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Abstract: - Most cryptographic services and information security protocols require a dependable source of 
random data; pseudorandom generators are convenient and efficient for this application working as one of the 
basic foundation blocks on which to build the required security infrastructure. We propose a modification of a 
previously published matricial pseudorandom generator that significantly improves performance and security by 
using word packed matrices and modifying key scheduling and bit extraction schemes. The resulting generator is 
then successfully compared to world class standards. 
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1   Introduction 
 
During the latest years, the internet has become 
extremely popular. Everybody seems to be present in 
one way or another: businesses setup facilities for 
electronic commerce, governments provide services, 
and even individuals create sites of the most diverse 
subjects. 

Despite the immense possibilities, the Internet and 
the Web are vulnerable to malicious attacks. The 
harmful results of these attacks are multiplied by the 
fact that an attack not only implies a loss of service 
and money, or an inconvenience to the end user; it 
also implies damage to the business reputation that 
not many can afford. Businesses have taken this into 
account, increasing the demand of more secure 
services. 

Various approaches to internet security have been 
considered, differing in the scope of applicability and 
the location within the TCP/IP stack. The IPSec 
system is a general purpose solution placed below the 
TCP protocol so it is transparent to end users and 
applications; it includes a filtering system allowing 
that only the required traffic is processed by IPSec. 
The SSL (Secure Socket Layer) and TLS (Transport 
Layer Security) systems are also relatively general 
purpose, but are placed right over the TCP protocol, 
providing the choice of being implemented either 
within the protocol suite (and accessible to all 
applications) or by specific packages such as 
browsers and http servers. Another approach is 
placing the security system within the application, 

tailoring it to the specific needs and peculiarities of 
that given application; being SET (Secure Electronic 
Transaction) the most popular example of this 
approach.  

All of these security systems use cryptography; 
generally using public key cryptosystems to establish 
a session key and private key (symmetric) 
cryptosystems to transfer data securely between both 
parties using that session key.  

Most cryptographic systems are based on 
unpredictable quantities. The keys, prime numbers or 
challenge values of many cryptosystems need to be 
unpredictable enough so that the probabilities of all 
different values are more or less the same, making 
impossible any search optimization based on the 
reduction of the key space to the most probable 
values. These are obtained from random sequences 
that can be either truly random or pseudorandom, 
meaning that they are generated deterministically but 
appear to be random enough for practical use. 

A truly random generator is based on a natural 
source of randomness. This source is sampled and 
then postprocessed to make it free of biasing and 
skewing. The system must be designed to prevent any 
observation or manipulation by the opponent and also 
any non random external interference (such as 
electromagnetic radiation from periodic sources, 
etc.). Proper function should be tested periodically 
ensuring that the previous conditions hold true. 
Natural sources of randomness include the thermal 
noise of a resistor, noise input from a microphone or 
a camera, particle emission time during radioactive 
decay, etc; software based events can also be useful, 
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such as the system clock, the elapsed time between 
keystrokes, mouse moves or network packets, 
operating system statistics, etc.  

A pseudorandom generator is a completely 
deterministic algorithm, in the sense that the 
sequence it generates is a function of its inputs and, 
unlike a truly random generator, its output can be 
reproduced. This means that we only need the seed 
(the input to the pseudorandom generator) in order to 
regenerate the complete output sequence. The output 
sequence is much longer than the seed and it is not 
really random, it is just undistinguishable from a real 
random sequence. 

For security applications we need to produce 
sequences with large periods, high linear 
complexities and good statistical properties. Several 
statistical tests are applied; these tests include 
checking the frequency of single bits, pairs of bits 
and of other bit patterns. Also, the autocorrelation 
and the linear complexity of the sequence are used.  

Most available cryptographic generators are based 
on linear feedback shift registers (LFSRs). They are 
so popular because they can be easily implemented in 
hardware, they produce sequences of large periods 
with good statistical properties, and have a simple 
structure that can be analyzed easily.  

LFSRs by themselves are not very secure, but 
because they are so efficient they are commonly 
enhanced with other techniques to improve their 
cryptographic properties.  

Another popular generator is the Blum Blum Shub 
(BBS) generator (see [18]). Other generators combine 
a block cipher in different ways to obtain a 
cryptographically secure random bit sequence, such 
as the pseudorandom generator specified in ANSI 
X9.17 which performs three triple DES encryptions 
per iteration. 

In this paper we propose a modification to a 
previously published pseudorandom generator based 
on block upper triangular matrices that allows 
improving performance and security by using word 
packed matrices, implementing over Z2 and 
introducing new extraction and key scheduling 
mechanisms. 

2   Preliminaries  
 
In this section we describe the required prerequisites 
for the correct comprehension of our proposal.  
 
2.1    Original Generator 
 
Our generator is based on the powers of a block 
upper triangular matrix (BUTM) defined over Zp, 
with p prime. As we take the different powers of a 
BUTM, we have as a result a sequence of matrices of 
very long period that has great properties in terms of 
randomness. Each element of the sequence (each 
BUTM) can be processed to obtain a series of values 
that produce an output sequence with great statistical 
values. This scheme is simple enough to be really fast 
but incorporates enough complexity to present great 
cryptographic properties.  

Consider the block upper triangular matrix M 
defined as 

 

 ,
A X

M
B

⎡ ⎤
= ⎢ ⎥
⎣ ⎦O

 (1) 

 
whose entries lie in Zp, where A is an r × r matrix, B 
is an s × s matrix, X is an r × s matrix, and O denotes 
the s × r zero matrix. 

The following result, which is the base of the 
generator, establishes the expression of the different 
powers of matrix M. It also defines matrix X(h) in 
terms of A, B and X.  

 
Theorem. Let M be the block upper triangular matrix 
given by (1).Taking h as a non negative integer then 
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hB

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦O

, (2) 
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Also, if 0 t h≤ ≤ then 
 

( ) ( ) ( )h h t tt h tX A X X B− −= + . (4) 
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In order to generate the pseudorandom bit sequence, 
matrices A and B are fixed and matrix X is randomly 
chosen, constituting the seed of the sequence. Next 
expression (4) is applied to obtain the following 
succession of matrices: 

 
(2) (3) (4), , ,X X X …  (5) 

 
 
 

For each matrix X(h) a bit extraction operation is 
determined obtaining a sequence of bits like 

 
2 3 4, , ,b b b …  (6) 

 
One of the basic properties that every pseudorandom 
sequence should hold is that its period must be very 
long (at least a period of 2128). The key for obtaining 
long periods for the sequence given by (6) is 
constructing matrices A and B as companion matrices 
to primitive polynomials so the period can be 
guaranteed to be at least 

 
( 1, 1).r slcm p p− −  

 
The value of p or the sizes of A and B need not be 
very large in order to achieve long periods. For more 
information see [21, 23]. 

 
2.2    Packed Matrices 
 
The concept of word packed matrices is essential for 
the optimized implementation of the generator over 
Z2. Packed matrices allow adding and multiplying 
binary matrices just by performing binary operations 
between processor registers, which is very efficient. 

We define a matrix, whose elements lie in Z2, as a 
word packed matrix if one of its dimensions (rows or 
columns) is packed as word sized groups of bits. 

Operations involving packed matrices are 
equivalent to those between conventional matrices 
since packed matrices are, essentially, just a way of 
storing the elements of the matrix so that the 
computations required can be efficiently implemented 
as binary operations between processor registers. 
Nevertheless, they present certain peculiarities of 
their own that must be taken into account. 

The addition of packed matrices must be done 
between matrices of the same type, be them packed 

by rows or by columns. Although they could be 
unpacked and operated normally, the optimal way is 
to perform a XOR operation word by word. 

The product operation between packed matrices is 
a little more complex than the addition. The product 
must be done between matrices of different types and 
with compatible sizes. The multiplicand has to be a 
row packed matrix, while the matrix corresponding to 
the multiplier must be packed by columns. 

 
 

3   Description 
 
3.1   Implementation 
 
The following operations have to be performed per 
iteration: 

 
( 1) 1

( )

1

,
,

,
.

h h

h

h

h

E AX XB
X E

F BB
B F

− −

−

= +

=

=

=

 

 
It can be observed that X(h) has to be computed for 
each iteration but, Bh is also required, this forces to 
keep in memory the original matrices, X or B, and 
their power, X(h) or Bh. It is also necessary to employ 
temporary matrices E and F since the same matrix 
cannot be employed as source and destination at the 
same time. 

Considering the peculiarities of the product 
operation between packed matrices we can identify 
the following matrices and types: 

 
• A has to be a row packed matrix,  
• B has to be a row packed matrix,  

• B
h 
has to be a column packed matrix,  

• X has to be a row packed matrix,  

• X
(h) 

has to be a column packed matrix,  
• E and F are temporary column packed 

matrices.  
 
Although the product operation between word 

packed matrices generates sparse bits instead of 
words, these bits can be repacked into the desired 
format (rows or columns) without a significant 
performance hit. 
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r s digits 

15 8 06 
31 8 11 
47 8 16 
23 16 11 
31 16 14 
47 16 18 
47 32 23 
63 32 28 
64 48 33 
80 48 38 
95 48 43 
96 53 44 

Table 1. Periods for different sizes with p=2. 
 
 
3.1.1    Parameters 
 
Besides determining the format for each matrix, their 
sizes must also be decided for the correct operation of 
the implementation. 

Several sizes and the number of digits of the 
corresponding period are shown in table 1. The 
option that appears to be more adequate is the r=64, 
s=48 since the word size is 32 bits in this case and 64 
requires exactly 2 words. Moreover, the order 
obtained is excellent, allowing the resulting generator 
to be useful for a wide spectrum of applications. 

 
 
3.2    Key scheduling 
 
In order to augment security, the generator performs a 
key scheduling operation by following these steps: 

 
1. Iterate the generator 64 times. 
2. Collapse all words in X(h) by XORing 

them together. 
3. Elevate A and B to the value contained in 

that word using a fast exponentiation 
algorithm. 

 

A good starting point for the generator is achieved in 
this way (see [5]). This operation has only to be 
performed when the key changes. 
 
3.3    Bit extraction 
 
We have designed an extraction scheme that takes 
advantage of the word packed structure of the X(h) 
matrix in order to achieve the maximum possible 
efficiency. 

The X(h) matrix contains 2 rows with 48 words of 
32 bits each 

 
 

1,1 1,2 1,48( )

2,1 2,2 2,48

.hX
ω ω ω
ω ω ω
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

"
"

 

 
The extraction mechanism consists in extracting a 
word per each column of X(h) applying a non linear 
function to certain words of the matrix. 

For this purpose, the following non linear 
functions are defined 

 

1

2

3

( , , ) ( ) ( ),
( , , ) ( ) ( ),
( , , ) ( ).

F x y z x y x z
F x y z x z y z
F x y z y x z

= ∧ ∨ ¬ ∧
= ∧ ∨ ∧¬
= ⊕ ∨¬

 

 
These functions are applied in the following way 
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α Monobit Serial Poker Runs Autocorrelation 

0.001 10.830 13.820 330.5 51.18 3.090 
0.005 7.870 10.590 316.9 45.56 2.576 
0.010 6.635 9.210 310.5 42.98 2.326 
0.025 5.024 7.378 301.1 39.36 1.960 
0.050 3.842 5.992 293.2 36.42 1.645 
0.100 2.706 4.605 284.3 33.20 1.282 

Table 2. Threshold values  for the statistical tests 
 
 

 

1, 1 1, 1 2, 1 2,

2 2, 1, 1 2, 1

3 2, 1 2, 1, 1

( , , )
( , , )
( , , )

i
i i i i

i i i

i i i

F
F
F

γ ω ω ω ω

ω ω ω

ω ω ω

+ +

+ +

+ +

= +

+

+

 

 
obtaining a word of 32 bits, ,iγ  for each column 
which produces a total of 48x32=1536 bits of output 
per iteration. 

Combining Boolean operations like OR, AND, 
XOR o NOT with the addition modulo 232 prevents 
attacks that are targeted at deducing a part of the seed 
from a certain amount of output sequence. Moreover, 
1536 output bits are extracted nonlinearly from a total 
of 3072 bits per iteration; making brute force attacks 
especially expensive. For more information see [20, 
22, 26-28]. 
 
 
4   Results 
 
The results are shown in table 3. The optimized 
generator with r=64, s=48 is compared with the 
original version, and other reference algorithms like 
Blum Blum Shub [18], AES [19]  in output feedback 
mode and RC4 [25] working as pseudorandom 
generators. 

The generator has been checked with five different 
statistical tests  (frequency tests plus autocorrelation 
tests) and with the linear complexity of the sequence. 

The monobit test statistic is a single bit frequency 
test designed to check that the number of zeros and 
ones of the sequence is more or less the same.  

The test is expressed by the following equation, 
with n being the total number of bits in the sequence 
and n0 and n1 being the number of zero bits and one 
bits respectively: 

 

n
nn

X
2

10
1

)( −
= . 

 
This test follows a 2χ  distribution with 1 degree of 
freedom. 

The serial test checks that the frequency of pairs 
of bits (00, 01, 10 and 11) is also about the same. As 
before, n is the total number of bits, n0 is the number 
of zero bits, n1 is the number of one bits and n00, n01, 
n10 and n11 are the number of occurrences of such 
pairs allowing them to overlap. 

 

2

2 2 2 2
00 01 10 11

2 2
0 1

,
4 ( ),

1
2 ( ) 1.

X a b

a n n n n
n

b n n
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= −

= + + +
−
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This follows a 2χ  distribution with 2 degrees of 
freedom. 

The poker test checks that patterns of length m 
appear the same number of times in the sequence 
without overlapping. The value m is obtained with 

m

m
n 25 ⋅=⎥⎦
⎥

⎢⎣
⎢ , k is taken as ⎥⎦

⎥
⎢⎣
⎢=
m
nk  and ni is the 

number of occurrences of the pattern i. 
 

knX
m

i
i

m

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=

2

1

2
3 3

2
. 

 
This follows a 2χ  distribution with 12 −m  degrees 
of freedom. 
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 Original Optimized BBS AES RC4 

Frequency 1.7716 0.0450 1.0646 1.0268 1.1035 
Serial 3.6994 0.0564 1.5252 1.4981 2.2746 

Poker 8 254.03 270.53 249.00 254.91 276.35 
Poker 16 65377 65858 65607 65650 65681 

Runs 15.6624 14.6603 16.1032 15.9688 15.7268 
AutoCorr. 0.7967 0.7895 0.7978 0.7984 0.7972 

Lin. Comp. 10000 10001 10000 10000 10000 
Time 4.8316 0.0527 21.3425 0.2479 0.0170 

Table 3. Results for the optimized generator. 
 
 

A run is a pattern of all zeros or all ones; a block 
is a run of ones and a gap is a run of zeros. The 
expected number of runs of length i is 

22/)3( ++−= i
i ine . The value of k is taken as the 

largest integer i for which 5≥ie  and is the length 
limit for which runs are accounted; finally, Bi and Gi 
are the number of blocks and gaps of length i (up to 
length k) of the sequence. The runs test is expressed 
by: 

 

∑∑
==

−
+

−
=

k

i i

ii
k

i i
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e
eG

e
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X
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2

1

2

4
)()(

; 

 
following a 2χ  distribution with 22 −k  degrees of 
freedom. 

The autocorrelation checks for coincidences 
between the sequence and itself displaced d bits. 
Taking )(dA  as the amount of bits not equal 
between the sequence and itself displaced by d bits, 
we have: 

 

dn

dndA
X

−

⎟
⎠
⎞

⎜
⎝
⎛ −

−
= 2

)(2
5 ; 

  
which follows a N(0,1) distribution. 

The linear complexity of a sequence of bits is the 
length of the shortest LFSR that can generate that 
sequence. The expected linear complexity for a 
random sequence is 2/n  being n the length of the 
sequence. If we plot the linear complexity of a 
sequence against its length (for …,3,2,1=n ) we 
have the linear complexity profile which should 
follow closely the line 2/n  if the sequence is 

random. The linear complexity of a sequence can be 
computed using the Berlekamp-Massey algorithm. 

These results are the average values obtained in a 
series of 1000 different sequences of 20000 bits in 
length. 

A test is considered to be successful if the result 
obtained is less than the correction value, except in 
the case of the linear complexity, where the expected 
value is n/2, being n the length of the sequence. The 
correction values can be found in table 2. 

The tests have been performed using the same 
processor, compiler and optimizing options for all 
implementations, in order to make the comparison as 
fair as possible. The implementations have been done 
using standard C, avoiding assembler or special 
instruction sets. 

 
4.1   Performance 

 
The proposed optimization achieves a significant 
performance improvement of over two orders of 
magnitude compared to the original version. With 
this excellent result, the keystream generator lies 
within the same order of magnitude of the standard 
RC4, and is much faster than the rest of the reference 
algorithms studied. 

We consider that, in order to achieve a significant 
performance increase over this optimized version 
over Z2, the use of extended multimedia and vector 
instructions (MMX, SSE, etc.) would be required 
hampering the portability to other architectures not 
supporting this instruction sets. Nevertheless, the 
recent 64 bits microprocessors would allow a direct 
performance increase by utilizing the bigger registers. 
This does not occur with algorithms like RC4 that, by 
design, cannot take advantage of more powerful 
architectures directly. 
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4.2   Randomness 
 
The implementation over Z2 based on word packed 
matrices does not only provide a very satisfactory 
performance level, it also produces sequence of 
excellent quality in terms of randomness.  

It can be observed that the optimized generator 
maintains the quality of original generator and 
achieves comparable and, sometimes, better results 
than the reference algorithms.  

 
5   Integral Kernel 

 
Most protocols in digital business employ symmetric 
cryptography to transfer large quantities of data, 
while asymmetric cryptography is used to swap 
session keys, digital signatures, etc. Additionally, 
hash functions can be used in order to improve 
efficiency and data integrity. 

Our proposal can be integrated with these basic 
components, obtaining a security kernel which can be 
the basis of many protocols. Since cryptographic 
algorithms are extremely diverse in nature, scope and 
requirements, this integration is highly beneficial 
since it allows for cheap mass production, and ease of 
design of new secure systems which could use the 
kernel as a black box. 

The cryptographic kernel is based on the powers 
of a block upper triangular matrix, which is a very 
flexible technique. It can be adjusted to satisfy 
memory and speed requirements and be implemented 
successfully either in hardware or software. Another 
advantage is that the same basic mathematical 
scheme can be used to build private key 
cryptosystems, public key cryptosystems and hash 
functions. Therefore, we only require implementing 
this technique once in order to provide these three 
types of algorithms, integrating a full cryptographic 
kernel in a single low cost device. This is a 
remarkable new concept that shows how useful this 
technique can be in cryptography. 

 

5.1   The Symmetric Component 
 
To cipher large amounts of information efficiently, 
we need a private key cryptosystem. For that purpose, 
we can build a stream cipher using the mathematical 
base of the kernel by taking advantage of its great 
randomness properties as shown previously. We first 
create a good pseudorandom generator and, once we 
have that, we use it as the keystream generator in a 
Vernam cipher scheme, taking the seed of the 
generator as the key of the stream cipher. This 
pseudorandom generator can also be used to generate 
general purpose random numbers such as session 
keys, challenge values, etc. 

Once we have a proper keystream, ciphering the 
plaintext is as simple as XORing the keystream with 
it bit by bit. In order to decipher we XOR the 
keystream again with the ciphertext and retrieve the 
original plaintext. The seed of the generator is shared 
by both parties so that they can reproduce correctly 
the keystream. 

 
5.2   The Asymmetric Component 
 
Defining the operator ⊗  as   

 
)()()( baba XXX +=⊗ , (9) 

 
set },,,,{ )3()2()1()0( …XXXXG =  has a finite 
group structure and its order can be taken as large as 
needed to make our scheme secure. 

The key exchange scheme between two users U 
and V, proposed for our kernel, is: 

 
1. U and V accord values for p, n, A, B and X  
2. U generates a random number k and 

computes Ak, Bk and X(k) 
3. V generates a random number m and 

computes Am, Bm and X(m) 
4. The numbers k and m are respectively the 

private keys of U and V 
5. The pairs (X(k), Bk) and (X(m), Bm) are 

respectively the public keys of U and V 
6. U computes mkmkmk BXXAX )()()( +=+  
7. V computes kmkmkm BXXAX )()()( +=+  

 
With this scheme users U and V share matrix X(k+m) in 
G. 

The computation of Ak, Am, Bk, Bm, X(k) and X(m) 
can be done efficiently adapting the existing quick 
exponentiation algorithm in Zp. 
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Figure 1. Secure communication scheme. 

 
 

It is computationally infeasible, for an attacker, to 
know the shared key X(m+k) without the previous 
knowledge of k and m, because the problem the 
attacker would be facing is in the order of complexity 
of the discrete logarithm problem. 

The scheme described previously can be adapted 
to perform digital signature using a similar technique 
to the ElGamal cryptosystem. Since the kernel 
requires little resources, it is suitable for low power 
or low cost environments. For more information see 
[10, 12, 13, 24]. 

 
5.3   The Hash Component 

 
Taking the mathematical base of the kernel we can 
also build a hash function. We can use the 
pseudorandom generator as a diffusion and 
compression mechanism accumulating its results over 
a fixed length register. The stream cipher proposed 
can be also adapted to perform a hash function in the 
way shown in [27]. 

 
 
 

5.4   Applications 
 

This integral security kernel can be used by any 
digital business protocol requiring security at any 
level, like A/V content distribution systems, 
anonymous peer to peer systems, certified email 
systems, online payment systems, etc. It can be 
implemented on any platform (PC, dedicated 
hardware, PDA, latest generation of cell phones, 
smart cards) and data transport system (Internet, 
wireless networks, satellites, terrestrial digital 
transmissions, etc.), being capable of adapting to the 
technological evolutions in the communications 
sector. Application examples can be seen in [2-9, 11, 
14]. 

It is efficient   and   easy   to   implement   either 
in hardware or software and requires very little 
resources, making possible its implementation in a 
wide spectrum of devices, especially those of low 
cost. In this way, confidentiality (ciphered 
information), integrity (no alteration warranty) and 
authentication (identity verification using digital 
signature) are assured in the communications.  

For each of the communication channels 
established between the different parties (see figure 
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1), we need to guarantee confidentiality, 
authentication, and information integrity. For that 
purpose we require the usage of symmetric and 
asymmetric cryptography, a random generator and a 
hash function (operations offered by the proposed 
kernel).  

In this way, the kernel provides all the means for a 
secure communication between two parties: 
 

• First, both parties must establish values for p, 
n, A, B and X. 

• Then, U generates a random k of sufficient 
length, V generates m in the same way. 

• U sends V values X(k) and Bk, V does the same 
sending U the values X(m) and Bm. 

• U computes X(k+m) and V computes X(m+k), 
since both parties reach the same result they 
now share this secret key. 

• U and V can agree on new values for A and 
B. 

• Taking the new A and B, along with X(k+m), 
we have the session key for our secure 
channel, using the kernel's stream cipher. 

 
6   Conclusions  
 
We have proposed a modification to a previously 
published pseudorandom generator that achieves a 
performance improvement of two orders of 
magnitude. 

This optimization is based on an implementation 
over Z2 and the use of packed matrices allows 
performing most calculations with native binary 
operations between processor registers. Moreover, the 
word parking system can take advantage of more 
powerful processors with bigger registers, like the 
new 64 bit CPUs, directly unlike most other 
algorithms. 

The generator produces sequences of great quality 
in terms of randomness, comparable to world class 
standard reference algorithms, allows seeds up to 
3072 bits in size, a long period and the extraction and 
key scheduling mechanisms provide more non 
linearity and security.  

Block upper triangular matrices can also be used 
to implement other cryptographic primitives, 
integrating a security kernel with many applications 
for low power / low cost secure solutions. 
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