
An Optimized Pseudorandom Generator using Packed Matrices

JOSE-VICENTE AGUIRRE1, RAFAEL ÁLVAREZ2,
LEANDRO TORTOSA3, ANTONIO ZAMORA4

Dpt. of Computer Science and Artificial Intelligence
University of Alicante

Campus de San Vicente, Ap. Correos 99, 03080 Alicante
SPAIN

{jaguirre1, ralvarez2, tortosa3, zamora4}@dccia.ua.es

This research was partially supported by the Spanish grant GV06/018

Abstract: - Most cryptographic services and information security protocols require a dependable source of
random data; pseudorandom generators are convenient and efficient for this application working as one of the
basic foundation blocks on which to build the required security infrastructure. We propose a modification of a
previously published matricial pseudorandom generator that significantly improves performance and security by
using word packed matrices and modifying key scheduling and bit extraction schemes. The resulting generator is
then successfully compared to world class standards.

Key-Words: - Pseudorandom Generator, Stream Ciphers, Binary Matrices, Cryptography, Security.

1 Introduction

During the latest years, the internet has become
extremely popular. Everybody seems to be present in
one way or another: businesses setup facilities for
electronic commerce, governments provide services,
and even individuals create sites of the most diverse
subjects.

Despite the immense possibilities, the Internet and
the Web are vulnerable to malicious attacks. The
harmful results of these attacks are multiplied by the
fact that an attack not only implies a loss of service
and money, or an inconvenience to the end user; it
also implies damage to the business reputation that
not many can afford. Businesses have taken this into
account, increasing the demand of more secure
services.

Various approaches to internet security have been
considered, differing in the scope of applicability and
the location within the TCP/IP stack. The IPSec
system is a general purpose solution placed below the
TCP protocol so it is transparent to end users and
applications; it includes a filtering system allowing
that only the required traffic is processed by IPSec.
The SSL (Secure Socket Layer) and TLS (Transport
Layer Security) systems are also relatively general
purpose, but are placed right over the TCP protocol,
providing the choice of being implemented either
within the protocol suite (and accessible to all
applications) or by specific packages such as
browsers and http servers. Another approach is
placing the security system within the application,

tailoring it to the specific needs and peculiarities of
that given application; being SET (Secure Electronic
Transaction) the most popular example of this
approach.

All of these security systems use cryptography;
generally using public key cryptosystems to establish
a session key and private key (symmetric)
cryptosystems to transfer data securely between both
parties using that session key.

Most cryptographic systems are based on
unpredictable quantities. The keys, prime numbers or
challenge values of many cryptosystems need to be
unpredictable enough so that the probabilities of all
different values are more or less the same, making
impossible any search optimization based on the
reduction of the key space to the most probable
values. These are obtained from random sequences
that can be either truly random or pseudorandom,
meaning that they are generated deterministically but
appear to be random enough for practical use.

A truly random generator is based on a natural
source of randomness. This source is sampled and
then postprocessed to make it free of biasing and
skewing. The system must be designed to prevent any
observation or manipulation by the opponent and also
any non random external interference (such as
electromagnetic radiation from periodic sources,
etc.). Proper function should be tested periodically
ensuring that the previous conditions hold true.
Natural sources of randomness include the thermal
noise of a resistor, noise input from a microphone or
a camera, particle emission time during radioactive
decay, etc; software based events can also be useful,

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Jose-vicente Aguirre, Rafael Alvarez,
Leandro Tortosa, Antonio Zamora

ISSN: 1790-0832 487 Issue 4, Volume 5, April 2008

such as the system clock, the elapsed time between
keystrokes, mouse moves or network packets,
operating system statistics, etc.

A pseudorandom generator is a completely
deterministic algorithm, in the sense that the
sequence it generates is a function of its inputs and,
unlike a truly random generator, its output can be
reproduced. This means that we only need the seed
(the input to the pseudorandom generator) in order to
regenerate the complete output sequence. The output
sequence is much longer than the seed and it is not
really random, it is just undistinguishable from a real
random sequence.

For security applications we need to produce
sequences with large periods, high linear
complexities and good statistical properties. Several
statistical tests are applied; these tests include
checking the frequency of single bits, pairs of bits
and of other bit patterns. Also, the autocorrelation
and the linear complexity of the sequence are used.

Most available cryptographic generators are based
on linear feedback shift registers (LFSRs). They are
so popular because they can be easily implemented in
hardware, they produce sequences of large periods
with good statistical properties, and have a simple
structure that can be analyzed easily.

LFSRs by themselves are not very secure, but
because they are so efficient they are commonly
enhanced with other techniques to improve their
cryptographic properties.

Another popular generator is the Blum Blum Shub
(BBS) generator (see [18]). Other generators combine
a block cipher in different ways to obtain a
cryptographically secure random bit sequence, such
as the pseudorandom generator specified in ANSI
X9.17 which performs three triple DES encryptions
per iteration.

In this paper we propose a modification to a
previously published pseudorandom generator based
on block upper triangular matrices that allows
improving performance and security by using word
packed matrices, implementing over Z2 and
introducing new extraction and key scheduling
mechanisms.

2 Preliminaries

In this section we describe the required prerequisites
for the correct comprehension of our proposal.

2.1 Original Generator

Our generator is based on the powers of a block
upper triangular matrix (BUTM) defined over Zp,
with p prime. As we take the different powers of a
BUTM, we have as a result a sequence of matrices of
very long period that has great properties in terms of
randomness. Each element of the sequence (each
BUTM) can be processed to obtain a series of values
that produce an output sequence with great statistical
values. This scheme is simple enough to be really fast
but incorporates enough complexity to present great
cryptographic properties.

Consider the block upper triangular matrix M
defined as

 ,
A X

M
B

⎡ ⎤
= ⎢ ⎥
⎣ ⎦O

 (1)

whose entries lie in Zp, where A is an r × r matrix, B
is an s × s matrix, X is an r × s matrix, and O denotes
the s × r zero matrix.

The following result, which is the base of the
generator, establishes the expression of the different
powers of matrix M. It also defines matrix X(h) in
terms of A, B and X.

Theorem. Let M be the block upper triangular matrix
given by (1).Taking h as a non negative integer then

()hhA XhM
hB

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦O

, (2)

where

0 0,
()

1 1.
1

if h
h hX h i iA XB if h

i

=⎧
⎪

=⎨ − − ≥∑⎪
=⎩

 (3)

Also, if 0 t h≤ ≤ then

() () ()h h t tt h tX A X X B− −= + . (4)

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Jose-vicente Aguirre, Rafael Alvarez,
Leandro Tortosa, Antonio Zamora

ISSN: 1790-0832 488 Issue 4, Volume 5, April 2008

In order to generate the pseudorandom bit sequence,
matrices A and B are fixed and matrix X is randomly
chosen, constituting the seed of the sequence. Next
expression (4) is applied to obtain the following
succession of matrices:

(2) (3) (4), , ,X X X … (5)

For each matrix X(h) a bit extraction operation is
determined obtaining a sequence of bits like

2 3 4, , ,b b b … (6)

One of the basic properties that every pseudorandom
sequence should hold is that its period must be very
long (at least a period of 2128). The key for obtaining
long periods for the sequence given by (6) is
constructing matrices A and B as companion matrices
to primitive polynomials so the period can be
guaranteed to be at least

(1, 1).r slcm p p− −

The value of p or the sizes of A and B need not be
very large in order to achieve long periods. For more
information see [21, 23].

2.2 Packed Matrices

The concept of word packed matrices is essential for
the optimized implementation of the generator over
Z2. Packed matrices allow adding and multiplying
binary matrices just by performing binary operations
between processor registers, which is very efficient.

We define a matrix, whose elements lie in Z2, as a
word packed matrix if one of its dimensions (rows or
columns) is packed as word sized groups of bits.

Operations involving packed matrices are
equivalent to those between conventional matrices
since packed matrices are, essentially, just a way of
storing the elements of the matrix so that the
computations required can be efficiently implemented
as binary operations between processor registers.
Nevertheless, they present certain peculiarities of
their own that must be taken into account.

The addition of packed matrices must be done
between matrices of the same type, be them packed

by rows or by columns. Although they could be
unpacked and operated normally, the optimal way is
to perform a XOR operation word by word.

The product operation between packed matrices is
a little more complex than the addition. The product
must be done between matrices of different types and
with compatible sizes. The multiplicand has to be a
row packed matrix, while the matrix corresponding to
the multiplier must be packed by columns.

3 Description

3.1 Implementation

The following operations have to be performed per
iteration:

(1) 1

()

1

,
,

,
.

h h

h

h

h

E AX XB
X E

F BB
B F

− −

−

= +

=

=

=

It can be observed that X(h) has to be computed for
each iteration but, Bh is also required, this forces to
keep in memory the original matrices, X or B, and
their power, X(h) or Bh. It is also necessary to employ
temporary matrices E and F since the same matrix
cannot be employed as source and destination at the
same time.

Considering the peculiarities of the product
operation between packed matrices we can identify
the following matrices and types:

• A has to be a row packed matrix,
• B has to be a row packed matrix,

• B
h
has to be a column packed matrix,

• X has to be a row packed matrix,

• X
(h)

has to be a column packed matrix,
• E and F are temporary column packed

matrices.

Although the product operation between word

packed matrices generates sparse bits instead of
words, these bits can be repacked into the desired
format (rows or columns) without a significant
performance hit.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Jose-vicente Aguirre, Rafael Alvarez,
Leandro Tortosa, Antonio Zamora

ISSN: 1790-0832 489 Issue 4, Volume 5, April 2008

r s digits

15 8 06
31 8 11
47 8 16
23 16 11
31 16 14
47 16 18
47 32 23
63 32 28
64 48 33
80 48 38
95 48 43
96 53 44

Table 1. Periods for different sizes with p=2.

3.1.1 Parameters

Besides determining the format for each matrix, their
sizes must also be decided for the correct operation of
the implementation.

Several sizes and the number of digits of the
corresponding period are shown in table 1. The
option that appears to be more adequate is the r=64,
s=48 since the word size is 32 bits in this case and 64
requires exactly 2 words. Moreover, the order
obtained is excellent, allowing the resulting generator
to be useful for a wide spectrum of applications.

3.2 Key scheduling

In order to augment security, the generator performs a
key scheduling operation by following these steps:

1. Iterate the generator 64 times.
2. Collapse all words in X(h) by XORing

them together.
3. Elevate A and B to the value contained in

that word using a fast exponentiation
algorithm.

A good starting point for the generator is achieved in
this way (see [5]). This operation has only to be
performed when the key changes.

3.3 Bit extraction

We have designed an extraction scheme that takes
advantage of the word packed structure of the X(h)
matrix in order to achieve the maximum possible
efficiency.

The X(h) matrix contains 2 rows with 48 words of
32 bits each

1,1 1,2 1,48()

2,1 2,2 2,48

.hX
ω ω ω
ω ω ω
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

"
"

The extraction mechanism consists in extracting a
word per each column of X(h) applying a non linear
function to certain words of the matrix.

For this purpose, the following non linear
functions are defined

1

2

3

(, ,) () (),
(, ,) () (),
(, ,) ().

F x y z x y x z
F x y z x z y z
F x y z y x z

= ∧ ∨ ¬ ∧
= ∧ ∨ ∧¬
= ⊕ ∨¬

These functions are applied in the following way

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Jose-vicente Aguirre, Rafael Alvarez,
Leandro Tortosa, Antonio Zamora

ISSN: 1790-0832 490 Issue 4, Volume 5, April 2008

α Monobit Serial Poker Runs Autocorrelation

0.001 10.830 13.820 330.5 51.18 3.090
0.005 7.870 10.590 316.9 45.56 2.576
0.010 6.635 9.210 310.5 42.98 2.326
0.025 5.024 7.378 301.1 39.36 1.960
0.050 3.842 5.992 293.2 36.42 1.645
0.100 2.706 4.605 284.3 33.20 1.282

Table 2. Threshold values for the statistical tests

1, 1 1, 1 2, 1 2,

2 2, 1, 1 2, 1

3 2, 1 2, 1, 1

(, ,)
(, ,)
(, ,)

i
i i i i

i i i

i i i

F
F
F

γ ω ω ω ω

ω ω ω

ω ω ω

+ +

+ +

+ +

= +

+

+

obtaining a word of 32 bits, ,iγ for each column
which produces a total of 48x32=1536 bits of output
per iteration.

Combining Boolean operations like OR, AND,
XOR o NOT with the addition modulo 232 prevents
attacks that are targeted at deducing a part of the seed
from a certain amount of output sequence. Moreover,
1536 output bits are extracted nonlinearly from a total
of 3072 bits per iteration; making brute force attacks
especially expensive. For more information see [20,
22, 26-28].

4 Results

The results are shown in table 3. The optimized
generator with r=64, s=48 is compared with the
original version, and other reference algorithms like
Blum Blum Shub [18], AES [19] in output feedback
mode and RC4 [25] working as pseudorandom
generators.

The generator has been checked with five different
statistical tests (frequency tests plus autocorrelation
tests) and with the linear complexity of the sequence.

The monobit test statistic is a single bit frequency
test designed to check that the number of zeros and
ones of the sequence is more or less the same.

The test is expressed by the following equation,
with n being the total number of bits in the sequence
and n0 and n1 being the number of zero bits and one
bits respectively:

n
nn

X
2

10
1

)(−
= .

This test follows a 2χ distribution with 1 degree of
freedom.

The serial test checks that the frequency of pairs
of bits (00, 01, 10 and 11) is also about the same. As
before, n is the total number of bits, n0 is the number
of zero bits, n1 is the number of one bits and n00, n01,
n10 and n11 are the number of occurrences of such
pairs allowing them to overlap.

2

2 2 2 2
00 01 10 11

2 2
0 1

,
4 (),

1
2 () 1.

X a b

a n n n n
n

b n n
n

= −

= + + +
−

= + +

This follows a 2χ distribution with 2 degrees of
freedom.

The poker test checks that patterns of length m
appear the same number of times in the sequence
without overlapping. The value m is obtained with

m

m
n 25 ⋅=⎥⎦
⎥

⎢⎣
⎢ , k is taken as ⎥⎦

⎥
⎢⎣
⎢=
m
nk and ni is the

number of occurrences of the pattern i.

knX
m

i
i

m

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=

2

1

2
3 3

2
.

This follows a 2χ distribution with 12 −m degrees
of freedom.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Jose-vicente Aguirre, Rafael Alvarez,
Leandro Tortosa, Antonio Zamora

ISSN: 1790-0832 491 Issue 4, Volume 5, April 2008

 Original Optimized BBS AES RC4

Frequency 1.7716 0.0450 1.0646 1.0268 1.1035
Serial 3.6994 0.0564 1.5252 1.4981 2.2746

Poker 8 254.03 270.53 249.00 254.91 276.35
Poker 16 65377 65858 65607 65650 65681

Runs 15.6624 14.6603 16.1032 15.9688 15.7268
AutoCorr. 0.7967 0.7895 0.7978 0.7984 0.7972

Lin. Comp. 10000 10001 10000 10000 10000
Time 4.8316 0.0527 21.3425 0.2479 0.0170

Table 3. Results for the optimized generator.

A run is a pattern of all zeros or all ones; a block
is a run of ones and a gap is a run of zeros. The
expected number of runs of length i is

22/)3(++−= i
i ine . The value of k is taken as the

largest integer i for which 5≥ie and is the length
limit for which runs are accounted; finally, Bi and Gi
are the number of blocks and gaps of length i (up to
length k) of the sequence. The runs test is expressed
by:

∑∑
==

−
+

−
=

k

i i

ii
k

i i

ii

e
eG

e
eB

X
1

2

1

2

4
)()(

;

following a 2χ distribution with 22 −k degrees of
freedom.

The autocorrelation checks for coincidences
between the sequence and itself displaced d bits.
Taking)(dA as the amount of bits not equal
between the sequence and itself displaced by d bits,
we have:

dn

dndA
X

−

⎟
⎠
⎞

⎜
⎝
⎛ −

−
= 2

)(2
5 ;

which follows a N(0,1) distribution.

The linear complexity of a sequence of bits is the
length of the shortest LFSR that can generate that
sequence. The expected linear complexity for a
random sequence is 2/n being n the length of the
sequence. If we plot the linear complexity of a
sequence against its length (for …,3,2,1=n) we
have the linear complexity profile which should
follow closely the line 2/n if the sequence is

random. The linear complexity of a sequence can be
computed using the Berlekamp-Massey algorithm.

These results are the average values obtained in a
series of 1000 different sequences of 20000 bits in
length.

A test is considered to be successful if the result
obtained is less than the correction value, except in
the case of the linear complexity, where the expected
value is n/2, being n the length of the sequence. The
correction values can be found in table 2.

The tests have been performed using the same
processor, compiler and optimizing options for all
implementations, in order to make the comparison as
fair as possible. The implementations have been done
using standard C, avoiding assembler or special
instruction sets.

4.1 Performance

The proposed optimization achieves a significant
performance improvement of over two orders of
magnitude compared to the original version. With
this excellent result, the keystream generator lies
within the same order of magnitude of the standard
RC4, and is much faster than the rest of the reference
algorithms studied.

We consider that, in order to achieve a significant
performance increase over this optimized version
over Z2, the use of extended multimedia and vector
instructions (MMX, SSE, etc.) would be required
hampering the portability to other architectures not
supporting this instruction sets. Nevertheless, the
recent 64 bits microprocessors would allow a direct
performance increase by utilizing the bigger registers.
This does not occur with algorithms like RC4 that, by
design, cannot take advantage of more powerful
architectures directly.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Jose-vicente Aguirre, Rafael Alvarez,
Leandro Tortosa, Antonio Zamora

ISSN: 1790-0832 492 Issue 4, Volume 5, April 2008

4.2 Randomness

The implementation over Z2 based on word packed
matrices does not only provide a very satisfactory
performance level, it also produces sequence of
excellent quality in terms of randomness.

It can be observed that the optimized generator
maintains the quality of original generator and
achieves comparable and, sometimes, better results
than the reference algorithms.

5 Integral Kernel

Most protocols in digital business employ symmetric
cryptography to transfer large quantities of data,
while asymmetric cryptography is used to swap
session keys, digital signatures, etc. Additionally,
hash functions can be used in order to improve
efficiency and data integrity.

Our proposal can be integrated with these basic
components, obtaining a security kernel which can be
the basis of many protocols. Since cryptographic
algorithms are extremely diverse in nature, scope and
requirements, this integration is highly beneficial
since it allows for cheap mass production, and ease of
design of new secure systems which could use the
kernel as a black box.

The cryptographic kernel is based on the powers
of a block upper triangular matrix, which is a very
flexible technique. It can be adjusted to satisfy
memory and speed requirements and be implemented
successfully either in hardware or software. Another
advantage is that the same basic mathematical
scheme can be used to build private key
cryptosystems, public key cryptosystems and hash
functions. Therefore, we only require implementing
this technique once in order to provide these three
types of algorithms, integrating a full cryptographic
kernel in a single low cost device. This is a
remarkable new concept that shows how useful this
technique can be in cryptography.

5.1 The Symmetric Component

To cipher large amounts of information efficiently,
we need a private key cryptosystem. For that purpose,
we can build a stream cipher using the mathematical
base of the kernel by taking advantage of its great
randomness properties as shown previously. We first
create a good pseudorandom generator and, once we
have that, we use it as the keystream generator in a
Vernam cipher scheme, taking the seed of the
generator as the key of the stream cipher. This
pseudorandom generator can also be used to generate
general purpose random numbers such as session
keys, challenge values, etc.

Once we have a proper keystream, ciphering the
plaintext is as simple as XORing the keystream with
it bit by bit. In order to decipher we XOR the
keystream again with the ciphertext and retrieve the
original plaintext. The seed of the generator is shared
by both parties so that they can reproduce correctly
the keystream.

5.2 The Asymmetric Component

Defining the operator ⊗ as

)()()(baba XXX +=⊗ , (9)

set },,,,{)3()2()1()0(…XXXXG = has a finite
group structure and its order can be taken as large as
needed to make our scheme secure.

The key exchange scheme between two users U
and V, proposed for our kernel, is:

1. U and V accord values for p, n, A, B and X
2. U generates a random number k and

computes Ak, Bk and X(k)
3. V generates a random number m and

computes Am, Bm and X(m)
4. The numbers k and m are respectively the

private keys of U and V
5. The pairs (X(k), Bk) and (X(m), Bm) are

respectively the public keys of U and V
6. U computes mkmkmk BXXAX)()()(+=+
7. V computes kmkmkm BXXAX)()()(+=+

With this scheme users U and V share matrix X(k+m) in
G.

The computation of Ak, Am, Bk, Bm, X(k) and X(m)
can be done efficiently adapting the existing quick
exponentiation algorithm in Zp.

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Jose-vicente Aguirre, Rafael Alvarez,
Leandro Tortosa, Antonio Zamora

ISSN: 1790-0832 493 Issue 4, Volume 5, April 2008

Figure 1. Secure communication scheme.

It is computationally infeasible, for an attacker, to
know the shared key X(m+k) without the previous
knowledge of k and m, because the problem the
attacker would be facing is in the order of complexity
of the discrete logarithm problem.

The scheme described previously can be adapted
to perform digital signature using a similar technique
to the ElGamal cryptosystem. Since the kernel
requires little resources, it is suitable for low power
or low cost environments. For more information see
[10, 12, 13, 24].

5.3 The Hash Component

Taking the mathematical base of the kernel we can
also build a hash function. We can use the
pseudorandom generator as a diffusion and
compression mechanism accumulating its results over
a fixed length register. The stream cipher proposed
can be also adapted to perform a hash function in the
way shown in [27].

5.4 Applications

This integral security kernel can be used by any
digital business protocol requiring security at any
level, like A/V content distribution systems,
anonymous peer to peer systems, certified email
systems, online payment systems, etc. It can be
implemented on any platform (PC, dedicated
hardware, PDA, latest generation of cell phones,
smart cards) and data transport system (Internet,
wireless networks, satellites, terrestrial digital
transmissions, etc.), being capable of adapting to the
technological evolutions in the communications
sector. Application examples can be seen in [2-9, 11,
14].

It is efficient and easy to implement either
in hardware or software and requires very little
resources, making possible its implementation in a
wide spectrum of devices, especially those of low
cost. In this way, confidentiality (ciphered
information), integrity (no alteration warranty) and
authentication (identity verification using digital
signature) are assured in the communications.

For each of the communication channels
established between the different parties (see figure

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Jose-vicente Aguirre, Rafael Alvarez,
Leandro Tortosa, Antonio Zamora

ISSN: 1790-0832 494 Issue 4, Volume 5, April 2008

1), we need to guarantee confidentiality,
authentication, and information integrity. For that
purpose we require the usage of symmetric and
asymmetric cryptography, a random generator and a
hash function (operations offered by the proposed
kernel).

In this way, the kernel provides all the means for a
secure communication between two parties:

• First, both parties must establish values for p,
n, A, B and X.

• Then, U generates a random k of sufficient
length, V generates m in the same way.

• U sends V values X(k) and Bk, V does the same
sending U the values X(m) and Bm.

• U computes X(k+m) and V computes X(m+k),
since both parties reach the same result they
now share this secret key.

• U and V can agree on new values for A and
B.

• Taking the new A and B, along with X(k+m),
we have the session key for our secure
channel, using the kernel's stream cipher.

6 Conclusions

We have proposed a modification to a previously
published pseudorandom generator that achieves a
performance improvement of two orders of
magnitude.

This optimization is based on an implementation
over Z2 and the use of packed matrices allows
performing most calculations with native binary
operations between processor registers. Moreover, the
word parking system can take advantage of more
powerful processors with bigger registers, like the
new 64 bit CPUs, directly unlike most other
algorithms.

The generator produces sequences of great quality
in terms of randomness, comparable to world class
standard reference algorithms, allows seeds up to
3072 bits in size, a long period and the extraction and
key scheduling mechanisms provide more non
linearity and security.

Block upper triangular matrices can also be used
to implement other cryptographic primitives,
integrating a security kernel with many applications
for low power / low cost secure solutions.

References:

[1] Aguirre, J-V., Alvarez, R., Tortosa, L.,

Zamora, A. Fast Pseudorandom Generator
based on Packed Matrices. WSEAS
Information Security and Privacy
(2007) 98-101

[2] Aguirre, J-V., Alvarez, R., Tortosa, L.,

Zamora, A. Secure Lightweight P2P
Multiconferencing. WSEAS Transactions on
Communications, vol. 6-1 (2007) 195-200

[3] Aguirre, J-V., Alvarez, R., Sanchez, J.,

Zamora, A. Broadcast Multiplexing and
Subchanneling for Secure P2P
Multiconferencing. WSEAS Transactions on
Computers, vol. 6-3 (2007) 522-527

[4] Aguirre, J-V., Alvarez, R., Noguera, J-V.,

Zamora, A. A Secure Remote Database
Backup System. WSEAS Artificial
Intelligence, Knowledge Engineering and
Databases (2006) 43-46

[5] Aguirre, J-V., Alvarez, R., Noguera, J-V.,

Zamora, A. A Database Backup System with
Secure Remote Data Transmission. WSEAS
Transactions on Information Science
Applications, vol. 4-3 (2006) 796-801

[6] Aguirre, J-V., Alvarez, R., Noguera, J.,

Tortosa, L., Zamora, A. Secure VoIP and
Instant Messaging on Small PDA Devices.
WSEAS Transactions on Computers, vol.5-1
(2006) 171-176

[7] Aguirre, J-V., Alvarez, R., Sanchez, J.,

Zamora, A. Silence Detection in Secure P2P
VoIP Multiconferencing. WSEAS
Information Security and Privacy
(2006) 11-14

[8] Aguirre, J-V., Alvarez, R., Tortosa, L.,

Zamora, A. Lightweight Peer-to-Peer Secure
Multi-Party VoIP Protocol. WSEAS
Information Security and Privacy
(2006) 7-10

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Jose-vicente Aguirre, Rafael Alvarez,
Leandro Tortosa, Antonio Zamora

ISSN: 1790-0832 495 Issue 4, Volume 5, April 2008

[9] Aguirre, J-V., Alvarez, R., Noguera, J-V.,
Tortosa, L., Zamora, A. A Viability Analysis
of a Secure VoIP and Instant Messaging
System on a Pocket PC. WSEAS Information
Security and Privacy (2005) 218-223

[10] Alvarez, R., Martinez, F-M., Vicent, J.F.,

Zamora, A. A New Public Key Cryptosystem
based on Matrices. WSEAS Information
Security and Privacy (2007) 36-39

[11] Alvarez, R., Oliver, J., Vicent, J., Zamora, A.

Improving GSM Security for Voice and Text
Data Transmission. WSEAS Transactions on
Computers, vol. 5-1 (2006) 165-170

[12] Alvarez, R., Tortosa, L., Vicent, J-V.,

Zamora, A. Block Upper Triangular Matrices
for Authentication and Integrity. WSEAS
Transactions on Mathematics, vol.4-4 (2005)
339-346

[13] Alvarez, R., Tortosa, L., Vicent, J-F.,

Zamora, A. A Public Key Cryptosystem
based on Block Upper Triangular Matrices.
WSEAS Information Security and Privacy
(2005) 163-168

[14] Alvarez, R., Oliver, J., Vicent, J-F., Zamora,

A. Secure Communication System over a
GSM Network. WSEAS Transactions on
Computers, vol.5-1 (2005) 171-176

[15] Alvarez, R., Tortosa, L., Vicent, J-F.,

Zamora, A. An Integral Security Kernel.
WSEAS Transactions on Business and
Economics, vol. 1-3 (2004) 241-246

[16] Álvarez, R., Climent, J.J., Tortosa, L.,

Zamora, A. Un generador matricial de claves
frente a Blum Blum Shub, RECSI’04 (2004)
113-123

[17] Álvarez, R., Climent, J.J., Tortosa, L.,

Zamora, A. A Pseudorandom Bit Generator
Based on Block Upper Triangular Matrices.
LNCS Web Engineering, vol. 2722 (2003)
299-300

[18] Blum, L., Blum, M., Shub, M. A Simple
Unpredictable Pseudorandom Number
Generator. SIAM J. Comput. vol. 15 (1986)
364-383

[19] Daemen, J., Rijmen, V. The Design of

Rijndael. Springer-Verlag (2002)

[20] Kelsey, J., Schneier, B., Wagner, D., Hall, C.

Cryptanalitic Attacks on Pseudorandom
Number Generators. Fast Software
Encryption, Fifth International Workshop.
Springer-Verlag, (1998) 168-188

[21] Lidl, R., Niederreiter, H. Introduction to

Finite Fields and their Applications.
Cambridge University Press, Cambridge
(1994)

[22] Menezes, A., van Oorschot, P., Vanstone, S.

Handbook of Applied Cryptography. CRC
Press, Florida (2001)

[23] Odoni, R. W. K., Varadharajan, V., Sanders,

P. W.: Public Key Distribution in Matrix
Rings. Elec. Letters, vol. 20 (1984) 386-387

[24] Rivest, R., Shamir, A., Adleman, L. A

Method for Obtaining Digital Signatures and
Public Key Cryptosystems. ACM
Communications, vol. 21 (1978) 120-126

[25] Rivest, R. The RC4 Encryption Algorithm.

RSA Data Security, Inc. (1992)

[26] Rueppel, R. A. Analysis and Design of

Stream Ciphers. Springer-Verlag, Berlin
(1986)

[27] Schneier, B. Applied Cryptography Second

Edition: protocols, algorithms and source
code in C. John Wiley and Sons, New York
(1996)

[28] Stallings, W. Cryptography and Network

Security: Principles and Practice. Fourth
Edition. Prentice Hall, New Jersey (2006)

WSEAS TRANSACTIONS on
INFORMATION SCIENCE & APPLICATIONS

Jose-vicente Aguirre, Rafael Alvarez,
Leandro Tortosa, Antonio Zamora

ISSN: 1790-0832 496 Issue 4, Volume 5, April 2008

