Farkas, ”New Products”, 
IEEE Pervasive Computing, vol. 5,  no. 1,  pp. 
12 – 15, Jan.-March 2006.  

[18]  X.-S. Hua, S. Li, H.-J. Zhang, “Camera notes”, 
IEEE International Conference on Multimedia 
and Expo ICME 2005, 6-8 July 2005. 

[19]  Poorvi Vora & Joyce Farrell. "Digital Color 
Cameras - 1 - Response Models". Hewlett-
Packard Laboratory, Technical Report.  

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Adrian Burian, Aki Happonen, Mihaela Cirlugea

ISSN: 1790-0832 520 Issue 4, Volume 5, 2008



[20]  Poorvi Vora & Joyce Farrell. "Digital Color 
Cameras - 2 - Spectral Models". Hewlett-
Packard Laboratory, Technical Report.  

[21] G. E. Healey and R. Kondepudy, “Radiometric 
CCD camera calibration and noise estimation,” 
IEEE Trans. Image Process., vol. 16, no. 3, pp. 
267–276, Mar. 1994. 

 
 
 

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Adrian Burian, Aki Happonen, Mihaela Cirlugea

ISSN: 1790-0832 521 Issue 4, Volume 5, 2008


